Segmentation of Retinal Ganglion Cells From Fluorescent Microscopy Imaging

Silvia Baglietto¹², Ibolya E. Kepiro³, Gerrit Hilgen⁴, Evelyne Sernagor⁴, Vittorio Murino¹⁵, and Diego Sona¹⁶

¹Patern Analysis and Computer Vision, Istituto Italiano di Tecnologia, Genova, Italy
²Department of Naval, Electric, Electronic and Telecommunication Engineering, University of Genova, Genova, Italy
³Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy
⁴Institute of Neuroscience, Newcastle, Newcastle-upon-Tyne, U.K.
⁵Department of Computer Science, University of Verona, Verona, Italy
⁶NeuroInformatics Laboratory, Fondazione Bruno Kessler, Trento, Italy

Keywords: Cell Segmentation, Active Contour, Multiscale Blob Filtering, Retinal Ganglion Cell.

Abstract: The visual information processing starts in the retina. The working mechanisms of its complex stratified circuits, in which ganglion cells play a central role, is still largely unknown. Understanding the visual coding is a challenging and active research area also requiring automated analysis of retinal images. It demands appropriate algorithms and methods for studying a network population of strictly entangled cells. Within this framework, we propose a combined technique for segmenting retinal ganglion cell (RGC) bodies, the output elements of the retina. The method incorporates a blob enhancement filtering in order to select the specific cell shapes, an active contour process for precise border segmentation and a watershed transform step which separates single cell contours in possible grouped segmentations. The proposed approach has been validated on fluorescent microscopy images of mouse retinas with promising results.

1 INTRODUCTION

The retina is a photosensitive membranous tissue lying at the back of the eye. Its role is to process the light stimuli and to transmit the information to the brain through the optic nerve. Although it is often compared to a photographic film on which the images are imprinted and encoded into electrical signals with a columnar processing, the retina has a very complex function and structure, composed of several layers of cells in a tangled network (Gregory, 2015); photoreceptors feed into bipolar and amacrine cells, which pass the input to an assorted set of retinal ganglion cells (RGCs). Recent studies show that retina performs sophisticated non-linear computation, extracting spatio-temporal visual features with high selectivity. This is reflected by the fact that distinct RGC types have been found to encode specific visual features for transmission to the brain (Neumann et al., 2016).

According to the current knowledge, there is a correlation between RGC morphology and function and this is usually studied at the single cell level (Berson et al., 2010). Recently, an intense debate is rising around the importance of studying the retina at the circuit level and the actual challenge is to tackle the problem at a different scale, analyzing populations of neurons at a network level (Roska et al., 2006), (Kim et al., 2010). Several studies are trying to model responses of RGC populations heading to a better understanding of the role of RGCs (Baden et al., 2016). To support neuroscientists in this study, automated tools for the large-scale segmentation of RGC bodies are required.

In this work we propose an automatic algorithm for cell segmentation from fluorescent images recorded with a confocal microscope. This process would allow the characterization of different RGC types distinguished by different soma morphologies at the population level, inspiring studies addressing the correlation between soma morphology and functional behavior.

Such datasets are complex for many reasons. They are affected by low contrast at the cell boundaries,
Im1 (PV-EYFP) Im2 (Thy1-EYFP) Im3 (Calretinin) Im4 (Calretinin) Im5 (Thy1-EYFP) Detail of Im5

Figure 1: 5 different images containing RGCs used for testing the proposed method. The images show high variability across samples. In the bottom right, there is a magnified crop of Im5, showing the complexity of images, where the analyzed structures are mixed with background and other structures.

This global setting introduces to new challenging computational tasks for image segmentation. Indeed, state-of-the-art methods usually work on single neuron reconstruction (Gulyanon et al., 2016) and can hardly be adequate for separating neurons from the background. The automated segmentation is still a critical open problem. On the other hand, the manual interaction to generate the morphological reconstruction is time consuming and expensive. Traditional segmentation approaches which use only basic techniques, such as morphological operators and thresholding, are not powerful enough and lead to wrong segmentations (Meijering, 2012). Learning approaches, such as (Arteta et al., 2013) and (Zhang et al., 2014), require hand-labelled neurons for training and testing. In addition, they cannot manage to extract the precise segmentation of cells because of the difficulties dealing with the high variance in cell appearance. In contrast, active contour methods have demonstrated good performance in image segmentation dealing with challenging data (Chan et al., 2001), (Yezzi et al., 2002). Their main limitation is related to the strong sensitivity to the model initialization, which usually requires variable degrees of user intervention. To this end, recent years have witnessed the spread of active contour models in different formulations, aiming at hybrid approaches for automating the initialization process (Ge et al., 2015), (Wu et al., 2015).

Within this scenario, we designed a method based on active contour initialized on specific ROIs, which are automatically identified by a multiscale blob filter emphasizing only cell bodies. Several shape-based
enhancement filters have been introduced in literature. Frangi filter has been reported to be one of the most effective vessel enhancement filter (Frangi et al., 1998). In light of that, we introduced a novel multiscale blob filtering method derived from the Frangi filter for the enhancement of neuron somata. Cell bodies are then segmented by a localizing region-based active contour algorithm (Lankton and Tannenbaum, 2008) followed by a watershed-based step to split groups of neurons and to separate cells from dendrites and axons.

The remainder of the paper is organized as follows. In Sec.2 details on the adopted retinal images are provided. We present the pipeline of our method in Sec.3. In Sec.4 results are discussed and conclusions are provided in Sec.5.

2 MATERIALS

Mouse retinal samples were imaged using Leica SP5 upright confocal microscope. Images were acquired at (sub)cellular resolution and at high averaging number to reduce the noise level due to limited light penetration in deep layers of the tissue where RGCs are located. A total of 5 images (2048 × 2048 and 1024 × 1024 pixels), containing some hundreds of cells, were selected from 3 different retina samples including: i) three images coming from samples with genetic fluorescence expression, (i.e., Im1 from PV-EYFP and Im2 and Im5 images from Thy1-EYFP mouse), and ii) two images from samples with immunofluorescence staining using the Calretinin calcium-binding protein (Im3 and Im4) (Fig.1-2). The samples were selected in order to best capture the variability in terms of fluorescence expression, cell and axonal bundle density and background.

3 METHOD

There are mainly three steps in our pipeline as shown in Fig.2: Multiscale Blob enhancement filtering (Fig 2.b), Localizing Region-Based Active Contour (Fig 2.c) and Watershed Transform (Fig 2.d).

The blob enhancement filtering is used to initialize the high performance active contour method, heavily dependent on the initialization mask. Thanks to this filter, the processing pipeline can proceed without user intervention and manual adjustment. After blob filtering, the detected blob-shaped objects are binarized and used as initialization ROIs for a localizing region-based active-contour that segments cell borders. In the most challenging images, the active contour can result in cell clusters due to fuzzy cell boundaries and occlusions. In order to overcome this issue, we use the watershed transform.

3.1 Multiscale Blob Enhancement Filtering

The aim of blob enhancement is to improve the intensity profile of RGC bodies and reduce the contribution of dendritic and axonal structures. It is based on the multiscale analysis of the eigenvalues of the Hessian matrix to determine the local likelihood that a pixel belongs to a cell, i.e. to a blob structure. The proposed approach is inspired by the work of Frangi et al. (Frangi et al., 1998) on multiscale vessel enhancement filtering. The Frangi filter essentially depends on the orientational difference or anisotropic distribution of the second-order derivatives to delineate tubular and filament-like structures. We start from this idea and modify the filtering process (in particular equation (15) in (Frangi et al., 1998)) in order to have a reduction of line-like patterns in favor of blob-like structures (as (Liu et al., 2010)). Instead of a vesselness measure, we define a blobness measure as follows:

\[
B(x_o) = \begin{cases} 0, & \text{if } \lambda_1^{(x_o)} < 0 \\ \frac{1}{2\beta^2} \left(\frac{\lambda_2^{(x_o)}}{\lambda_1^{(x_o)}} \right)^2, & \text{otherwise} \end{cases}
\]

where \(\lambda_1^{(x_o)}\) and \(\lambda_2^{(x_o)}\) are the eigenvalues of the Hessian matrix at point \(x_o\) and \(\beta\) is a threshold which controls the sensitivity of the blob filter. Both \(\beta\) and the Hessian scale have been selected in the range of the average neuron radius. Eq.(1) is given for bright structures over dark background. In case of dark objects conditions should be reversed.

3.2 Localizing Region-based Active Contour

Localizing region-based active contour (Lankton and Tannenbaum, 2008) is an improved version of traditional active contour models (Chan et al., 2001), (Yezzi et al., 2002) where objects characterized by heterogeneous statistics can be successfully segmented thanks to localized energies, differently from the corresponding global ones which would fail. This framework allows to remove the assumption that foreground and background regions are distinguishable based on their global statistics. Indeed the working hypothesis is that interior and exterior regions of objects are locally different. Within this framework, the energies
are constructed locally at each point along the curve in order to allow the analysis of local regions. The choice of the localization radius is driven by the size of the object to be segmented. In our case, for each image, we used a radius equal to the average soma radius, which depends on the image size and on the microscope lens.

Thanks to this efficient technique, we obtain a segmentation mask which tightly fits real cell bodies.

3.3 Watershed Transform and Size Filter

The above active contour fails to separate groups of overlapping or contiguous cells, hence we exploit the simplicity and computational speed of the watershed transform, introduced by Beucher and Lantuéjoul (Beucher and Lantuéjoul, 1979).

As a final step, we need to delete components which are too small or too large for being cell somata (a given example is in Fig.2.c (middle figure) by applying a size filter to remove structures with size outside an acceptable range of somata dimensions.

4 RESULTS AND DISCUSSION

We applied our pipeline to 5 different retinal images representative of possible variations on the retinal samples, such as brightness, intensity, size and number of cells, presence of axonal structures and processes, strong background signals, etc. We generated the ground truth manually segmenting all cells in each image (around 280 cells). To give a qualitative evaluation, we report different examples in Fig.2-3 where it is possible to see that our approach works in different sample conditions. To quantify the performance of our method, we adopt the Dice Coefficient (DC), a widely used metric for comparing the ground truth to the computer-aided segmentation. DC is defined as follows:

$$DC = \frac{2(A \cap B)}{(A + B)}$$

where A is the binary ground truth mask and B is the binary segmentation result. The DC value ran-
Figure 3: Some cells are not easily visible to the human eye just visualizing the retina images, but they are discovered and segmented by our algorithm (for example, in this cropped figure, pink and blue cells were hardly detectable). Adding contrast to the image makes these somata clearer but it increases noise and cell heterogeneity.

Table 1: Segmentation process results. Dice Coefficient has been computed after all steps in the pipeline (Blob Filter, Active Contour and Watershed Transform) and shows improvements after each step. For the final stage of the pipeline, there is also the percentage of detected cells computed assuming as detected a cell with minimum overlap with ground truth fixed at 50%.

<table>
<thead>
<tr>
<th>Image</th>
<th># of cells</th>
<th>Blob Filter DC</th>
<th>Active Contour DC</th>
<th>Final detected cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Im1 (PV-EYFP)</td>
<td>95</td>
<td>0.60</td>
<td>0.69</td>
<td>0.81</td>
</tr>
<tr>
<td>Im2 (Thy1-EYFP)</td>
<td>37</td>
<td>0.43</td>
<td>0.58</td>
<td>0.64</td>
</tr>
<tr>
<td>Im3 (Calretinin)</td>
<td>64</td>
<td>0.62</td>
<td>0.82</td>
<td>0.83</td>
</tr>
<tr>
<td>Im4 (Calretinin)</td>
<td>29</td>
<td>0.57</td>
<td>0.71</td>
<td>0.79</td>
</tr>
<tr>
<td>Im5 (Thy1-EYFP)</td>
<td>48</td>
<td>0.51</td>
<td>0.62</td>
<td>0.70</td>
</tr>
</tbody>
</table>

5 CONCLUSIONS

In this paper we have proposed a new algorithm for the large-scale segmentation of cells in challenging retinal images. First, a novel and effective multiscale blob filter is employed for cell enhancement which selects ROIs for the initialization of an active contour step, addressing the known weakness of these methods. Active contour reaches suitable results but needs a further segmentation in case of multiple cell aggregations, which has been addressed using a watershed transform followed by a filter guided by the size of structures.

We validated our approach against manual segmentations on 5 images in which there are some hundreds of neurons representative of a variety of cell appearances and image conditions.

Thanks to its generality, this approach could be applied to similar cell segmentation scenarios and opens new perspectives for the analysis and the characterization of the retinal morphology at a population level.
Figure 4: Variation of the % of detected cells as a function of the % of overlap between detected cell and the corresponding annotated ground truth.

ACKNOWLEDGEMENTS

The research received financial support from the 7th Framework Programme for Research of the European Commission, Grant agreement no. 600847: RENVISION project of the Future and Emerging Technologies (FET) programme.

We would like to thank Dr. Luca Berdondini, Dr. Alessandro Maccione, and Dr. Stefano Di Marco (Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova) for providing the CMOS devices and for their support in the sample preparation. We would also like to thank Dr. Francesca Cell Zanacchi (Nanophysics, Istituto Italiano di Tecnologia, Genova) for her support in the microscopy acquisitions.

REFERENCES

Lankton, S. and Tannenbaum, A. (2008). Localizing region-

