ATL Transformation of Queueing Networks to Queueing Petri Nets

Issam Al-Azzoni
Department of Software Engineering, College of Computer and Information Sciences,
King Saud University, Riyadh, Saudi Arabia

Keywords: Model Transformation, MDE, ATL, Queueing Networks, Queueing Petri Nets, QPME.

Abstract: This paper presents an approach for model transformation from Queueing Network Models (QNMs) into Queueing Petri Nets (QPNs). This would open up the benefits of QPNs in analyzing the performance of QNMs. We present metamodels for QNMs and QPNs, and then present the transformation rules in the ATL model transformation language. To validate our approach, we apply it to analyze the performance of a QNM and compare the results with those obtained using analytic methods. Although the approach is presented using ATL and Ecore meta modeling language in the context of the Eclipse Modeling Project, it can be realized using other modeling frameworks and languages.

1 INTRODUCTION

Models have become the de facto standard approach to deal with complexity present in today’s software systems. Model-Driven Engineering (MDE) encompasses approaches that consider models not just as documentation artifacts, but as central artifacts in the software engineering process (da Silva, 2015). Model transformation is a fundamental part of MDE. In model transformation, a model can be automatically transformed into another model that can be at a different level of abstraction or in a different formalism altogether. In doing so, the generated models can be analyzed in possibly more efficient ways than the original source models.

There exist several model transformation languages. In particular, the ATLAS Transformation Language (ATL)\(^1\) is a well-known model transformation language with an Integrated Development Environment (IDE) developed on top of the Eclipse platform. ATL language and toolkit are parts of the Eclipse Modeling Project (EMP)\(^2\) set of tools and languages which provide MDE capabilities to the Eclipse community.

Queueing Network Models (QNMs) provide a powerful notation for modeling and analyzing the performance of many different kinds of systems (Harchol-Balter, 2013). QNMs help in predicting system performance during the design phase. This is useful to detect potential problems before the resources are actually committed. In addition, these performance models help in managing design trade-offs and alternatives. QNMs can be analyzed using analytic techniques or simulation. The analytic techniques allow for quick performance analysis, however these can only be applied on specific kinds of QNMs under several assumptions and conditions. Many QNMs can only be analyzed using simulation. The main drawback of simulation is the incurred computational cost.

An approach to reduce the simulation cost is to transform QNMs into Queueing Petri Nets (QPNs) (Kounev, 2006; Kounev et al., 2012) that have equivalent performance characteristics. QPNs provide a powerful general-purpose modeling formalism that can be exploited for modeling systems and analyzing their performance. One tool for analyzing QPNs is QPME (Queueing Petri net Modeling Environment)\(^3\) which includes a simulation engine (SimQPN (Kounev and Buchmann, 2006)) especially optimized to simulate QPNs. SimQPN has been designed to exploit the knowledge of the structure and behavior of QPNs to improve the efficiency of simulation. The main challenge of this approach is that QPNs and QNMs are two different formalisms with different notations and constructs. In order to overcome this challenge, developing an automated transformation from QNMs into QPNs is desired.

This paper attempts to fill this gap by presenting

\(^1\)http://www.eclipse.org/atl/
\(^2\)https://eclipse.org/modeling/
\(^3\)http://qpme.sourceforge.net/
Figure 1: Routes for connection-oriented network (based on Figure 18.5 in (Harchol-Balter, 2013)).

![Image of network routes and service rates]

Route 1: Poisson (λ=3) → 1 → 2 → 3 → out
Route 2: Poisson (λ=4) → 1 → 3 → 4 → out
Route 3: Poisson (λ=5) → 2 → 3 → 4 → out
Route 4: Poisson (λ=6) → 3 → out

| Service Rates: | µ₁ = 10, µ₂ = 10, µ₃ = 20, µ₄ = 10 |

A server uses a fixed scheduling policy to choose the next job to serve. First-Come-First-Served (FCFS) and Last-Come-First-Served (LCFS) are example scheduling policies. When a server serves a job of a given class, the service time refers to the time it takes the job to run on this server. The service time distribution depends on the server and the job class. The exponential distribution is a common service time distribution. The distribution parameters are those parameters that are needed to characterize the distribution. For example, the exponential distribution requires a single parameter: the rate μ. For the exponential distribution, the mean is 1/μ. For a server, the service time distributions and their parameters need to be specified for all job classes that can be served by the server.

For an open class workload, jobs arrive from outside the network. Jobs of a given class can arrive to one or more servers. The arrival time distributions and their parameters need to be specified for each job class at each server to which its jobs arrive. The Poisson distribution is a common arrival time distribution and it requires a single parameter λ. For a closed class workload, the workload intensity is characterized by the number of jobs circulating in the network. Thus, the number of jobs needs to be specified. In order to model interactive systems, a think device is used for closed class workloads. A think device can be thought of as an infinite server farm that can serve any incoming job immediately. The think device requires a think

an approach for model transformation from QNMs into QPNs. The transformations rules are presented using ATL in the context of the EMP. To the best of our knowledge, this paper is the first to present model transformation from QNMs into QPNs. One needs to note that although the model transformation is presented using ATL in the context of EMP, the same concepts can be realized using other model transformation languages and tools such as QVT.

The organization of the paper is as follows. Section 2 covers the Ecore metamodels for QNMs and QPNs. We present in Section 3 the ATL rules for transforming QNMs into QPNs. Section 4 discusses a case study that validates our model transformation approach. The conclusion and future work are discussed in Section 5.

2 METAMODEL DEFINITIONS

2.1 Queueing Network Models

Queueing network models provide powerful notations for modeling and analyzing the performance of many different kinds of systems (Harchol-Balter, 2013). A designer of a software system, for instance, can develop a queueing network model that captures performance-relevant details of the system and then use it to analyze its performance. The model is useful for the designer to verify whether or not performance-related requirements are met. In addition, the model can help the designer in making design decisions that improve the system performance and to manage design tradeoffs that are typically faced in the design of software systems.

A queueing network is made up of servers. Each server is associated with a queue. Jobs that arrive to a busy server (already executing another job) are queued in the server’s queue. There can be several classes of jobs. Each job class represents a workload in the queueing network. There are two main types of workloads: open and closed. For an open workload, the jobs arrive from outside the network. For a closed workload, the number of jobs inside the network is constant and there is no job arriving from outside the network. The open workload intensity is characterized by the job arrival rates to the servers. On the other hand, the closed workload intensity is characterized by the number of jobs circulating in the network.

4http://www.omg.org/spec/QVT/
time distribution and its parameters.

When a job is served by a server, it can be routed to another server or outside the network. We consider networks of queues with probabilistic routing. For a job of class \(c \), \(P_{c,i,j} \) denotes the probability that job at server \(i \) of class \(c \) next moves to server \(j \). \(P_{c,i,\text{out}} \) denotes the probability that job at server \(i \) of class \(c \) is routed outside the network after it is served by the server \(i \). The routing probabilities need to be completely specified for all workloads in a given queueing network.

There are several performance metrics that can be computed for a given queueing network model. These include the average job response time \(T \), the average number of jobs in the system \(N \), and the utilization and throughput for a given server. The job response time is the time difference between the time when the job leaves the system and the time when the job arrived to the system. The number of jobs in the system includes those jobs in the queues plus the ones being served. For multi-classed networks, \(T \) and \(N \) can be computed at a class level basis. The utilization of a server is the fraction of time the server is busy. The throughput of a server is the rate of job completions at the server. In this paper, we use several performance metrics to validate the model-to-model transformation.

We discuss a queueing network model example borrowed from (Harchol-Balter, 2013). It models a network where each packet follows a particular route based on its type. The routes are shown in Figure 1. There are four servers and four job classes (workloads). All of the four workloads are open. The service rates depend only on the servers, thus jobs of all classes are served at the rate of \(\mu_i \) (packets per second) at server \(i \). The service times are exponentially distributed and the job arrivals follow Poisson processes. The rates are given in the figure. An example for a performance metric to be computed is the average response time for packets on route 2.

Figure 2 shows the Ecore metamodel for queueing networks. A queueing network model is composed of one or more Nodes, zero or more Arcs, one or more Workloads, zero or more WorkloadRoutings, and zero or more ServiceRequests. The Arc class connects nodes. For any given arc, there is one source node and one target node. Node is an abstract class and there are five types of nodes: SourceNode, SinkNode, NonServerNode, ThinkDevice and Server. SourceNodes and SinkNodes are used for open workloads to represent the entry and exit points. ThinkDevice node is used to represent the think device. A NonServerNode is optionally used in batch processing closed workloads in which there is no think device. In such workloads, we can use a NonServerNode to re-route a job after it finishes service to a server so that the job starts a new service cycle with a think time of zero. A Server node provides a processing service. A Server has a scheduling policy represented by the attribute schedulingPolicy whose type is the enumerated type SchedulingPolicy. In Figure 2, we include representative scheduling policies that are used in the case study presented in the paper. Note that the attributes arrivalDistribution and arrivalParams are used in SourceNode class to characterize the arrival time process in open workloads.

A Workload has an optional name and a numOfJobs attribute used in closed workloads to represent the number of jobs. A Server is associated with zero to many Workloads. For the other types of nodes, a node is associated with one Workload. This is because a server may serve jobs of different workloads. A ServiceRequest associates Workloads with Servers. ServiceRequests represent the service times. Since the service time of a job depends on its class (workload) and the server, the relations from ServiceRequest to Server and ServiceRequest to Workload are one to one in both cases. The ServiceRequest class has two attributes used to charac-
Figure 3: Ecore metamodel for queueing Petri nets.

2.2 Queueing Petri Nets

Queueing Petri nets extend Colored Generalized Stochastic Petri Nets (CGSPNs) by allowing queues to be integrated into places of CGSPNs. In QPNs, there are two types of places: ordinary places and queueing places. The ordinary places are defined in the same way as in CGSPNs. Queueing places, on the other hand, add queueing and timing aspects to the places of CGSPNs. A queueing place consists of two components: a queue and a depository. When an input transition of a queueing place fires, tokens are inserted into the queue of the queueing place according to the queue's scheduling policy. After completion of its service, a token is moved to the depository where it becomes available for the output transitions of the place. The queue has an associated service station for which service time distribution needs to be defined. QPNs strengthen the power of CGSPNs modeling by the direct inclusion of queueing aspects into their models. The reader is referred to (Kounev, 2006; Kounev et al., 2012) for more comprehensive overview of QPNs.

Figure 3 shows the Ecore metamodel for QPNs. A QPN model is composed of one or more Places, zero or more Transitions, zero or more Arcs, zero or more Modes, zero or more ServiceDemands, and one or more Colors. The Arc class connects places to transitions and vice-versa: TransToPlaceArc connects a Transition to a Place and PlaceToTransArc connects a Place to a Transition. There are two types
of places: QueueingPlaces and OrdinaryPlaces. A QueueingPlace has the necessary attributes to define the scheduling policy of its queue. A Place is associated with one or more Colors. A Place has a name and numOfTokens attribute which sets the initial marking. When a place has more than one color, it is necessary to define the token service time distribution and the distribution parameters for each color. This is achieved by using a ServiceDemand that associates one QueueingPlace with a single Color. If a queueing place has a single color, it suffices to define the token service time distribution and its parameters by using the attributes of the QueueingPlace, serviceDistribution and serviceParams, without the need to use any ServiceDemand. A Transition is associated with one or more Modes. The Mode class has a single attribute defining the firing weight of the mode.

We use QPME to create the QPNs and to analyze their models. QPME is an open-source tool for stochastic modeling and analysis of QPNs. QPME has a discrete-event simulation engine specialized for QPNs. It exploits the knowledge of the structure and behavior of QPNs to improve the efficiency of simulation. Using simulation in QPME, many performance metrics can be computed including metrics defined on the token response times, queue utilization, and token population and occupancy.

3 MODEL TRANSFORMATION OF QNMs INTO QPNs

The ATL code for the QN to QPN transformation is presented in the Appendix. It consists of two helpers and ten rules. The allArcs helper calculates a set that contains all the Arc model elements of the input MultiClassQN model. Similarly, the allSourceNodes helper calculates a set that contains all the SourceNode model elements of the input MultiClassQN model. All the rules are matched rules that follow the declarative style of specifying transformations. The target elements are created and initialized following the ATL execution semantics of matched rules.

4 CASE STUDY

In this section, we validate our model transformation approach using the the queueing network example presented in Section 2.1. For the queueing network, we create a source model that conforms to the Ecore metamodel for queueing networks. Then, we use the ATL toolkit to run the ATL module (presented in the Appendix) which generates a target model that conforms to the Ecore metamodel for queueing Petri nets. We then use QPME to analyze the queueing Petri net and compute the required performance metrics. We compare the computed performance metrics using QPME simulation with the analytic results using queueing theory. The resulting QPN model is
shown in Figure 4.

In the QN model of the connection-oriented network of Figure 1, there are 12 nodes: four servers, four source nodes, and four sink nodes. There are four open workloads and each workload has its own source and sink nodes. There are 14 arcs connecting the nodes. Each arc is associated with a single WorkloadRouting element having probability that is equal to one. Thus, there are 14 WorkloadRouting elements. Each WorkloadRouting element is associated with one workload. There are 10 ServiceRequest elements that are used to define the service rates: server1 serves workloads 1 and 2, server2 serves workloads 1 and 3, server3 serves workloads 1, 2, 3, and 4, and server4 serves workloads 2 and 3.

The resulting QPN model is shown in Figure 4. It consists of 12 places: eight queueing places and four ordinary places. For each server or source node in the source QN model, there is one corresponding queueing place in the target QPN model. For each sink node in the source QN model, there is one corresponding ordinary place in the target QPN model. There are four colors: one color corresponding to each workload in the source QN model. There are 14 transitions: one transition for each arc in the source QN model. Each transition is associated with a single mode whose firing weight is equal to the corresponding arc’s WorkloadRouting probability. There are 10 ServiceDemands: one ServiceDemand for each ServiceRequest in the source QN model. There are 32 arcs in the target QPN model: 28 arcs are generated by rule Arc while four arcs are generated by rule SourceNode.

Table 1 compares several performance metrics computed analytically using queueing theory with the results of QPME simulation. The details of how the analytic results are determined can be found in (Harchol-Balter, 2013). The table includes server utilization, the average number of packets at each server, the average packet response time at each server, and the average response time for packets on Route 2. The table demonstrates the high accuracy of QPME simulation.

5 CONCLUSION AND FUTURE WORK

In this paper, we have presented a new approach for transforming QNMs into QPNs using ATL. The approach was validated using a case study in which several performance metrics were predicted with high accuracy. Our approach can be applied on QNMs with several workloads (job classes) that can be of different types (open and closed). The QNMs supported by our approach need not be of product form.

The following points outline the main ideas in our future work. First, it is of interest to implement the transformation using other transformation languages such as QVT on models conforming to MOF. Second, a new plug-in on Eclipse can be developed to help a user in creating QNMs and to apply the model transformation and performance prediction in an automated fashion. Third, we can apply our approach on larger case studies. Finally, it is of interest to expand the queueing network metamodel to support new features such as those mentioned at the end of Section 2.1.

REFERENCES

APPENDIX: ATL TRANSFORMATION CODE

module MultiClassQN2QPN;
create OUT : MultiClassQPN from IN : MultiClassQN;

helper def: allArcs : Set(MultiClassQN!Arc) =
 MultiClassQN!Arc.allInstances()->asSet();

helper def: allSourceNodes : Set(MultiClassQN!SourceNode) =
 MultiClassQN!SourceNode.allInstances()->asSet();

rule Main {
 from qn : MultiClassQN!QNM
 to qpn : MultiClassQPN!QPN
 places <- qn.nodes,
 transitions <- qn.arcs,
 nodes <- qn.workloadRouting,
 colors <- qn.workload,
 serviceDemands <- qn.serviceRequests,

 arcs <- thisModule.allArcs->collect(e | thisModule.resolveTemp(e, 'qpn_ia'))
 ->union(
 thisModule.allArcs->collect(e | thisModule.resolveTemp(e, 'qpn_oa'))
)->union(
 thisModule.allSourceNodes->collect(e | thisModule.resolveTemp(e, 'qpn_oas'))
 ->)
}

rule Server {
 from qn_s : MultiClassQN!Server
 to qpn_qp : MultiClassQPN!QueueingPlace
 name <- qn_s.name,
 schedulingPolicy <- qn_s.schedulingPolicy,
 color <- qn_s.workload,
 incoming <-qn_s.incoming->collect(e | thisModule.resolveTemp(e, 'qpn_oa')),
 outgoing <- qn_s.outgoing->collect(e | thisModule.resolveTemp(e, 'qpn_ia'))
}

rule SourceNode {
 from qn_s : MultiClassQN!SourceNode
 to qpn_qp : MultiClassQPN!QueueingPlace
 name <- qn_s.name,
 schedulingPolicy <- #IS,
 serviceDistribution <- qn_s.arrivalDistribution,
 serviceParams <- qn_s.arrivalParams,
 numOfTokens <- 1,
 color <- qn_s.workload,
 incoming <-thisModule.resolveTemp(qn_s, 'qpn_oas'),
 outgoing <- qn_s.outgoing->collect(e | thisModule.resolveTemp(e, 'qpn_ia'))
}

rule SinkNode {
 from qn_s : MultiClassQN!SinkNode
 to qpn_op :MultiClassQPN!OrdinaryPlace
 name <- qn_s.name,
 color <- qn_s.workload,
 incoming <-qn_s.incoming->collect(e | thisModule.resolveTemp(e, 'qpn_oa')),
 outgoing <- qn_s.outgoing->collect(e | thisModule.resolveTemp(e, 'qpn_ia'))
}

ATL Transformation of Queueing Networks to Queueing Petri Nets

267
rule NonServerNode {
 from qn_s : MultiClassQN!NonServerNode
 to qpn_op : MultiClassQPN!OrdinaryPlace |
 name <- qn_s.name,
 numOfTokens <- qn_s.workload.numOfJobs,
 color <- qn_s.workload,
 incoming <- qn_s.incoming->collect(e | thisModule.resolveTemp(e, "qpn_ia")),
 outgoing <- qn_s.outgoing->collect(e | thisModule.resolveTemp(e, "qpn_ia"))
}

rule ThinkDevice {
 from qn_s : MultiClassQN!ThinkDevice
 to qpn_op : MultiClassQPN!QueueingPlace |
 name <- qn_s.name,
 schedulingPolicy <- #IS,
 serviceDistribution <- #Exponential,
 serviceParams <- Sequenceqn_s.thinkTime,
 numOfTokens <- qn_s.workload.numOfJobs,
 color <- qn_s.workload,
 incoming <- qn_s.incoming->collect(e | thisModule.resolveTemp(e, "qpn_ia")),
 outgoing <- qn_s.outgoing->collect(e | thisModule.resolveTemp(e, "qpn_ia"))
}

rule Arc {
 from qn_a : MultiClassQN!Arc
 to qpn_t : MultiClassQPN!Transition |
 incoming <- qpn_ia,
 outgoing <- qpn_ia,
 qpn_ia : MultiClassQPN!PlaceToTransArc |
 source <- qn_a.source,
 target <- qpn_t,
 qpn_ia : MultiClassQPN!TransToPlaceArc |
 source <- qpn_t,
 target <- qn_a.target
}

rule ServiceRequest {
 from qn_sr : MultiClassQN!ServiceRequest
 to qpn_sd : MultiClassQPN!ServiceDemand |
 serviceDistribution <- qn_sr.serviceDistribution,
 serviceParams <- qn_sr.serviceParams,
 queueingPlace <- qn_sr.server,
 color <- qn_sr.workload
}

rule WorkloadRouting {
 from qn_wr : MultiClassQN!WorkloadRouting
 to qpn_m : MultiClassQPN!Mode |
 weight <- qn_wr.probability,
 transition <- qn_wr.arc,
 color <- qn_wr.workload
}

rule Workload {
 from qn_w : MultiClassQN!Workload
 to qpn_c : MultiClassQPN!Color |
 name <- qn_w.name
}