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Abstract: The question of having sufficient surveillance capability to detect illicit behaviour in order to inform 
decision makers in a timely fashion is of the ultimate importance to defence, security, law enforcement, and 
regulatory agencies. Quantifying such capability provides a means of informing asset allocation, as well as 
establishing the link to risk of mission failure. Individual sensor models can be built and integrated into a 
larger model that layers sensor performance using a set of metrics that can take into account area coverage, 
coverage times, revisit rates, detection probabilities, and error rates. This paper describes an implementation 
of a parametric model for Satellite Automated Identification System (S-AIS) sensor performance. Utilizing 
data from a real data feed, the model was able to determine the percentage of uncorrupted S-AIS messages 
and the probability of detection of at least one correct S-AIS message received during an observation 
interval. It is important to note that the model implementation was not actively calculating the effect of 
message overlap based on satellite altitude and footprint width, or reductions in collisions due to signal de-
collision algorithms.  

1 INTRODUCTION 

The awareness and associated tracking of maritime 
vessels approaching and within a country’s 
territorial waters (TTW) and its exclusive economic 
zone (EEZ) are necessities for the enforcement of 
environmental and commercial laws and regulations, 
as well as national security and the protection of 
public safety. This makes maritime domain 
awareness (MDA) a national priority. There are two 
aspects to MDA: the quality and quantity of data to 
collect and fuse, and the reporting/prediction metrics 
that are used to gather the information into a 
quantifiable, comparable fashion for decision 
support. The former is well recognized as an issue 
for data analytics, data fusion, and big data research 
topics. The latter falls under the more traditional 
operational research umbrella, and will be discussed 
in this paper. The data analytics problem is beyond 
the scope of this discussion; for a more detailed 
treatment of data collection requirements for MDA, 
see Horn et al. (2016) and references therein.  

Metrics that can be used for historical reporting 

and forecasting of upcoming activities are of  
particular interest at the operational level because 
they provide critical information to military decision 
makers about the use of surveillance capabilities, 
such as: 
 Will the surveillance capabilities provide 

sufficient means to detect illicit behaviour? 
 What is the likelihood that illicit behaviour 

would go undetected? 
 Will the surveillance capabilities provide 

sufficient temporal and spatial coverage of the 
area of responsibility (AOR) to be able to 
inform decisions in a timely fashion? 

The answers to these questions are of the 
ultimate importance to defence, security, law 
enforcement, and regulatory agencies, as they 
provide means of informing asset allocation, as well 
as establishing a link to the risk of mission failure 
for given capability sets.  

The purpose of this research is to select one 
surveillance sensor – in this case, the Automatic 
Identification System (AIS) – to model the 
performance of, and use it as a test case towards 
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building a more complex, layered model of 
surveillance capabilities. This will enable reporting 
and planning for the given capability sets.  

This paper is organized as follows. Section 2 
provides a brief description of how AIS functions, 
the utility of the selected sensor, and the inherent 
complications when trying to model such a sensor. 
Section 3 describes the simplified performance 
model chosen and the associated advantages of using 
such a sub-model within a larger model. Section 4 
illustrates how the sensor and performance model 
were implemented, and provides a test case using 
real world data from an AIS feed to compute 
performance parameters. Section 5 discusses some 
of the limitations of the current model and 
implementation, and presents proposals for future 
work. Section 6 concludes the paper. 

2 THE AUTOMATIC 
IDENTIFICATION SYSTEM 

One sensor that is now commonly exploited for 
MDA is AIS, which is a self-reporting system that 
was designed for enhancing the safety of navigation 
at sea. AIS transponders are mandated by the 
International Convention for the Safety of Life at 
Sea (SOLAS) Convention, 1974 (International 
Maritime Organization, 2015) for all ships over 300 
gross tonnage, all passenger-carrying vessels, and 
can be used by other vessels on a voluntary basis.  

Vessel-mounted AIS transponders are broken 
into two types. Class A transponders are required on 
the mandated vessels described previously. Class B 
transponders are a lower power, less expensive 
technology which transmit less frequently than their 
Class A counterparts, and are often used on smaller 
vessels. It can be estimated that AIS is utilized on 
anywhere from approximately 400,000 to over 
550,000 ships, navigational aids, base stations, and 
other sources (including active and decommissioned 
vessels), depending on the data provider 
(myShipTracking, 2016; MarineTraffic.com, 2016). 
While the fraction of active Class A versus Class B 
sources are not directly reported, this does provide a 
sense of the volume of information received by 
tracking networks when ships are reporting 
anywhere from 2 seconds to 6 minutes apart 
(International Telecommunications Union, 2014). 

2.1 Sensor Utility 

Terrestrial-based tracking networks provide a means 

of continuously monitoring so equipped ship traffic 
within the detection range of the shore-based 
stations. However, AIS signals were found to be 
detectable from satellite-based receivers as well. 
Some of the main limitations with satellite AIS (S-
AIS) are the amount of sensor coverage and the 
revisit rates of the satellite, which can be mitigated 
in part by monitoring from multiple satellites. So, 
while coastal AIS systems are advantageous for 
monitoring of the TTW and a fraction of the EEZ – 
with distances depending on very high frequency 
(VHF) ducting properties (Tunaley, 2011a), S-AIS 
has moved to the forefront of technologies for wide-
area surveillance at high refresh rates for reach over 
almost any AOR.  

S-AIS is usually employed in conjunction with 
other sensors, such as coastal radar (Canadian Coast 
Guard, 2016), high-frequency surface wave radar 
(Vesecky et al., 2009), satellite-based synthetic 
aperture radar (Guerriero et al., 2008), or visual 
identification (or other onboard sensors) using 
maritime or aerial assets (Busler et al., 2015). This 
helps to mitigate some of the known issues with data 
quality (such as signal errors, technical installation 
or input errors, or spoofing (Bošnjak et al., 2012)). 

2.2 Modelling Complications 

Technically, however, S-AIS also suffers from 
further complications due to the simultaneous 
reception of a high number of messages within the 
large reception footprint in conjunction with the AIS 
communication standard (International 
Telecommunications Union, 2014). The design of 
the AIS message system into discrete, fixed width 
slots limits the reception of messages at the receiver, 
and the sheer volume of the AIS message traffic 
produces a high probability of message collision 
(i.e., message arrivals within the same time slot). 
On-board processing (OBP) of messages cannot 
fully resolve such collisions, and as a result, the first 
pass detection is low (exactEarth, 2012) when ship 
traffic is dense. While much can be done in terms of 
antenna design and signal processing (Yang et al., 
2014; Yang et al., 2012; Picard et al., 2012) to 
reduce these effects, there still exists a significant 
impact on the sensor’s overall detection 
performance.  

Some providers have chosen to downlink all 
messages to ground stations for more efficient 
spectrum de-collision processing (SDP) (Macikunas 
and Randhawa, 2012). Algorithms have been 
proposed and/or implemented (e.g., Cowles et al., 
2014; Cherrack et al., 2014) to increase the detection 
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performance; however, the time latency of the data 
is dramatically increased (Meger, 2013). 

3 SIMPLIFIED S-AIS MODEL 

For the purposes of historical reporting and 
forecasting of upcoming activities at the operational 
level for defence primarily (but also including 
security, law enforcement, and regulatory agencies), 
the following considerations and assumptions are 
made: 
 Any model must run in a practical amount of 

time so as to be able to provide timely and 
meaningful decision support (typically viewed 
as 1-2 days for short turn-around analyses). 
Thus, simpler is better; 

 When representing the capabilities of a system 
that link to the risk of mission failure, often 
the “worst case scenario” is chosen to 
represent the ultimate limit of the system’s 
capabilities. So, for example, if ground 
stations were unable to perform SDP for some 
reason, then OBP would be considered the 
minimum capability provided. It also provides 
a consistent model and assumption set across 
all S-AIS providers, since some perform SDP 
and some perform OBP; 

 From a reporting/forecasting standpoint, the 
timeslots of individual messages are unknown 
(data not provided), and so the de-collision 
process cannot be reproduced and modelled 
directly. While the signal de-collision process 
can be simulated, it is easier to implement a 
direct relationship between the number of 
ships and the probability of detection; and 

 Since not all AIS providers utilize SDP, it is 
assumed that a generic model that can be 
applied across any provider would provide 
more utility. It could later potentially be 
scaled to account for SDP. 

3.1 Single Sensor Model 

In order to be able to quantify the ability of a 
collection of disparate sensors, each with their own 
area coverages, coverage times, revisit rates, 
detection probabilities, and error rates (false 
positives, false negatives, bit rate errors, etc.), a set 
of metrics that can take all of these factors into 
account is required. Individual sensor models can be 
built and integrated into a larger model that layers 
sensor performance over an AOR for a 
comprehensive  capability to report on historical 

coverages and test out future surveillance plans. 
High fidelity tools, such as the Systems Tool Kit 
(STK), can be used to build such a model. The 
satellite selected for the application here was 
exactView-1, one of the exactEarth constellation 
of satellites. 

Modelling of the coverage of active or non-
cooperative passive sensors (i.e., independent of the 
cooperation of a vessel) in a software package such 
as STK is generally straightforward; however, 
modelling of cooperative sensors such as AIS  can 
be more challenging. While all vessels must be 
represented as objects in a modelled scenario in 
STK, this does not mean that they can or should be 
detected by sensors at all times. Different vessels 
transmit AIS messages at different times and at 
different rates; therefore, the sensor cannot 
automatically assume it can “see” the vessel all of 
the time.   

3.2 Sensor Detection Performance 

Høye (2004) quantified the parametric relationship 
between the number of ships in the S-AIS sensor’s 
field of view (FOV) and the probability of detecting 
a single ship; however, it was assumed that message 
collisions could not be de-conflicted. Tunaley 
(2011b) later showed that the probability of 
extracting an uncorrupted message, γ, from the 
simultaneous arrival of another singleton message 
can be derived in the presence of thermal noise, 
interference from neighbouring channels or even 
interference in the same channel from terrestrial 
transmitters (Eq. 1).  

ߛ ൌ ௢݁ିఒఛ೚ߛ
ሺଵି௤ሻሺଵା௦ሻ (1) 

The explanations for, and the values of the 
parameters in Eq. (1) from (Tunaley, 2011b) for a 
satellite at 800 km altitude are provided in Table 1. 
Høye (2004) reports the difference in the ݏ values 
between 600 km and 800 km altitude as 0.0382, 
while the difference in the ݏ value between 800 km 
and 1,000 km altitude as 0.0248. Therefore, the 
average difference between each 1 km of altitude is 
~0.0002. This means the 5 km to 40 km offset in the 
STK exactView-1 satellite object’s altitude has a 
negligible effect on the 0.6744 value of ݏ for a 
satellite with 800 km altitude. As a result, a fixed ݏ 
value was used for the initial model (MacNeil, 
2015). 
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Table 1: Equation parameter definitions. 

Parameter Name Value 
 ௢ Probability of receiving anߛ

uncorrupted message at 
the input system regardless 
of collisions 

0.2683 

 Mean rate of random ߣ
messages arriving 

Eq. (2) 

߬௢ Length of slot (s) 0.0267 

 Probability that an ݍ
additional signal does not 
corrupt the message 

0.904 

 Effect of range overlap 0.674 ݏ

M Number of ships inside the 
ships cell 

Assumed 
negligible 

nch Number of VHF channels 2 

Δܶ Mean time between 
message transmissions (s) 

Calculated 

The mean rate of message arrival (λ) as a 
function of number of ships (N) in the FOV is given 
in Eq. (2), with parameter values also provided in 
Table 1.  

ߣ ൌ
ܰ െܯ
݊௖௛Δܶ

 
(2) 

Substituting λ from Eq. (2) and all parameter 
values from Table 1 in Eq. (1) yields Eq. (3). 

ߛ ൌ ௢݁ߛ
ି

ே
ଶΔ்ఛ೚

ሺଵି௤ሻሺଵା௦ሻ 

ߛ ൌ 0.2683݁ሺି଴.଴଴ଶଵସହሻ
ே
Δ் 

(3) 

The probability that at least one correct AIS 
message will be observed during a given interval 
(Tobs) (Tunaley, 2011b) is provided in Eq. (4) after 
substituting in Eq. (2). 

݌ ൌ 1 െ ൬1 െ ௢݁ߛ
ି
ே
ଶ∆்ఛ೚ሺଵି௤ሻሺଵା௦ሻ൰

்೚್ೞ ∆்⁄

 
(4) 

3.3 Model Implementation 

The parametric model was implemented using STK 
to perform its satellite modelling and line-of-sight 
(LOS) calculations (MacNeil, 2015). The MATLAB 
scripting language was also selected for use, as it 
integrates directly with STK and automates the 
execution of STK commands. The model 
implementation was driven by a series of MATLAB 
scripts to perform LOS analysis in STK between a 
satellite sensor, representing exactView-1 AIS, and 
three predefined AORs (shown in white in Figure 1). 

These line-of-sight analyses are referred to in STK 
as access calculations.  

 

Figure 1: Three Canadian AORs (white outlines) and the 
exactView-1 AIS sensor FOV (cyan overlay) over time 
when access is available to each AOR. 

The parametric model was designed to take 
geographically-tagged JavaScript Object Notation 
(GeoJSON) S-AIS messages from the exactEarth 
satellite feed and calculate the probability of 
extracting an uncorrupted message when the 
exactView-1 AIS sensor FOV has access to an AOR. 
One day’s worth of S-AIS position reports 
(approximately 4.5 million messages) were filtered 
for Class A messages only. To reduce the problem 
set, the target areas were selected by the union of all 
areas covered by the exactView-1 AIS sensor 
footprint when the sensor had access, or LOS, to 
each of the AORs separately during the defined 
scenario period. This left approximately 2.2 million 
position reports to process. The execution of the 
model was then broken down into three sequential 
operations (MacNeil, 2015): 

1. Partitioning and reformatting S-AIS position 
reports into separate ship files based on unique 
Maritime Mobile Service Identity (MMSI) numbers; 

2. Creating the relative STK ephemeris and 
interval constraint files for each ship; and 

3. Analyzing the STK satellite-to-ship access 
data for each AOR, and collating the data to 
determine the probability of extracting an 
uncorrupted message for each observation period. 

Additional algorithm implementation details are 
provided in the paper’s appendix. 

4 RESULTS 

The partitioning and reformatting of the S-AIS 
position reports took 14.3 hours to complete on a 
3.20 GHz Intel® Core i5-4570 with 8 GB (3.18 GB 
usable) RAM and an Intel® HD Graphics 4600 
processor graphics card. The script produced over 
61,000 partitioned S-AIS ship data files. The script 
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excluded, or dropped, message rows that were not 
Class A position report messages.  

The execution of the script to create the STK 
ephemeris and interval constraint files for each ship 
took 7.5 hours to complete. The script produced over 
43,000 files of each type. The script excluded, or 
dropped, partitioned ship files that existed outside of 
all three AOAs.  

The creation of the STK scenario and analysis of 
the satellite-to-ship access took 7.7 hours to 
complete. Each sensor FOV included approximately 
29-39,000 individual ship objects. During the 
scenario, there were 11-14 access intervals for the 
AORs. Each access interval was treated as a separate 
observation period for the purposes of the following 
results.  

For the scenario considered, the execution time 
was relatively reasonable. However, it may prove 
challenging to remain within practical time limits 
when integrating further sensors into the mix, 
depending on the amount of computations that can 
be leveraged between sensors. One way to speed up 
the computations would be to take advantage of 
MATLAB and STK’s parallel processing features; 
however, both require specialized licensing. 

 
 

4.1 Uncorrupted Messages 

For each access interval, the probability of receipt of 
an uncorrupted message was calculated using Eq. 
(3). Given that the duration of each access interval 
varies, as does the number of messages received, the 
mean time (T) between messages could not be 
considered to be constant. T was calculated using 
the total access duration divided by the number of 
messages received for the given interval, Figure 2 
results, where the data points for the access intervals 
are shown individually (diamonds) on plots of the 
function from Eq. (3). The function plots match the 
access interval T values, while varying the number 
of ships in the FOV. As the number of ships in the 
FOV increases or the time between messages 
decreases the probability of receipt of an 
uncorrupted message decreases. Thus, as more ships 
that exist within the FOV and transmit messages 
more often, the more likely the signal collisions are 
to cause corruption in the messages.  
Previous implementations (such as Tunaley, 2011b; 
Parsons et al., 2013) assume that the mean time 
between messages and the observation time are 
fixed. Here, a single pass of the satellite is utilized 
over a variable observation time frame, as 
determined by the sensor’s access time to each

 
Figure 2: The fraction of messages that are uncorrupted as a function of number of ships in the sensor FOV and the mean 
time between messages. 
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AOR. This time frame is significantly longer than 
the average time a ship is visible within the sensor 
footprint. The mean time between messages is then 
calculated based on the received data within that 
time frame. This cross validates the equation 
parameters from Table 1, as well as the basic model 
for on-board processing system performance. 

4.2 Probability of Detection 

From Eq. (4), ௢ܶ௕௦ ∆ܶ⁄  is essentially the count of the 
number of detections in the FOV over the duration 
of the access interval. Because the FOV is large and 
the access duration is long, the number of detections 
observed is in the thousands or tens of thousands. As 
a result, this term tends to zero, resulting in a near 
100% probability of detection of at least one 
uncorrupted AIS message from any given ship in the 
FOV. 

While edge effects from the shape of the 
footprint (which is a circular beam projected at an 
angle over a spherical surface) will reduce the 
amount of time some ships will remain observed, the 
observed time would have to be reduced by more 
than 92% to see any less than 99% probability of 
detection of at least one correct AIS message. 

5 DISCUSSION 

Since the purpose of this work was to create a 
simple preliminary model that could be used as the 
basis for further integrated model development, 
there were some noted issues that are planned to be 
addressed in future work. 

5.1 Message Quantity and Quality 

The GeoJSON data is contained in a large text file 
that is organized according to a contact identification 
column and not by date/time stamp, which makes it 
difficult to perform read search and sort operations 
in MATLAB. Initial file parsing would likely be 
better suited to database operations either through a 
performed with Structured Query Language (SQL) 
commands through either a Python or C++/C# 
application (MacNeil, 2015). An application written 
in Python would be easier to update and modify 
since it is a dynamically typed scripting language, 
and could be integrated with technologies such as 
ArcGIS for geo-filtering of data points. Programs 
written in C++/C# are compiled to native machine 
code, and can be very computationally quick. An 

application written in C# would also easily integrate 
with the STK Integration plugin. 

Naturally, since the topic deals with corrupted 
AIS messages, the quality of the data from the AIS 
feed can be an issue to parse. From the data, it was 
noted that there were objects that travel semi-
erratically across the globe, ship MMSIs which 
consistently reported the same, or very similar, 
invalid positions, and objects which contain a single 
invalid, potentially corrupt message. The first step in 
helping to resolve some of these issues would be to 
filter the AIS messages based on Tunaley (2013). 
This would restrict the MMSIs to valid ship codes of 
interest. By extending the model to more satellites 
and to global coverage, location-specific issues 
should also be resolved. 

It is also important to note that the precision of 
the GeoJSON formatted S-AIS data’s report and 
received date/time is to the second. The time length 
of a single AIS transmission time slot is 0.0267 
seconds. Thus, a small amount of error is introduced 
when parsing the data. 

5.2 Model Refinement 

At the moment, the values for the parameters in the 
governing equations are primarily taken from 
Tunaley (2011b). The next level of refinement to the 
model would be to determine the current values for s 
and q based on the scenario satellite data instead of 
using a constant value. While a brief analysis of the 
 value revealed that the difference between a fixed ݏ
and dynamic value is small; it represents an increase 
in fidelity of the model and supports extensibility to 
other satellites. This would require implementing 
Høye’s (2004) model to determine the value based 
on STK’s exactView-1 satellite object’s altitude and 
the partition of the satellite’s sensor detection area. 

As mentioned in Section 4.1, the model and 
scripts should be modified to support the entire 
exactEarth™ satellite constellation. This would 
enable the computation of the performance of the 
sensor system as a whole. 

As well, the model and scripts could also support 
global coverage analysis. This would require the 
removal of the dependency on the AOR access times 
from the current model and the addition of another 
time analysis metric (MacNeil, 2015). 

5.3 Model Integration 

It is intended that, once the entire satellite 
constellation is modelled, this becomes a sub-model 
in a larger, layered approach to surveillance 
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capability planning and reporting. Thus, rather than 
trying to compare apples to oranges with 
active/passive versus co-operative sensors, the 
overall performance of the S-AIS sensor system can 
be utilized in a simplified fashion to compute the 
probability of detecting ships. Other sensors and 
platforms can be integrated over various time frames 
to determine what combination of capabilities 
provides sufficient temporal and spatial coverage of 
the AOR to meet the decision-makers’ requirements. 

6 CONCLUSIONS 

A parametric model (Tunaley, 2011b) for S-AIS 
senor performance was successfully implemented in 
STK. Utilizing data from the real S-AIS feed, the 
model was able to determine the percentage of 
uncorrupted AIS messages and the probability of 
detection of at least one correct AIS message 
received during an observation interval for a one-day 
scenario period. This model provided a reasonable 
start towards building a more complex, layered 
model of surveillance capabilities for reporting and 
forecasting for defence security, law enforcement, 
and regulatory applications.  

The implementation utilized real-world data to 
cross-validate the model assumptions and 
application over a wide variety of inputs. It is 
important to note that the model implementation was 
not actively calculating the effect of message 
overlap based on S-AIS sensor altitude and footprint 
width for the different satellite altitudes during its 
orbit. Although an analysis of the effect of message 
overlap revealed that the difference between the 
static and calculated values would be minor; further 
model refinements should still take such details into 
account. The model and scripts serve as a foundation 
for future improvements and extensions in both the 
scope of the model and the performance of the 
implementation. 
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APPENDIX 

The parametric model is written in MATLAB as a 
series of steps (Figure 3) that process the selected 
user input data, perform all necessary conversions, 
and control the execution of STK to compute the 
LOS calculations necessary to support computation 
of the probability of reception of an uncorrupted 
message given the number of ships in the sensor’s 
FOV over a given period of time.  

 

Figure 3: Parametric model implementation in MATLAB. 
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