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Abstract: Determining if a point is in a polygon or not is used by a lot of applications in computer graphics, computer
games and geoinformatics. Implementing this check is error-prone since there are many special cases to be
considered. This holds true in particular for complex polygons whose edges intersect each other creating
holes. In this paper we present a simple even-odd algorithm to solve this problem for complex polygons in
linear time and prove its correctness for all possible points and polygons. We furthermore provide examples
and implementation notes for this algorithm.

1 INTRODUCTION

At a first glance, the point-in-polygon problem seems
to be a rather simple problem of geometry: given an
arbitrary point Q and a closed polygon P, the question
is whether the point lies inside or outside the poly-
gon. There exist different algorithms to solve this
problem, such as a cell-based algorithm (Zalik and
Kolingerova), the winding number algorithm (Hor-
mann and Agathos, 2001) or the even-odd algorithm
(Foley et al., 1990) that is used in this paper. The
problem is not as trivial as it seems to be if the edges
of the polygon can intersect other edges as seen in
Figure 1. This kind of polygon is also often called a
complex polygon since it can contain ”holes”.

Figure 1: A self-intersecting polygon.

A lot of special cases have to be considered (e.g.
if the point lies on an edge) and most of the exist-
ing even-odd algorithms either fail one or more of
these special cases or have to implement some kind
of workaround (Schirra, 2008). The rest of this paper
is organized as follows. In Section 2, we present an
even-odd algorithm and prove its correctness for all
possible points and polygons with no special cases to
be considered. In Section 3, we apply this algorithm
to an example complex polygon. We then provide im-
plementation notes in Section 4. Section 5 summa-
rizes this work.

2 THE EVEN-ODD ALGORITHM

The basic even-odd algorithm itself is fairly simple:
cast an infinite ray from the point in question and
count how many edges of the polygon the ray inter-
sects (Foley et al., 1990).

Definition Let P be a polygon with n vertices
P1, ...,Pn−1,Pn where the vertices are sorted in such
a way that there exists an edge between Pi and Pi+1
for every index 1≤ i < n and between P1 and Pn. The
algorithm computes if the arbitrary point Q lies either
inside or outside of P.
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The Steps of the Algorithm. To ease the presenta-
tion of the steps of the algorithm, it defines its own co-
ordinate system with (0|0) = Q by moving the poly-
gon. This translation is only for illustration purposes.
The algorithm then uses the positive x-axis as ray to
calculate intersections with the edges of P. So the
start vertex of the ray is (0|0) and the end vertex is
(xmax|0) where xmax is an x value greater than that of
any of the vertices of P.
1. First it is determined if Q is equal to any of the

vertices of P or lies on any of the edges connecting
the vertices. If so the result is inside.

2. A vertex Ps that does not lie on the x-axis is
searched in the set of vertices of P. If no such
vertex can be found the result is outside.

3. Set i to 1. Beginning from that vertex Ps the fol-
lowing steps are repeated until all vertices of P
have been visited:

(a) The index s is increased to s+ i until the next
vertex Ps+i not lying on the x-axis is found. If
the index s+ i > n then i is set to −s and the
search is continued.

(b) Depending on the course of step (a) one of the
following steps is taken:

i. No vertex has been skipped: the line segment
from Ps to Ps+i is intersected with the positive
x-axis.

ii. At least one vertex with a positive x-value has
been skipped: the line segment from Ps to Ps+i
is intersected with the complete x-axis.

iii. At least one vertex with a negative x-value has
been skipped: nothing is done.

(c) Ps+i is the starting vertex for the next iteration.
4. If the count of intersections with the x-axis is even

then the result is outside, if it is odd the result is
inside.

Proof of Correctness. To prove that the oven-odd
algorithm in general is correct one can generalize it
to the Jordan Curve Theorem and prove its correct-
ness (Tverberg, 1980). What has to be proven is that
the given algorithm is in fact a correct even-odd al-
gorithm, meaning that the count of edges is correct
under all circumstances.

A lot of challenges emerge when trying to inter-
sect two line segments and one of the segments has
one or two of its vertices lying on the other segment.
If the count of intersections with the x-axis are to be
counted correctly, then each edge of P must either
clearly intersect the x-axis or not intersect it at all.
There must be no case where the starting or end ver-
tex of a line segment lies on the line segment it should
be intersected with.

The x-axis is the first line segment to look at, since
it is part of all the intersections. The start vertex of
the x-axis, namely Q, is guaranteed not to lie on any
edge or to be equal to any vertex of P. If this was the
case, then the first step of the algorithm would have
already returned the correct result. The end vertex is
guaranteed to have an x value greater than any of the
vertices of P, so no vertex of P can be equal to it and
no edge of P can contain it.

Of course there still exists the challenge that one
or more vertices of P lie on the x-axis as seen in Fig-
ure 2.

Q(0|0)

P1

P2 P3

P4P5

Figure 2: One of the edges of P lies on the x-axis.

The algorithm deals with this kind of challenge by
ignoring the vertices lying on the x-axis and stepping
over them when trying to find an edge to intersect. It
then creates a new auxiliary edge that it can intersect
safely. So starting for example at vertex P1 it would
ignore P2 and P3 and then create a new edge between
P1 and P4 as shown in Figure 3.

Q(0|0)

P1

P2 P3

P4P5

Figure 3: A new auxiliary edge has been created.

At this point it is clear that none of the edges used
to calculate the count of intersections with the x-axis
has a vertex on the x-axis and is either clearly inter-
secting it or not. What has to be shown is that all
created auxiliary edges are correct substitutes to cal-
culate the intersections with the x-axis.

Indeed they are not a correct substitute to intersect
the positive x-axis, as can be seen in Figure 4. Here
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the auxiliary edge would be the same as the edge be-
tween P1 and P3 and this edge does clearly not inter-
sect the positive x-axis. So the total count of inter-
sected edges of the polygon shown in Figure 4 would
be zero - which is obviously wrong.

The algorithm actually deals with this challenge
in step 3.b, by extending the ray in that special case
where a vertex lying on the positive x-axis has been
skipped. The new ray is then the complete x-axis and
not only the positive part of it. It can be seen that
this would create the desired result in the example of
Figure 4, because the total count of intersected edges
would then be one.

Q(0|0)

P1

P2

P3

Figure 4: The auxiliary edge between P1 and P3 does not
intersect the positive x-axis.

The question remains if this method always yields
the correct result under all possible circumstances. If
the skipped vertex lies on the negative x-axis then
the auxiliary line will not be considered for intersec-
tion, since none of the original edges could have inter-
sected the positive x-axis. So all cases that have to be
looked at involve one or more vertices on the positive
x-axis. The skipped vertices can never change from
the positive to the negative x-axis since this would
have been caught in the first step of the algorithm.

So, all auxiliary edges that intersect the x-axis are
created from the following order of vertices: Pu which
does not lie on the x-axis, Pv

1 which does lie on the
positive x-axis and Pw which does not lie on the x-
axis. Each of the vertices Pu and Pw can lie in one of
the four quadrants around the point Q and therefore
there exist 4× 4 = 16 different versions of the auxil-
iary edge that have to be considered. This number can
be further reduced to 10 because six of these versions
are created by switching start and end vertex and do
not have to be considered as a separate case.

All possibilities of the locations of Pu and Pw are
shown in Table 2 as well as the desired intersection

1Of course there could be more than just one vertex on
the x-axis but they are all skipped and the same auxiliary
edge is created no matter how many additional vertices are
on the x-axis.

count and the actual intersection count of the algo-
rithm. It is clear by looking at the table that the al-
gorithm satisfies the desired result for each possible
scenario. Therefore the auxiliary line is indeed a cor-
rect substitute for the original edges.

This leads to the conclusion that the algorithm
provided can correctly determine if there is an even
or an odd number of intersections with the polygon.

�

Time Complexity. All n vertices of the polygon
are visited once during the translation and the first
three steps of the algorithm. All other computations
like step four can be completed within constant time.
Therefore the time complexity for this algorithm is
O(n).

�

3 EXAMPLE

The algorithm is applied to the sample complex poly-
gon P in Figure 5.

Q(0|0)

P1

P2

P3

P4

P5

P6

Figure 5: Sample complex polygon P.

1. Q lies neither on any vertex nor edge.

2. The start vertex Ps is P1 in this example.

3. All intersection and substitution steps can be
found in Table 1.

4. Since the count of intersections with the x-axis is
odd the result is inside.

Table 1: Intersection and substitution steps.

Pu Pv Pw x-axis for intersection operation Inters.
P1 − P2 positive no
P2 (P3,P4) P5 complete no
P5 P6 P1 complete yes

A Simple and Correct Even-Odd Algorithm for the Point-in-Polygon Problem for Complex Polygons

177



4 IMPLEMENTATION

The translation of P can be done together with the
first step of the algorithm by moving the vertices
by the negative x- and y-values of Q. The geomet-
ric helper functions to intersect line segments can
be found in (Stueker, 1999) which are an improved
version of (Sedgewick, 1992). Our reference im-
plementation of the even-odd algorithm for complex
polygons presented in this paper is available as open
source: http://github.com/pglauner/point in polygon.

5 CONCLUSIONS

The implementation of point-in-polygon algorithms
for complex polygons is error-prone since there are
many special cases to be considered. We presented a
correct even-odd algorithm that prevents special cases
by substituting a sequence of edges with an auxil-
iary edge. The correctness of the algorithm has been
proven for all possible polygons, including complex
polygons. The algorithm is also time-efficient since it
is O(n) for polygons with n vertices.
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APPENDIX

Table 2: Possible cases when creating an auxiliary line
(blue). The values q1 to q4 correspond to the quadrants
of a cartesian coordinate system (q1 : x > 0∧y > 0,q2 : x <
0∧ y > 0, ...). Rows that are just gained by switching the
vertices Pu and Pw are omitted due to symmetry.

Pu Pw Example Desired countInters.

q1q1 Q(0|0)

Pu

Pv

Pw

even no

q1q2 Q(0|0)

Pu

Pv

Pw

even no

q1q3

Q(0|0)

Pu

Pv

Pw odd yes

q1q4

Q(0|0)

Pu

Pv

Pw odd yes

q2q2
Q(0|0)

Pu

Pv

Pw

even no

q2q3

Q(0|0)

Pu

Pv
Pw odd yes

q2q4

Q(0|0)
Pu

Pv

Pw odd yes

q3q3

Q(0|0)

Pu Pv

Pw even no

q3q4

Q(0|0)

Pu
Pv

Pw even no

q4q4

Q(0|0)

Pu

Pv

Pw even no
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