
Native Cloud Applications
Why Virtual Machines, Images and Containers Miss the Point!

Frank Leymann, Christoph Fehling, Sebastian Wagner and Johannes Wettinger
Institute of Architecture of Application Systems, Universität Stuttgart, Universitätsstraße 38, Stuttgart, Germany

Keywords: Cloud Computing, Virtualization, Cloud Migration, Soa, Microservices, Continuous Delivery.

Abstract: Due to the current hype around cloud computing, the term “native cloud application” becomes increasingly

popular. It suggests an application to fully benefit from all the advantages of cloud computing. Many users

tend to consider their applications as cloud native if the application is just bundled in a virtual machine

image or a container. Even though virtualization is fundamental for implementing the cloud computing

paradigm, a virtualized application does not automatically cover all properties of a native cloud application.

In this work, we propose a definition of a native cloud application by specifying the set of characteristic

architectural properties, which a native cloud application has to provide. We demonstrate the importance of

these properties by introducing a typical scenario from current practice that moves an application to the

cloud. The identified properties and the scenario especially show why virtualization alone is insufficient to

build native cloud applications. Finally, we outline how native cloud applications respect the core principles

of service-oriented architectures, which are currently hyped a lot in the form of microservice architectures.

1 INTRODUCTION

Cloud service providers of the early days, such as
Amazon, started their Infrastructure as a Service
(IaaS) cloud business by enabling customers to run
virtual machines (VM) on their datacenter
infrastructure. Customers were able to create VM
images that bundled their application stack along
with an operating system and instantiate those
images as VMs. In numerous industry collaborations
we investigated the migration of existing
applications to the cloud and the development of
new cloud applications (Fehling et al., 2013; Fehling
et al., 2011; Brandic et al., 2010). In the investigated
use cases we found that virtualization alone is not
sufficient for fully taking advantage of the cloud
computing paradigm.

In this article we show that although
virtualization lays the groundwork for cloud
computing, additional alterations to the application’s
architecture are required to make up a “cloud native
application”. We discuss five essential architectural
properties we identified during our industry
collaborations that have to be implemented by a
native cloud application (Fehling et al., 2014).
Based on those properties we explain why an
application that was simply migrated to the cloud in

the form of a VM image does not comply with these
properties and how the application has to be adapted
to transform it into a native cloud application. These
properties have to be enabled in any application that
is built for the cloud. Note that we provide a
definition of native cloud applications by specifying
their properties; we do not aim to establish a
migration guide for moving applications to the
cloud. Guidelines and best practices on this topic can
be found in our previous work (Andrikopoulos et al.,
2013; Fehling et al., 2013).

Section 2 introduces a reference application that
reflects the core of the architectures of our industry
use cases. Based on the reference application,
Section 3 focuses on its transformation from a VM-
bundled to a native cloud application. We also
discuss why virtualization or containerization alone
is not sufficient to fully benefit from cloud
environments. Therefore, a set of architectural
properties are introduced, which a native cloud
application has to implement. Section 4 discusses
how native cloud applications are related to
microservice architectures, SOA, and continuous
delivery. Furthermore, Section 5 discusses how the
reference application itself can be offered as a cloud
service. Finally, Section 6 concludes the article.

Leymann F., Wagner S., Fehling C. and Wettinger J.
Native Cloud Applications - Why Virtual Machines, Images and Containers Miss the Point!.
DOI: 10.5220/0006811300010001
In Proceedings of the 6th International Conference on Cloud Computing and Services Science (CLOSER 2016), pages 7-15
ISBN: 978-989-758-182-3
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

2 REFERENCE APPLICATION

Throughout the article, the application shown in
Figure 1 is used as running example for transforming
an existing application into a cloud native
application. It offers functionality for accounting,
marketing, and other business concerns. The
architecture specification of this application and the
following transformation uses the concept of layers
and tiers (Fowler, 2002): the functionality of an
application is provided by separate components that
are associated with logical layers. Application
components may only interact with other
components on the same layer or one layer below.
Logical layers are later assigned to physical tiers for
application provisioning. In our case, these tiers are
constituted by VMs, which may be hosted by a
cloud provider.

Presentation
Layer

Web Server

Account
Management

(EJBs)

Account DBMS

GUI Rendering
(Browser)

Marketing
Campaigns

(Assemblies)
…

Marketing CMS … DBMS

Account DB Marketing DB … DB

JEE Server .Net App Server … App Server

GUI Handling
(Servlets)

Data Access
Layer

Business Logic
Layer

Figure 1: Reference Application to be Moved to the

Cloud.

The reference application is comprised of three
layers. Each layer has been built on different
technology stacks. The accounting functions are
implemented as Enterprise Java Beans1 (EJB) on a
Java Enterprise Edition (JEE) server making use of a
Database Management Systems (DBMS); the
marketing functions are built in a .Net environment2
using a Content Management System (CMS). All
application functions are integrated into a graphical

1 https://jcp.org/aboutJava/communityprocess/final/jsr318
2 http://www.microsoft.com/net

user interface (GUI), which is realized by servlets
hosted on a Web server.

The servlet, EJB and .Net components are
stateless. In this scope, we differentiate: (i) session
state – information about the interaction of users
with the application. This data is provided with each
request to the application and (ii) application state –
data handled by the application, such as a customer
account, billing address, etc. This data is persisted in
the databases.

3 TRANSFORMING THE

REFERENCE APPLICATION

TO A CLOUD NATIVE

APPLICATION

When moving the reference application to a cloud
environment, the generic properties of this
environment can be used to deduct required cloud
application properties. The properties of the cloud
environment have been defined by the NIST (2011):
On-demand self-service – the cloud customer can
independently sign up to the service and configure it
to his demands. Broad network access – the cloud is
connected to the customer network via a high-speed
network. Resource pooling – resources required to
provide the cloud service are shared among
customers. Rapid elasticity – resources can be
dynamically assigned to customers to handle
currently occurring workload. Measured service –
the use of the cloud by customers is monitored,
often, to enable pay-per-use billing models.

To make an application suitable for such a cloud
environment, i.e. to utilize the NIST properties, we
identified the IDEAL cloud application properties
(Fehling et al., 2014): Isolation of state,
Distribution, Elasticity, Automated Management
and Loose coupling. In this section, we discuss why
VM-based application virtualization and
containerization alone is rather obstructive for
realizing them. Based on this discussion, the steps
for enabling these properties are described in order
to transform a VM-based application towards a
native cloud application. As we start our discussion
on the level of VMs, we first focus on the
Infrastructure as a Service (IaaS) service model.
Then we show how it can be extended to use
Platform as a Service (PaaS) offerings of a cloud
provider.

3.1 Complete Application per Virtual
Machine

To provide an application to customers within a
cloud environment as quickly as possible,
enterprises typically bundle their application into a
single virtual machine image (VMI)3. Such VMIs
are usually self-contained and include all
components necessary for running the application.
Considering the reference application, the data
access layer, the business logic layer, and the
presentation layer would be included in that VMI.
Figure 2 shows an overview of that package.

Virtual Machine

Web Server

Account
Management

(EJBs)

Account DBMS

Marketing
Campaigns

(Assemblies)
…

Marketing CMS … DBMS

Account DB Marketing DB … DB

JEE Server .Net App Server … App Server

GUI Handling
(Servlets)

GUI Rendering
(Browser)

GUI Rendering
(Browser)

GUI Rendering
(Browser)

GUI Rendering
(Browser)

Figure 2: Packaging the Application into one VM.

Customers now start using the application
through their Web browsers. As shown in Figure 2,
all requests are handled by the same VM.
Consequently, the more customers are using the
application, the more resources are required. At
some point in time, considering an increasing
amount of customer requests, the available resources
will not be able to serve all customer requests any
more. Thus, the application needs to be scaled in
order to serve all customers adequately.

The first approach to achieve scalability is to
instantiate another VM containing a copy of your
application stack as shown in Figure 3. This allows
you to serve more customers without running into

3 From here on we do not mention containerization

explicitly by considering them as similar to virtual

machine images – well recognizing the differences. But

for the purpose of our discussion they are very similar.

any bottleneck. However, the operation of multiple
VMs also has significant downsides. You typically
have to pay for licenses, e.g. for the database server,
the application server, and the content management
system, on a per VM basis. If customers use the
account management features mostly, why should
you also replicate the marketing campaigns stack
and pay for the corresponding licenses? Next, what
about your databases that are getting out of sync
because separate databases are maintained in each of
the VMs? This may happen because storage is
associated to a single VM but updates need to be
synchronized across those VM to result in consistent
data.

Therefore, it should be possible to scale the
application at a finer granular, to ensure that its
individual functions can be scaled independently
instead of scaling the application as a whole. This
can be achieved by following the distribution
property in the application architecture. This property
requires the application functionality to be distributed
among different components to exploit the measured
service property and the associated pay-per-use
pricing models more efficiently. Due to its
modularized architecture comprising of logical layers
and components, the distribution property is met by
the reference application. However, by summarizing
the components into one single VM, i.e. in one tier,
the modularized architecture of the application gets
lost.

Moreover, this leads to the violation of the
isolated state property, which is relevant for the
application to benefit from the resource pooling and
elasticity property. This property demands that
session and application state must be confined to a
small set of well-known stateful components, ideally,
the storage offerings and communication offerings of
the cloud providers. It ensures that stateless
components can be scaled more easily, as during the
addition and removal of application component
instances, no state information has to be
synchronized or migrated, respectively.

Another IDEAL property that is just partly
supported in case the application is bundled as a
single VM is the elasticity property. The property
requires that instances of application components can
be added and removed flexibly and quickly in order
to adjust the performance to the currently
experienced workload. If the load on the components
increases, new resources are provisioned to handle
the increased load. If, in turn, the load on the
resources decreases, under-utilized components are
decommissioned. This scaling out (increasing the
number of resources to adapt to workload) as
opposed to scaling up (increasing the capabilities of a
single cloud resource) is predominantly used by

cloud applications as it is also required to react to
component failures by replacing failed components
with fresh ones. Since the distribution is lost, scaling
up the application by assigning more resources to the
VM (e.g. CPU, memory, etc.) is fully supported, but
not scaling out individual components. Hence, the
elasticity property is just partly met if the application
is bundled as a single VM. The incomplete support of
the elasticity property also hinders the full
exploitation of the cloud resource pooling property,
as the elasticity property enables unused application
resources to be decommissioned and returned to the
resource pool of the cloud if they are not needed
anymore. These resources can then be used by other
customers or applications.

VM1 VM2 VM3

Figure 3: Scaling based on complete Virtual Machines.

3.2 Stack-based Virtual Machines with
Storage Offerings

Because of the drawbacks of a single VM image
containing the complete application, a suitable next
step is to extract the different application stacks to
separate virtual machines. Moreover, data can be
externalized to storage offerings in the cloud (“Data
as a Service”), which are often associated to the IaaS
service model. Such services are used similar to hard
drives by the VMs, but they are stored in a provider-
managed scalable storage offering. Especially the
stored data can be shared among multiple VMs when
they are being scaled out, thus, avoiding the
consistency problems indicated before and hence
fostering the isolated state property. Figure 4 shows
the resulting deployment topology of the application,
where each stack and the Web GUI is placed into a
different virtual machine that accesses a Data as a
Service cloud offering.

When a particular stack is under high request
load, it can be scaled out by starting multiple
instances of the corresponding VM. For example, in
Figure 5 another VM instance of the accounting stack
is created to handle higher load. However, when
another instance of a VM is created the DBMS is still
replicated which results in increased license costs.

Data as a Service (Aspect of IaaS)

Web Server

Account
Management

(EJBs)

Account DBMS

GUI Rendering
(Browser)

Marketing
Campaigns

(Assemblies)
…

Marketing CMS … DBMS

Account DB Marketing DB … DB

JEE Server .Net App Server … App Server

GUI Handling
(Servlets)

GUI Rendering
(Browser)

GUI Rendering
(Browser)

GUI Rendering
(Browser)

Figure 4: Packaging Stacks into VMs.

Data as a Service (Aspect of IaaS)

Web Server

Account
Management

(EJBs)

Account DBMS

GUI Rendering
(Browser)

Marketing
Campaigns

(Assemblies)
…

Marketing CMS … DBMS

Account DB Marketing DB … DB

JEE Server .Net App Server … App Server

GUI Handling
(Servlets)

GUI Rendering
(Browser)

GUI Rendering
(Browser)

GUI Rendering
(Browser)

Account
Management

(EJBs)

Account DBMS

JEE Server

VM Scale Out

Figure 5: Packaging Stacks into VMs.

3.3 Using Middleware Virtual
Machines for Scaling

The replication of middleware components such as a
DBMS can be avoided by placing these components
again into separate VMs that can be scaled out
independently from the rest of the application stack
on demand. The middleware component is then able
to serve multiple other components. In case of the
reference application the DBMS associated with the

account management is moved to a new VM (Figure

6), which can be accessed by different instances of
the JEE Server. Of course, also the JEE server or the
.Net server could be moved into separate VMs. By
doing so, the distribution property is increased and
elasticity can be realized at a finer granular.

Data as a Service (Aspect of IaaS)

Web Server

Account
Management

(EJBs)

Account DBMS

GUI Rendering
(Browser)

Marketing
Campaigns

(Assemblies)
…

Marketing CMS … DBMS

Account DB Marketing DB … DB

JEE Server .Net App Server … App Server

GUI Handling
(Servlets)

GUI Rendering
(Browser)

GUI Rendering
(Browser)

GUI Rendering
(Browser)

Account
Management

(EJBs)

JEE Server

Figure 6: Middleware-VMs for Scaling.

Even though the single components are now able to
scale independently from each other, the problem of
updating the application components and especially
the middleware installed on VMs still remains.
Especially, in large applications involving a variety
of heterogeneous interdependent components this can
become a very time- and resource-intensive task. For
example, a new release of the JEE application server
may also require your DBMS to be updated. But the
new versions of the DBMS may not be compatible
with the utilized .Net application server. This, in turn,
makes it necessary to run two different versions of
the same DBMS. However, this violates an aspect of
the automated management property demanding that
required human interactions to handle management
tasks are reduced as much as possible in order to
increase the availability and reactiveness of the
application.

3.4 Resolving Maintenance Problems

To reduce management efforts, we can substitute
components and middleware with IaaS, PaaS, or
SaaS offerings from cloud providers. In Figure 7, the
VMs providing the Web server and application
server middleware are replaced with corresponding
PaaS offerings. Now, it is the cloud provider’s
responsibility to keep the components updated and to

rollout new releases that contain the latest fixes, e.g.
to avoid security vulnerabilities.

In case of the reference application, most
components can be replaced by cloud offerings. The
first step already replaced physical machines, hosting
the application components with VMs that may be
hosted on IaaS cloud environments. Instead of
application servers, one may use PaaS offerings to
host the application components of the business logic
layer. The DBMS could be substituted by PaaS
offerings such as Amazon SimpleDB; marketing
campaign .Net assemblies could be hosted on
Microsoft Azure, as an example.

Data as a Service (Aspect of IaaS)

Account
Management

(EJBs)

GUI Rendering
(Browser)

Marketing
Campaigns

(Assemblies)
…

Marketing CMS

… DBMS

Marketing DB … DB

.Net App Server

GUI Handling
(Servlets)

GUI Rendering
(Browser)

GUI Rendering
(Browser)

GUI Rendering
(Browser)

Account
Management

(EJBs)

Account DBMS

Account DB

PaaS – Web Server

PaaS – App Server

PaaS – JEE App Server

Figure 7: Making Use of Cloud Resources and Features.

To offload the management (and even
development) of your .Net assemblies one could even
decide to substitute the whole marketing stack by a
SaaS offering that provides the required marketing
functionality. In this case, the Web GUI is integrated
with the SaaS offering by using the APIs provided by
the offering.

Of course, before replacing a component with an
*aaS offering, it should be carefully considered how
the dependent components are affected
(Andrikopoulos et al., 2013): adjustments to
components may be required to respect the runtime
environment and APIs of the used *aaS offering.

3.5 The Final Steps Towards a Cloud
Native Application

The reference application is now decomposed into
multiple VMs that can be scaled individually to
fulfill the distribution and elasticity property.
Isolation of state has been enabled by relying on

cloud provider storage offerings. The software update
management has been addressed partially.

However, the addition and removal of virtual
machine instances can still be hindered by
dependencies among application components: if a
VM is decommissioned while an application
component hosted on it interacts with another
component, errors may occur. The dependencies
between application components meaning the
assumptions that communicating components make
about each other can be reduced by following the
loose coupling property. This property is
implemented by using cloud communication
offerings enabling asynchronous communication
between components through a messaging
intermediate as shown in Figure 8. This separation of
concerns ensures that communication complexity
regarding routing, data formats, communication
speed etc. is handled in the messaging middleware
and not in components, effectively reducing the
dependencies among communication partners. Now,
the application can scale individual components
easier as components do not have to be notified in
case other components are provisioned and
decommissioned.

To make elastic scaling more efficient, it should
be automated. Thus, again the automated
management property is respected. This enables the
application to add and remove resources without
human intervention. It can cope with failures more
quickly and exploits pay-per-use pricing schemes
more efficiently: resources that are no longer needed
should be automatically decommissioned.
Consequently, the resource demand has to be
constantly monitored and corresponding actions have
to be triggered without human interactions. This is
done by a separate watchdog component (Ornstein et
al., 1975; Fowler, 2002) and elasticity management
components (Freemantle, 2010). After this step, the
reference application became cloud native, thus,
supporting the IDEAL cloud application properties:
Isolation of state, Distribution, Elasticity,
Automated Management and Loose coupling
(Fehling et al., 2014).

In terms of virtualization techniques and
technologies, fully fledged VMs with their dedicated
guest operation system could also be replaced by
more lightweight virtualization approaches such as
containers, which recently became popular with
Docker (Mouat, 2015). However, such approaches
may not provide the same degree of isolation, so
depending on the specific requirements of an
application, the one or the other virtualization
approach fits better.

Data as a Service (Aspect of IaaS)

Account
Management

(EJBs)

GUI Rendering
(Browser)

Marketing
Campaigns

(Assemblies)
…

Marketing CMS

… DBMS

Marketing DB … DB

.Net App Server

GUI Handling
(Servlets)

GUI Rendering
(Browser)

GUI Rendering
(Browser)

GUI Rendering
(Browser)

Account
Management

(EJBs)

Account DBMS

Account DB

PaaS – Web Server

PaaS – App Server

PaaS – JEE App Server

Queing
PaaS – Messaging Middleware

Figure 8: Making use of Cloud Communication Features.

4 MICROSERVICES &

CONTINUOUS DELIVERY

Microservice architectures provide an emerging
software architecture style, which is currently
discussed and hyped a lot. While there is no clear
definition of what a microservice actually is, some
common characteristics have been established
(Fowler, 2016; Newman, 2015). Microservice
architectures are contrary to monolithic
architectures. Consequently, a specific application
such as a Web application (e.g. the reference
application presented in this paper) or a back-end
system for mobile apps is not developed and
maintained as a huge single building block, but as a
set of 'small' and independent services, i.e.
microservices. As of today, there is no common
sense how 'small' a microservice should be. To make
them meaningful, these services are typically built
around business capabilities such as account
management and marketing campaigns as outlined
by the reference application. Their independence is
implemented by running each service in its own
process or container (Mouat, 2015). This is a key
difference to other component-based architecture
styles, where the entire application shares a process,
but is internally modularized, for instance, using
Java libraries.

The higher degree of independence in case of
microservices enables them to be independently
deployable from each other, i.e. specific parts of an
application can be updated and redeployed without
touching other parts. For non-trivial and more
complex applications, the number of services
involved quickly increases. Consequently, manual
deployment processes definitely do not scale
anymore for such architectures, because deployment
happens much more often and independently.
Therefore, fully automated deployment machinery
such as continuous delivery pipelines are required
(Humble and Farley, 2015).

As a side effect of the services' independence,
the underlying technologies and utilized
programming languages can be extremely diverse.
While one service may be implemented using Java
EE, another one could be implemented using .Net,
Ruby, or Node.js. This enables the usage of 'the best
tool for the job', because different technology stacks
and programming languages are optimized for
different sets of problems. The interface, however,
which is exposed by a particular service must be
technology-agnostic, e.g. based on REST over
HTTP, so different services can be integrated
without considering their specific implementation
details. Consequently, the underlying storage
technologies can also differ, because 'decentralized
data management' (Fowler, 2016) is another core
principle of microservice architectures. As outlined
by the reference application, each service has its
own data storage, so the data storage technology
(relational, key-value, document-oriented, graph-
based, etc.) can be chosen according to the specific
storage requirements of a particular service
implementation.

In addition, microservice architectures follow the
principle of 'smart endpoints and dumb pipes'
(Fowler, 2016), implying the usage of lightweight
and minimal middleware components such as
messaging systems ('dumb pipes'), while moving the
intelligence to the services themselves ('smart
endpoints'). This is confirmed by reports and surveys
such as carried out by Schermann et al.: REST in
conjunction with HTTP as transport protocol is used
by many companies today. JSON and XML are both
common data exchange formats. There is a trend to
minimize the usage of complex middleware towards
a more choreography-style coordination of services
(Schermann et al., 2015). Finally, the architectural
paradigm of self-contained systems (SCS, 2016) can
help to treat an application, which is made of a set of
microservices, in a self-contained manner.

In this context, an important fact needs to be
emphasized: most of the core principles of
microservice architectures are not new at all.
Service-oriented architectures (SOA) are established

in practice for some time already, sharing many of
the previously discussed core principles with
microservice architectures. Thus, we see
microservice architectures as one possible
opinionated approach to realize SOA, while making
each service independently deployable. This idea of
establishing independently deployable units is a
focus of microservice architectures, which was not
explicitly a core principle in most SOA-related
works and efforts. Therefore, continuous delivery
(Humble and Farley, 2015) can now be implemented
individually per service to completely decouple their
deployment.

Our previously presented approach to transition
the references application's architecture towards a
native cloud application is based on applying the
IDEAL properties. The resulting architecture owns
the previously discussed characteristics of
microservice architectures and SOA. Each part of
the reference application (account management,
marketing campaigns, etc.) now represents an
independently (re-)deployable unit. Consequently, if
an existing application is transitioned towards a
native cloud application architecture by applying the
IDEAL properties, the result typically is a
microservice architecture. To go even further and
also consider development as part of the entire
DevOps lifecycle, a separate continuous delivery
pipeline (Humble and Farley, 2015) can be
implemented for each service to perform their
automated deployment when a bug fix or new
feature is committed by a developer. Such pipelines
combined with Cloud-based development
environments such as Cloud9 (Cloud9, 2016) also
make the associated application development
processes cloud-native in addition to deploying and
running the application in a cloud-native way.

5 MOVING TOWARDS A SAAS

APPLICATION

While the IDEAL properties enable an application to
benefit from cloud environments and (micro)service-
oriented architectures, additional properties have to
be considered in case the application shall be offered
as a Service to a large number of customers
(Freemantle, 2010; Badger et al., 2011): Such
applications should own the properties clusterability,
elasticity, multi-tenancy, pay-per-use and self-
service. Clusterability summarizes the above-
mentioned isolation of state, distribution, and loose
coupling. The elasticity discussed by Freemantle and
Badger et al. is identical to the elasticity mentioned
above. The remaining properties have to be enabled
in an application-specific manner as follows.

5.1 Multi-tenancy

The application should be able to support multiple
tenants, i.e. defined groups of users, where each
group is isolated from the others. Multi-tenancy does
not mean isolation by associating each tenant with a
separate copy of the application stack in one or more
dedicated VMs. Instead, the application is adapted to
have a notion of tenants to ensure isolation. The
application could also exploit multi-tenant aware
middleware (Azeez et al., 2010) as this type of
middleware is able to assign tenant requests to the
corresponding instance of a component.

In scope of the reference application, the
decomposition of the application into loosely coupled
components enables the identification of components
that can easily be shared among multiple tenants.
Other components, which are more critical, for
example, those sharing customer data likely have to
be adjusted in order to ensure tenant isolation. In
previous work, we discussed how such shared
components and tenant-isolated components may be
implemented (Fehling et al., 2014). Whether an
application component may be shared among
customers or not may also affect the distribution of
application components to VMs.

5.2 Pay-per-Use

Pay-per-use is a property that fundamentally
distinguishes cloud applications from applications
hosted in traditional datacenters. It ensures that
tenants do only pay when they are actually using an
application function, but not for the provisioning or
reservation of application resources. Pay-per-use is
enabled by fine-grained metering and billing of the
components of an application stack. Consequently,
the actual usage of each individual component within
the application stack must be able to be monitored,
tracked, and metered. Depending on the metered
amount of resource usage, the tenant is billed. What
kind of resources are metered and billed depends on
the specific application and the underlying business
model. Monitoring and metering can also be
supported by the underlying middleware if it is
capable to relate the requests made to the application
components with concrete tenants.

In scope of the reference application, sharing
application component instances ensures that the
overall workload experienced by all instances is
leveled out as workload peaks of one customer
happen at the same time where another customer
experiences a workload low. This sharing, thus,
enables flexible pricing models, i.e. charging on a
per-access basis rather than on a monthly basis. For
instance, the reference application may meter and bill
a tenant for the number of marketing campaigns he

persists in the CMS. Other applications may meter a
tenant based on the number requests or the number of
CPUs he is using. Amazon, for instance, provides a
highly sophisticated billing model for their EC2
instances (Amazon, 2016).

5.3 Self-service

The application has to ensure that each tenant can
provision and manage his subscription to the
application on his own, whenever he decides to do
so. Especially, no separate administrative staff is
needed for provisioning, configuring, and managing
the application. Self-service capability applies to
each component of the application (including
platform, infrastructure, etc.). Otherwise, there would
not be real improvements in time-to-market. The
self-service functionality can be provided by user
interfaces, command line interfaces, and APIs to
facilitate the automated management of the cloud
application (Freemantle, 2010).

In scope of the reference application, automated
provisioning and decommissioning of application
component instances is enabled by the used cloud
environment. Therefore, customers may be
empowered to sign up and adjust subscriptions to the
cloud-native application in a self-service manner, as
no human management tasks are required on the
application provider side anymore.

6 SUMMARY

Based on the IDEAL cloud application properties we
have shown how an existing application can be
transformed to a cloud native application. Moreover,
we discussed the relation of cloud native application
to (micro)service-oriented architectures and
continuous delivery. Additional properties defined by
Freemantle and Badger et al. – multi-tenancy, pay-
per-use, and self-service – enabling a cloud-native
application to be offered as a Service requiring
significant adjustments of the application
functionality. Multi-tenancy commonly requires
adaptation of application interfaces and storage
structures to ensure the isolation of tenants.
Functionality to support pay-per-use billing and self-
service commonly has to be newly created with
application-specific knowledge.

Based on the transformation of the reference
application we have shown that virtualization is a
mandatory prerequisite for building a native cloud
application, but just virtualizing an application does
not satisfy all cloud application properties. Hence, it
is insufficient to simply move an application into a
VM and call it a cloud native application.

REFERENCES

Freemantle, P., 2010. Cloud Native. http://

pzf.fremantle.org/2010/05/cloud-native.html

Fehling, C., Leymann F., Retter, R., Schupeck, W.,

Arbitter, P., 2014. Cloud Computing Patterns:

Fundamentals to Design, Build, and Manage Cloud

Applications. Springer.

Moore, G., 2011. Systems of Engagement and The Future

of Enterprise IT A Sea Change in Enterprise IT. Aim.

white paper.

Mell, P., Grace, T., 2011. The NIST Definition of Cloud

Computing. National Institute of Standards and

Technology NIST, Gaithersburg, MD.

Badger, L., Grance, T., Patt-Corner, P., Voas, J., 2011.

DRAFT: Cloud Computing Synopsis and

Recommendation, NIST. http://csrc.nist.gov/

publications/drafts/800-146/Draft-NIST-SP800-

146.pdf

Ornstein, S. M., Crowther W. R., Kraley, M. F., Bressler,

R. D., Michel, A., Heart, F. E., 1975. Pluribus: a

reliable multiprocessor. In Proceedings of the 1975

American Federation of Information Processing

Societies National Computer Conference (AFIPS).

Fowler, M., 2002. Patterns of Enterprise Application

Architecture. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA.

Azeez, A., Perera, S., Gamage, D., Linton, R.,

Siriwardana, P., Leelaratne, D., Weerawarana, S.,

Fremantle, P., 2010. Multi-tenant SOA Middleware for

Cloud Computing. In Proceedings of the 2010 IEEE

International Conference on Cloud Computing

(CLOUD).

Andrikopoulos, V., Binz, T., Leymann, F., Strauch, S.,

2013. How to Adapt Applications for the Cloud

Environment Challenges and Solutions in Migrating

Applications to the Cloud. In Computing. Vol. 95(6),

Springer.

Andrikopoulos, V., Song, Z., Leymann, F., 2013.

Supporting the Migration of Applications to the Cloud

through a Decision Support System. In Proceedings of

the 6th IEEE International Conference on Cloud

Computing (CLOUD).

Fehling, C., Leymann, F., Ruehl, S. T., Rudek, M.,

Verclas, S., 2013. Service Migration Patterns -

Decision Support and Best Practices for the Migration

of Existing Service-based Applications to Cloud

Environments. In Proceedings of the 6th IEEE

International Conference on Service Oriented

Computing and Applications (SOCA).

Fehling, C., Konrad, R., Leymann, F., Mietzner, R., Pauly,

M., Schumm, D., 2011. Flexible Process-based

Applications in Hybrid Clouds. In Proceedings of the

2011 IEEE International Conference on Cloud

Computing (CLOUD).

Brandic, I., Anstett, T., Schumm, D., Leymann, F.,

Dustdar, S., Konrad, R., 2010. Compliant Cloud

Computing (C3): Architecture and Language Support

for User-driven Compliance Management in Clouds.

In Proceedings of the 3rd International Conference on

Cloud Computing (Cloud).

Amazon, 2016. Amazon Elastic Compute Cloud (EC2)

Pricing. http://aws.amazon.com/ec2/pricing

Fowler, M., 2016. Microservices Resource Guide. http://

martinfowler.com/microservices

Newman, S., 2015. Building Microservices. O'Reilly

Media.

Humble, J., Farley, D., 2010. Continuous Delivery.

Addison-Wesley Professional.

Mouat, A., 2015. Using Docker. O'Reilly Media.

Schermann, G.; Cito, J., Leitner, P., 2015. All the services

large and micro: Revisiting industrial practices in

services computing. PeerJ.

SCS, 2016. Self-contained System (SCS) – Assembling

Software from Independent Systems. http://

scs-architecture.org

Cloud9 IDE, Inc., 2016. Cloud9 website. https://c9.io

All links were last followed on 9th of February, 2016.

