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Abstract: Conceptual Integrity has been declared the most important consideration for software system design. 

However, the very concept of Conceptual Integrity remained quite vague, lacking a precise formal 

definition. This paper offers a path to a novel definition of Conceptual Integrity in terms of the Modularity 

Matrix, the basic structure of Linear Software Models. We provide arguments for the plausibility of the 

Modularity Matrix as the suggested source of software system Conceptual Integrity, viz. the orthogonality 

and propriety of the Matrix modules. Furthermore, the paper also reveals some new characteristic properties 

of Software Conceptual Integrity. 

1 INTRODUCTION 

We can trace back the idea of conceptual integrity, 

in the context of software, to Brooks in his well-

known book “The Mythical Man-Month” – in 

Chapter 4, page 42 of the anniversary edition – 

(Brooks, 1995). Already there, it is said that 

conceptual integrity is the most important idea for 

software system design. The idea has been proposed 

and praised, but not exactly defined.  

This paper offers a path to a formal definition of 

conceptual integrity in terms of the Modularity 

Matrix. This matrix is the basic algebraic structure 

of Linear Software Models. 

In this Introduction section we clarify the idea of 

software conceptual integrity, as far as it has been 

done since its initial presentation by Brooks, and 

concisely review the basics of the Modularity 

Matrix. 

1.1 Software Conceptual Integrity  

The idea of conceptual integrity, in the context of 

software, has been reiterated in a more recent book 

by Brooks “The Design of Design: Essays of a 

computer scientist” – in Chapter 6, pages 69-70 –   

(Brooks, 2010).   

There, conceptual integrity is said to consist of 

three principles referring to system functions. These 

principles have been verbally formulated in a paper 

by De Rosso and Jackson (De Rosso and Jackson, 

2013) as follows: 

 Orthogonality – individual functions 

should be independent of one another; 

 Propriety – the system should have only the 

functions essential to its purpose and no 

more; 

 Generality – a single function should be 

usable in many ways. 

There are a few problems with these formula-

tions, but the most important one is that there is no 

“algorithm” or “protocol” to make concrete usage of 

these principles. 

This work has as its aim to offer a formal path to 

conceptual integrity, gaining in this process both a 

deeper understanding of this idea and the basis for a 

practical application of the above principles. Thus, 

among other things, if the above principles are 

indeed the essence behind conceptual integrity, then 

they must follow as consequences of the offered 

formal path. 

1.2 Modularity Matrix 

The Modularity Matrix – see e.g. (Exman, 2014) is a 

representation of a hierarchical software system in 

its several abstraction levels, through sub-systems, 

down to indivisible basic modules. The matrix 

columns, the structors, stand for architectural 

structure units, generalizing classes. The matrix 
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rows, the functionals, stand for architectural 

behavioural units, generalizing class methods. 

Algebraic manipulations lead in the optimal case 

to a standard square and block diagonal matrix, in 

which the blocks along the diagonal are the modules 

of the current matrix level. This is seen in the 

abstract Modularity Matrix displayed in Fig. 1. 

 

Figure 1: An Abstract Standard Modularity Matrix – The 

matrix is standard as it is strictly square and block-

diagonal. It has 6 structors (columns) and 6 functionals 

(rows). Its 3 modules are the three blocks in the diagonal, 

having 1 valued matrix elements (with light blue 

background). Outside the modules (blank areas) there are 

only zero-valued matrix elements. These values are 

omitted for simplicity. 

In case there remain some non-zero outlier 

matrix elements, i.e. outside the diagonal modules, 

these elements point out to undesirable couplings 

among the modules. These couplings should be 

resolved by moving structors/functionals among 

modules or by adding/removing structors and/or 

functionals, in the columns/rows containing the 

outliers. 

1.3 Related Work 

In this concise review of the related literature we 

mention works referring to Conceptual Integrity.  

We also mention tools which support this notion, 

particular discussions of orthogonality in this 

context and different kinds of matrices used to 

analyse software design, besides the Modularity 

Matrix. 

The origin of Conceptual Integrity ideas, as 

already mentioned in the beginning of this 

Introduction, is Brooks’ book originally published in 

1975, with an extended edition 20 years later 

(Brooks, 1995). 

Jackson and co-workers have further elaborated 

on the Brooks’ notions, say by means of cases 

studies, see e.g. (De Rosso and Jackson, 2013). 

Jackson also formulated a relevant Research Agenda 

(Jackson, 2013). In a recent essay Jackson stresses 

the importance of concepts for software systems, 

and gives examples of arrangements of concepts in a 

dependence graph, from which coherent subsets can 

be extracted and analysed. But, these graphs have 

not been formalized (Jackson, 2015). 

Documents that explicitly refer to Conceptual 

Integrity occasionally mention it, and often 

formulate some vague statement about what this 

means, see e.g. Beynon et al. in (Beynon, 2008). 

Kazman and Carriere in page 31 of a Technical 

Report (Kazman, 1997) describe the problem of 

reconstructing the software architecture of a system. 

Their guide to a good and meaningful architecture is 

conceptual integrity. It should be built from a small 

number of components connected in regular ways, 

with consistent allocation of functionality to the 

architecture’s components.   

Clements et al. in their book (Clements, 2001) 

refer to conceptual integrity as the underlying theme 

that unifies the design of the system at all levels. The 

architecture should do similar things in similar ways, 

having a small number of data and control 

mechanisms, and patterns throughout the system. 

There are two points to be stressed in this statement: 

a- they refer to the system at all levels; b- a possible 

approach to a more precise definition would be 

counting mechanisms and patterns. 

The concept of orthogonality also appears 

occasionally in the software development literature. 

For instance, Krone and Snelting refer to it in a 

paper using conceptual lattices inferred from source 

code (Krone, 1994). 

Another kind of works refers to software tools to 

support software systems analysis and design. For 

instance, (Kazman, 1996) describes a so-called 

SAAMtool, with visualization capability. 

Conceptual Integrity is estimated by the number of 

primitive patterns that a system uses. 

Finally, there are papers dealing with other 

matrices, besides the Modularity Matrix, for 

software systems design. The DSM (Design 

Structure Matrix) is part of the Design Rules 

approach (Baldwin and Clark, 2000) and adopted by 

many works, appeared and has been applied outside 

the software engineering context. For a set of 

references to this approach see e.g. (Exman, 2014).  
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1.4 Paper Organization 

The remaining of the paper describes a formal path 

to conceptual integrity (section 2); shows how 

conceptual integrity principles follow from the 

Modularity Matrix (section 3); characterize 

properties of conceptual integrity (section 4); and 

conclude with a discussion (section 5). 

2 FORMAL PATH TO SOFTWARE 

CONCEPTUAL INTEGRITY 

We propose a formal path from an Abstract Domain 

Conceptualization to Software Conceptual Integrity. 

We claim that Conceptual Integrity exists, say in 

abstract mathematics, before being formally defined.  

We first overview the formal path, leading 

through the Modularity Matrix to the main goal of 

Software Conceptual Integrity. We then look in 

more detail at each of the steps made in this path. 

2.1 Overview of the Formal Path 

A formal path from Abstract Conceptual Integrity to 

Software Conceptual Integrity, passing through the 

Modularity Matrix has 5 states with 3 intermediate 

states in between. These are shown in Fig. 2. 

 

Figure 2: From An Abstract Domain To Software 

Conceptual Integrity – The five states are: the initial state 

“Abstract Mathematics”; the goal state “Software 

Conceptual Integrity”, and three intermediate states: a-

Liskov Substitution; b- Modularity Matrix; c- Conceptual 

Modularity Lattice. 

The meaning of the five states in the formal path 

is as follows:  

1. Abstract Mathematics Conceptualization – 

due to its long history, concepts in 

Mathematics were classified in fields and 

sub-fields, within hierarchies obeying 

conceptual integrity; 

2. Liskov Substitution – it is an attempt to 

translate abstract mathematics notions to 

equivalent software notions; the central 

idea here is to link “structure” to 

“behavior”; 

3. Modularity Matrix – the basic algebraic 

structure of Linear Software Models, used 

to guide software system design; it restricts 

whole domains to a modularized class of 

software systems; 

4. Conceptual Modularity Lattice – this is a 

particular case of conceptual lattices 

(defined in FCA = Formal Concept 

Analysis) derived from the Modularity 

Matrix; it obtains the concepts of the 

software system modules; 

5. Software Conceptual Integrity – the 

desired goal of the whole path, will assure 

software system orthogonality and 

propriety. 

One can summarize the above states by their 

roles, as shown in Fig. 3. 

 

Figure 3: FORMAL PATH: TOOLS, GOALS, And 

ROLES – This summarizes the properties of the Formal 

Path states in terms of their formal tools, goals and roles. 

See detailed discussion in subsequent subsections. LSP 

means Liskov Substitution Principle. 

2.2 Preliminary Definitions 

Here we provide some preliminary definitions 

needed to discuss in detail each of the above states. 

Despite starting with an abstract mathematics 

domain, the ultimate goal of the formal path refers to 

software systems. Therefore, when talking about 
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structure and behavior we think in terms of software. 

Here are the relevant definitions. 

Definition 1 – Software Structure 

Software Structure is a relation among software 

architectural units (classes and their 

generalization “structors”) involving the 

following operators: sub-classing (sometimes 

called “inheritance”) and composition. 

It is not by chance that we are using the same 

operators for software systems and for abstract 

ontologies. We are just following common practice, 

which emphasizes the analogies between abstract 

concepts and their respective software classes. 

Definition 2 – Software Behavior 

Software Behavior is the performance of the 

computation of a function (sometimes called a 

method). The result of the function computation 

is a change of state of a software system. We call 

functions (and their generalization “functionals”) 

software architectural units of behavior.    

Functionals are provided by structors, but are not 

necessarily invoked. Thus we often, by linguistic 

license, refer to the functions themselves – without 

the performance of a computation – as software 

behavior. 

2.3 Conceptual Integrity in Abstract 

Mathematics 

Mathematical concepts are classified by properties’ 

similarity in a hierarchical fashion. The hierarchy is 

determined by which concepts are particular cases of 

other ones. We clarify the idea with some examples. 

A square is a subclass (particular case) of a 

rectangle, which is a subclass of a parallelogram, 

which in turn is a subclass of a quadrilateral. A 

quadrilateral, the most general case in this small 

hierarchy (in Fig. 4), is a polygon with four sides. A 

parallelogram is a subclass of quadrilateral with 

opposite sides parallel. A rectangle is a subclass of a 

parallelogram with four right angles. A square is a 

subclass of a rectangle with all four sides equal. 

Each lower hierarchy class has all the properties 

of the upper classes. A square has 4 sides (as the 

quadrilateral), which are parallel (as in the 

parallelogram), and 4 right angles (as the rectangle). 

This is also true with respect of behavior, i.e. the 

outcome of what the respective functions calculate 

for each concept (or each class). For instance, the 

perimeter of any of the classes in this hierarchy is 

calculated in general by summing the length of the 

four sides (which may be all different, partially 
 

 

Figure 4: The Quadrilaterals Hierarchy – Each arrow 

(meaning subclass or subtype of) points from the 

particular class to the more general class. Quadrilateral is 

the most general class of this hierarchy and Square is the 

most specific class. 

different or all equal). 

A different hierarchy would have a circle as a 

subclass of an ellipse. A third different hierarchy 

would deal with 3-dimensional objects such as a 

sphere as a subclass of an ellipsoid. 

Each of the three referred hierarchies 

(quadrilaterals, ellipses, 3-D ellipsoids) display 

conceptual integrity, both intuitively and by some 

specific well-defined characteristic. For example, all 

quadrilaterals in Fig. 4 have linear segments as sides 

of a polygon (literally meaning "multiple angles"), 

while the ellipses have no linear segments and no 

angles in between at all in their perimeters. 

These hierarchies, such as that the quadrilaterals 

in Fig. 4, are in fact small fragments of an ontology 

of geometric figures, e.g. (Rovetto, 2011), which 

may encompass the three referred hierarchies.  

We summarize conceptual integrity in an abstract 

domain such as mathematics by means of the 

following theorem: 

Theorem 1 – Conceptual Integrity in Abstract 

Domain Hierarchy of Concepts 

In a class hierarchy determined by sub-classing, in 

an abstract domain, all the concepts of the 

hierarchy have at least one common concept, 

and one common function defined in  the 

most general member of the hierarchy. The 

common concept and the common function 

stand for the conceptual integrity. 
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2.4 Liskov Substitution 

The Liskov Substitution Principle (LSP) attempts to 

translate, as precisely as possible, notions found in 

Abstract Mathematics, as discussed above (in 

subsection 2.3), to the realm of software. This is 

possible since the ontology fragments (hierarchies) 

in abstract mathematics are built upon the 

subclassing operator, while it can be said that LSP is 

an effort to define “inheritance” which is the 

software term for subclassing. 

The basic idea of Liskov Substitution which is 

relevant to conceptual integrity is to link “structure” 

to “behavior”, effectively transforming concepts in 

an abstract (e.g. “mathematics”) domain into generic 

software. 

A formulation of the Liskov Substitution 

Principle (Liskov, 1988) is shown in Fig. 5. A 

corresponding class diagram illustrates it in Fig. 6. 

The main principle conditions are marked in 

bold: a- 'all programs P' assures that the principle 

still is generic in terms of software, i.e refers neither 

to a specific software system nor to a specific class 

of software systems, but is not clear how to test it in 

real systems; b- 'behavior of P is unchanged' is 

particularly interesting, as a “structural” class 

diagram (type T and its subtype S) is being linked to 

a “behavioural” condition, which is precisely what 

transforms an abstract domain to software concepts! 

We summarize conceptual integrity within 

Software – according to the Liskov Substitution 

Principle – by the following theorem. 

Theorem 2 – Conceptual Integrity in Liskov 

Substitution 

If by the Liskov Substitution Principle, a sub-class 

object substitution by a parent class object, 

causes no change of behavior of a system, 

Conceptual Integrity is preserved, when one 

passes from an abstract domain to a whole 

domain of software systems. 

 

Figure 5: Liskov Substitution Principle Formulation – The 

significant terms of the principle are stressed in bold face: 

“all programs P” for generality; “behavior is unchanged” 

linking structure to behavior. 

 

Figure 6: Liskov Substitution Principle Class Diagram – 

This is a class diagram illustrating Liskov's principle. T is 

a class (or type). S is subclass (or subtype) of T. Object o1 

is of type S, and object o2 is of type T. This diagram is 

analogous to an abstract hierarchy in Fig.4. The arrow-

head is white to conform to the UML convention. 

2.5 Modularity Matrix 

The Modularity Matrix of a software system is built 

using structors (a class generalization) preserving 

the notion of sub-classing. Thus, the Modularity 

Matrix implicitly conveys the central ideas for which 

the Liskov Substitution Principle was formulated. 

The important contribution of the Modularity 

Matrix, from the viewpoint of the argumentation 

along the current Formal Path is to restrict the 

complete generality of Liskov Substitution – i.e. for 

all programs P, translated to for all software systems 

P – into a limited set of software systems defined by 

the Modularity Matrix structors and functionals. 

This is summarized by the following theorem: 

Theorem 3 – Conceptual Integrity in the 

Modularity Matrix 
If the Modularity Matrix is standard (square and 

block-diagonal), then specific structors 

provide related functionals within modules, 

and the modules conceptual integrity is 

preserved for the restricted set of software 

systems represented by the Matrix. 

2.6 Conceptual Modularity Lattice 

The Conceptual Modularity Lattice – the last link 

towards Conceptual Integrity – has been shown 

(Exman and Speicher, 2015) to be equivalent to the 

Modularity Matrix, in terms of information 

conveyed about its software system modularity.  

On the other hand, by its very definition - from 

FCA (Ganter and Wille, 1998) – the Conceptual 

Modularity Lattice is an algebraic structure 

restricted to the concepts relevant to its software 

system. 

Summarizing, the role of the Conceptual 

Modularity Lattice in our formal path, is by its 
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equivalence to the Modularity Matrix, and the 

conceptual relevance, to enable to extract from the 

Modularity Matrix the module concepts which may 

be tested for Conceptual Integrity.  

This is shown by the following theorem. 

Theorem 4 – Conceptual Integrity in the 

Modularity Lattice 

Since the Modularity Lattice is software design 

equivalent to its corresponding Modularity 

Matrix, the concepts fitting to the Matrix 

modules preserve conceptual integrity and 

this can be explicitly tested for the restricted 

set of software systems represented by the 

Modularity Lattice. 

3 CONCEPTUAL INTEGRITY 

PRINCIPLES FROM THE 

MODULARITY MATRIX 

In this section we finally assign a formal definition 

to two of the principles – referred to in sub-section 

1.1 – behind Conceptual Integrity, viz. Orthogona-

lity and Propriety. The proposed definitions are 

based on the Modularity Matrix properties. 

3.1 Orthogonality 

Orthogonality, as already stated (DeRosso and 

Jackson, 2013) in section 1.1 is "individual functions 

should be independent of one another". Based upon 

the Modularity Matrix, this definition has two 

associated meanings: 

 Linear independence – among structors and 

among functionals; 

 Strict orthogonality – among modules, which 

is also a consequence of linear independence, 

is easily visually recognized in the diagonal 

blocks of the Modularity Matrix. 

So, orthogonality, from the Modularity Matrix, is 

totally consistent with the earlier intuitive 

formulation. 

3.2 Propriety 

Propriety reflects the fact that the Modularity Matrix 

is the result of optimization of the number of linear 

independent structors and their provided functionals. 

In other words, linear independence of structors (and 

linear independence of the corresponding function-

nals), means that there are no superfluous structors, 

just the strictly necessary minimal number.  

This is also consistent with the earlier intuitive 

formulation, viz. "a system should only have the 

functions essential to its purpose and no more". 

See the Discussion sub-section 5.2 for 

considerations on “Generality”. 

4 CONCEPTUAL INTEGRITY 

CHARACTERISTICS 

In this section we go beyond the definitions based 

upon the Modularity Matrix, suggesting additional 

conceptual integrity characteristics that could 

sharpen the understanding the nature of conceptual 

integrity. 

4.1 Conceptual Integrity Is Intensive 

Here we suggest that conceptual integrity, besides a 

property of a whole hierarchical software system, it 

should be a recursive property of each of its 

subsystems down to basic blocks. It is plausible that 

if any subsystem does not have conceptual integrity, 

the whole system cannot display it either. 

Let us explain what are intensive versus 

extensive quantities by an example. Suppose that our 

system is a vehicle – a car or a truck. A family car 

typically has 4 wheels. A truck may have a bigger 

number of wheels.  

The weight of a vehicle is an extensive quantity, 

since the weight of the system is the sum of the 

weights of its components. For instance, additional 

wheels increase the weight of the vehicle. 

On the other hand, the speed of a vehicle is an 

intensive quantity. The speed of the system is not the 

sum of the speeds of its components. All the parts of 

a car move at the same speed. In particular, the 

tangential speed of any of the wheels is the same as 

the speed of the vehicle, irrespective of the number 

of wheels. 

We claim that Conceptual Integrity is an 

intensive quantity. It is not the sum of the conceptual 

integrities of the components of a system. 

4.2 Increasing Conceptual Integrity by 

Components Exchange among 

Modules 

Let us use another physical metaphor as a further 

illustration for the idea of Conceptual Integrity being 

intensive.  
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Assume a system composed of 4 sub-systems as 

in Fig. 7: 

1. glass container;  

2. water contained by the glass;  

3. sphere mostly filled with air partially 

floating in the water; 

4. small solid metal cube inside the sphere. 

Heating the glass container by an external heat 

bath, despite the different thermal conducting 

properties of the sub-system materials (glass, water, 

air, metal), heat energy will flow between the 

different sub-systems from those with higher 

temperatures to those with lower temperatures, until 

the whole system reaches a uniform temperature. 

The metaphor suggests that conceptual integrity 

is not an extensive property, like heat energy, but an 

intensive property, like temperature.  

 

Figure 7: Physical System Metaphor – The system has 4 

sub-systems: a- glass container; b- water inside the glass; 

c- floating sphere filled with air; d- metal cube inside the 

sphere. A heat bath heats the glass container until the 

temperature is uniform, causing heat energy flow among 

the sub-systems. 

In a software system, each sub-system may have 

different computation characteristics – one dealing 

with data, another one with business logic, and so 

on. But, moving some concepts (classes) from one 

sub-system to another may increase conceptual 

integrity in both sub-systems. As a consequence, one 

could say that Conceptual Integrity in the whole 

system is optimized by flow of concepts (classes) 

among sub-systems. One should note, however, that 

such flow and the hypotheses of conceptual integrity 

being intensive, do not imply a single value of 

conceptual integrity throughout a whole software 

system. 

 

5 DISCUSSION 

We summarize the basic claim of this paper, discuss 

fundamental issues, consider future work on open 

issues and conclude with the main paper 

contribution. 

5.1 Basic Claim 

Conceptual Integrity has been up to now, on one 

hand been considered of fundamental importance for 

software system design, on the other hand, only has 

been vaguely defined. 

The basic claim of this paper is that the 

Modularity Matrix is a source of a formally defined 

Conceptual Integrity. To this end we have provided 

two lines of argumentation: 

a. Formal Path from Abstract Domains 

through the Modularity Matrix to 

Conceptual Integrity – We started from the 

accepted conceptual integrity of abstract 

mathematics, made a transition to generic 

software with the help of Liskov 

Substitution, whose meanings are conveyed 

by the Modularity Matrix to a restricted set 

of software systems. Using the equivalence 

to the Modularity Conceptual Lattice, we 

returned to "conceptual" aspects, to finally 

reach Conceptual Integrity. 

 

b. Plausibility supported by the intuitive 

Principles behind Conceptual Integrity – 

We directly used the Modularity Matrix to 

obtain the intuitive principles in a formal 

way, viz. orthogonality and propriety. 

Both these lines of argumentation deserve further 

considerations. 

The "formal path" transitions were formulated 

into a series of reasonable theorems. But, in order to 

have a really formal path, these theorems demand 

rigorous demonstrations, or eventual reformulation 

of the theorems. 

The intuitive principles – at least the two first 

ones, viz. orthogonality and propriety – have a very 

neat definition by the Modularity Matrix properties. 

We suggest inverting the situation: instead of trying 

to derive the principles from the Matrix, take the 

Modularity Matrix is the actual source of Conceptual 

Integrity. 

We may summarize the current situation, stating 

that some promising progress has been achieved, but 

additional investigation is needed to further clarify 

the issues, as detailed in the next sub-section. 
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5.2 Fundamental Issues 

a- Are hierarchies with conceptual integrity really 

independent? 
We have referred in sub-section 2.3 to two 

independent hierarchies, one of polygons and 

another one of ellipses, say a circle. However, one 

may think of a circle as a regular polygon in the 

limit of an infinite number of sides, enabling a 

transition between two of the above hierarchies. One 

can easily estimate the value of  in the perimeter of 

a circle 2**Radius by taking the limit of the 

perimeter of a polygon inscribed in the circle, when 

the number of polygon sides goes to infinity. 

 

b- Are conceptual hierarchies stable along time? 
The situation is more complex than the naïve 

view of Fig. 4 would suggest. One could say that 

concepts evolve – see e.g. (Lakatos, 1976) in his 

book on "Proofs and Refutations" which discusses 

the empirical contribution to the concept evolution 

of regular polyhedrons (from the initial five of 

Euler). Concepts also can be said to expand along 

time – see e.g. (Buzaglo, 2002) according to the 

terminology of his book "The Logic of Concept 

Expansion". 

 

c- What is the origin of the conceptual integrity of 

major software systems? 

Brooks in his books has defended the position 

that only a single brilliant mind, can provide 

conceptual integrity to a major work of art, say an 

architect of a cathedral, or similarly to a major 

engineering enterprise such as a very large software 

system. 

Gabriel challenges Brooks' position that a single 

mind is the best originator of Conceptual Integrity 

(Gabriel, 2007). 

In our opinion, Brooks' position is difficult to 

rationally prove for real systems. But its main 

drawback is that it leaves us depending on the 

existence and the opportunistic presence of a single 

brilliant mind. We obviously prefer a systematic 

construction of formal tools, based upon conceptual 

integrity ideas, as proposed in this paper. 

 

d- Are the Liskov Substitution Principle specific 

problems detrimental to our argumentation? 
We can mention two problems of the Liskov 

Substitution Principle. First, how to measure the lack 

of change of behavior for all programs P? Second, 

the well-known problem of setter functions for 

subclasses: for instance, if a 'Square' class has 

inherited from the 'Rectangle' class setter functions 

(like 'SetWidth' and 'SetHeigth'), independent 

application of these functions may distort a Square 

object into a Rectangle object. Thus, software 

inheritance has subtleties in addition to those within 

abstract mathematical sub-typing.  

We claim that from the point of view of 

conceptual integrity we can ignore these subtle 

problems, and our argumentation remains valid. 

 

e- What are the difficulties to formally interpret the 

Generality property of Conceptual Integrity? 

Generality, has been described as the quality that 

"a single function should be usable in many ways" in 

the same system. This intuitive formulation seems so 

vague that its more formal interpretation is not so 

clear-cut. 

One possible interpretation could be the 

repeated provision of the same functional by two 

different structors. This should not be allowed for 

the same functional in different modules. But, such 

interpretation, besides being obvious in case of 

inheritance among classes, is not an interesting 

contribution to the overall understanding of 

conceptual integrity. 

5.3 Future Work 

Open issues for future work include, more strictly 

formalization and more extensive investigation of 

the implications of the formalization, providing case 

studies, to exemplify the claims. 

5.4 Main Contribution 

The main contribution of this work is to propose a 

path to a formal definition of Conceptual Integrity, 

pointing to the Modularity Matrix as a possible 

source of such definition. 
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