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Abstract: Data retrieval is becoming more difficult due to the heterogeneity and the huge amount of Data flowing in 
the Web. On the other hand, novice users could not handle querying languages (e.g., SPARQL) or 
knowledge based techniques. To simplify querying process, we introduce in this paper, a proposal of 
automatic SPARQL query generation based on user-supplied keywords. The construction of a SPARQL 
query is based on the top relevant RDF sub-graph, selected from our RDF Triplestore. This latter rely on our 
defined semantic network and on our Contextual Schema both published in two different papers of our 
previous studies. We evaluate 50 queries by using three measures. Results show an F-Score of about 50%. 
This proposal is already implemented as a web interface and the whole queries interpretation and processing 
is performed over this interface. 

1 INTRODUCTION 

The huge amount of data flowing in the Web is 
making research harder for end users. In the other 
hand, existing query languages and data models, 
both are hard to understand for novice users. 
Therefore, it’s become a necessity to simplify 
retrieval process. Keyword search is one of available 
solutions enabling users expressing their 
requirements. Expect that Keywords based queries 
are usually ambiguous to interpret. On the contrary, 
we can easily and clearly write a SPARQL queries. 

We outline in this paper a procedure for 
automatic SPARQL query generation based on user 
keywords. 

After a linguistic processing of keywords, we 
create and select the more relevant query matching 
the user keywords through the construction of a set 
of suitable graphs acting like patterns for queries.  

Our RDF TripleStore is the outcome of applying 
the translation process from our XML dataset using 
a small semantic network (Kharrat, 2015). All the 
querying process is based on this latter.  

This proposal, is part of our retrieval solution 
composed by a unique search box which provides 
access to the whole dataset. Each result is illustrated 
by a node represented a physical resource (video, 
image, text, audio) and are linked together with 
other (semantically related) resources or related to 
another matched triples. If the user clicks on one of 

those nodes, a window appears, leading to details of 
this latter (details are specific to the type of resource 
result: description, playing video or audio….) 

Triples are linked together, constructing a 
connected graph with typed links. An RDF triple is 
structured as SPO (Subject, Predicate, Object). 
Subject and object can be a simple or component 
noun. Theoretically, by using a keywords search, it 
is not possible to make a complete mapping of 
keywords query to a triple. Because the keywords 
used un a query could be ambiguous or do not match 
any of triples elements. In addition, there are hidden 
relationships between resources that could not be 
expressed explicitly by keywords. Keywords used in 
search engine for retrieving information can match 
to nodes or edges of a subgraph. However, many 
other nodes and edges could be selected as result 
since they have relationships with other results. 
Selecting this type of results is called induction. 

This paper is organized as follows: In section II 
we present an overview of some studies along with 
our proposed approach of SPARQL query 
generation. The subsequent section III introduces the 
first step of our approach. In section IV we describe 
the process of automatic query generating based on 
graph patterns. We described a brief evaluation of 
this approach in section V. Conclusion will be 
finally found in last section. 
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2 RELATED WORK 

Actual querying languages are largely used 
nowadays. However, their biggest drawback is their 
complexity of manipulation which make them 
intended for experts only. 

It is obvious that there are other alternatives for 
novice users to manipulate RDF data. Automatic 
query generation is one of them which has been 
integrated many times in certain solutions. In the 
following, we present recent works about SPARQL 
query generation. 

In (Shekarpour; 2013), author introduce a novel 
approach of question answering system, which 
transforms user keywords or sentences into 
conjunctive SPARQL queries. For query generation 
from user keywords, he employs a hidden Markov 
model for resources disambiguation and he use 
inference for the creation of a graph corresponding 
to SPARQL query. 

Authors of (Wollbrett, 2013) and (Lehmann, 
2011) have creates and annotated RDF views that 
enable automatic generation of SPARQL queries. 
Another way to generate queries is proposed in the 
work of Haag (Haag, 2015) who proposed a 
graphical manner to construct a complex queries 
using logical symbols. The proposed approach of 
(Acosta, 2015) aims first to design a model for 
estimating RDF completeness and then the creation 
of a query planner able to decide which parts of a 
SPARQL query will be executed. Finally, (Zhao, 
2014) has presented a different approach for 
SPARQL queries generation based on profiling 
representing abstracts of heterogeneous data. 

Our proposal is different from those approaches 
since they could not interpret implicit meaning of 
keywords and handle semantic relationships existing 
between queried data resources. In fact, in our 
proposal we consider two major elements: our 
semantic network and our Contextual Schema 
(Kharrat, 2015).  

3 QUERYING PROCESS AND 
PREPROCESSING 

Currently, Keywords based research is the most used 
for data retrieval. In the other hand, there is a huge 
amount of available RDF data which are getting 
more complex. Using SPARQL queries over them is 
the most adequate solution but not for novice users. 
Many studies for generating automatically this type 
of queries have been carried out. However, this kind 

of solutions is implying ambiguity when interpreting 
user’s intention. To avoid as possible this problem 
before generating SPARQL queries we process 
user’s keywords as a first step of our proposal. 

To make a disambiguation of keywords, we 
compute a relatedness score of used terms to get the 
shared context of research and the aim of each one 
of them. We used Wordnet Web service which offer 
free linguistic processing (Grammar detection, 
Synonyms, proximity relations…) of any introduced 
term. 

Taking as example the keyword « Write », 
Wordnet, return all derived terms of this latter 
(written, writing, ….). In addition, we detect Named 
Entities (NE) to avoid treating composed NE as 
separated terms and to avoid processing them as 
verbs, nouns or adjectives. ∀ Keyword k ∈ Query q, we define a set of 
derived terms of k as LE ={x1, …, xn}. 

We then construct another representative set for 
NE called “EE” to increase the chance to find closed 
concept to seeking keywords. 

“EE” set is more generic than ‘synsets’ (sets of 
synonyms within dictionary-oriented terms). Except 
that is not intended for all keywords. “EE” is a set of 
derived concepts of keywords in DBpedia. 

This set return APk= { r1,r2,…, rn } as APk ⊂ 
(C ∪  I ∪  P) where C, I and P, are respectively 
Classes, Instances and Properties from DBpedia 
containing k as label. ∀ r i ϵ APk , we derive resources semantically 
related through these properties: rdfs:seeAlso, 
owl:sameAs skos:narrower and skos:narrowMatch, 
skos:closeMatch, skos:mappingRelation and 
skos:exactMatch. Notice that in DBpedia, categories 
are related to their top-level-categories through 
skos:broader and support dcterms:subject rather than 
skos:subject. 

Taking the famous example of « Apple », 
returned terms from DBpedia could be : dbpedia-
owl:apple_(Company), dbpedia-owl:Apple_(Fruit), 
dbpedia-owl:Apple_(Band)… 

Using this set, we are able to eliminate ambiguity 
of keywords and detect shared context of them by 
computing relatedness score as follow: 1݇)ݎݏ, ݇2) = ୭(ୟ୶(||,||))ି୪୭(|⌒|)(|ௐ|)ି((||,||))   (1) 

Where k1 and k2 are two keywords, A and B are 
sets of derived terms respectively of k1 and k2. W is 
the set of all terms. 
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4 QUERY GENERATION 
PROCESS 

4.1 Formal Representation 

Answering a semantic query could be formulated as 
retrieval of interconnected objects through relations 
and restrictions. Figure 1 represent a view of a 
sample set of RDF data under two different formats. 
(a) triples and graphs(b). A query could be written in 
the following formal representation. 

The RDF data set is defined as: D: {C,I,L,R,t} 
where C & R represent the set of Classes and 
relationships. I and L are respectively the set of 
Instances and literals. 

A function T :  {C ᴜ I} x{C ᴜ I ᴜ L}→R defines 
all triples in D. in addition we define {e}: {C ᴜ R ᴜ I 
ᴜ L} to represent all Classes, relationships, instances 
and literals. A keyword K is a set of terms {t}. 

 

Figure 1: Sample RDF set represented as triples (a) and as 
a graph (b). 

Formally, we represent a query as : RF : ‹C’, R’, 
I’, L’, V, T’› under D, a set of variables gatherings 
relationships and nodes.  

R’:‹I’ ᴜ C’ ᴜ V› x ‹ I’ ᴜ C’ ᴜ V ᴜ L’› →R define 
all triples in RF. 

Considering this definition, the problem of 
constructing a query could be designed as follow: 

Taking a graph D, typing a keyword K, we 
construct queries {RF}. 

To do construct s a SPARQL query covering 
user’s keywords, we have to apply a sequel of steps 
to construct a graph acting as pattern. For every 
keyword ki ∈ K, we look for all matched Ci inside 
TripleStore. We then look for contexts cx inside 
graph as cxi  ⊂ {cx} ∈ Si. Contexts are already 
defined inside our semantic network. 

Moreover, we calculate all possible combination 
W for matching Q of those keywords: W = Q1 × ... 
× Qn = {w = (q1,...,qn)|qi ∈ Qi, ∀i = 1,...,n}. User 
could type one or many keywords. In case of three 
words for example, system may return results by 
combining two of them. For every combination w = 
(q1,...,qn) ∈ W which contains only one matched 
element qi per keyword ki, we generate a graph D 
letting us constructing it corresponding SPARQL 
query. Furthermore, we eliminate from graph, all 
elements which have low value in their uncertain 
property: UN. Finally, we select automatically 
Storylink triples: Sln ignoring contexts of the latter. 
Those triples do not obviously represent information 
seeked by user, however, they are certainly related 
to the same storytelling forming part of the 
chronological series of events. Those steps are 
depicted in Figure 3. 

The graph D, which acting like a pattern for 
SPARQL query generation is defined as follow: 

D=(S,A, Π) where S is a finite set of vertices 
defined as Cartesian product of Se ∪ Sc ∪ Sl= ( {0} 
x Ss) ∪ ( {0} x Sc) ∪ ( {0} x Sl ), where Ss is the set 
of vertices representing entities, Sc is the set of 
vertices representing classes and finally Sl is a set of 
vertices representing literals. 

- A ⊆ S × S is a set of finite pairs (s’,s’’) edges, 
where s’, s’’ ∈ S  

Π is the projection of a vertices on edge 
- Π: {S U A} → α is a function which assign ∀s ∈ S and ∀ (s1,s2) ∈ A, a label of α alphabet defined 

as Cartesian product Ee U Es U Ec U Er U Ei. 
Where Ee is a set of labels for entities (applied only 
if e ∈ Se),  Es is the set of labels for literals (applied 
only if e ∈ Sl), Ec is a set of labels for classes 
(applied only if e ∈ Sc), Er is a set of labels for 
properties between entities (applied only if e1 e’ and 
e’’ ∈ Se), finally, Ei is a set of labels for properties 
between an attribute and an entity (applied only if e’ ∈ Sa & e’’ ∈ Sl) 

Let’s take the set ENS (q1,...,qn) ∈ W, graph is 
constructed as following: 

-if qi ∈ Es, add an edge (w, sqi) and a friend 
vertice with D (sqi ) = qi. The latest inserted edge 
(w, qi) will be related to the exact w ∈ Sc, labeled 

:Zidane 

(a) 

{ (  : Z i d a n e ,  : Or i g in ,  x )  
( Z i d an e ,  : n a me ,  «  Z i n e d d in e  Z i d an e  » )  
( x ,  : n a me ,  «  F r a n c e  » )  
(  : T r a i n e r ,  rd f s  : su b C l as s Of ,  : P e r so n  
( : Z i d an e ,  rd f : t yp e ,  : T r a in e r )  
( : Z i d an e ,  rd f : t yp e ,  : P e r s on )  
( Z i d an e ,  : To p ic ,  «  S p o r t  » ) }  

« Sport » 

:Person 

:subClassOf 

« France » 

:Trainer 

:Origin 

x 

:name rdf :type 

« Z i n e d d i n e  
Z i d an e  » 

rdf :type 

:name 
(b) 

:Topic 
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D(w, sqi ) = Π(a), according to information given by 
term index of wq. 

-if  qi ∈ ΠA then we add an edge (с,s) with an 
edge s. Inserted edge will be related exactly to w ∈ 
Sc and labeled as D(w, s) = Π(w) ∈ Ei. 

-if qi ∈ Er / Qi ∈ Ec then we verify if ∃ qi=Sln. If 
yes, then we add an edge (w,s) with a vertice s and 
labeled D (w,s) = Sln. 

-∀qi  ∈ Er, if ∃ property ∈ UN, then eliminate 
triple from graph. 

The graph which will be kept, is the less 
connected of matched elements qi ∈ с with the 
lowest score SCO. SCO is defined as average 
distance between matched elements pairs qi. SCO = 
∑ distance (qi, qj) ∀i, j = 1, ..., n and i ≠ j. To reduce 
SCO, we look for the shortest path in graph D. 
However, by calculating this shortest path, in some 
cases, qi may be an edge, so the distance between 
two matched elements is computed including edges 
and vertices leading to qi. Finally, we combine all 
shortest distances forming a connected sub-graph. 
To find relevant graph, we keep only the lowest 
scores. 

We can, at this level, generate a SPARQL query 
basing on the kept graph. Prior to this, we have to 
apply preprocessing of keywords, as result of 
preprocessing, we may add a derived terms to 
originals ones. The entire terms and keywords will 
be submitted for querying. 

4.2 Query Construction 

We generate SPARQL queries for every graph while 
considering: 

-if (s,o) ∈ A, where s & o ∈ Ss, L(o) ∈ Es & 
Π(s,o) ∈ Ei, then we generate the skeleton of the 
following triple: var(s) Π(s,o) var (o) FILTER 
(var(o)=Sln)  (For Storylink triples) 

-∀ (s,o) ∈ A, where s & o ∈ Ss  and Π(s,o)=cx, 
then we generate the skeleton of the following triple: 
var(s) Π(s,o) var (o) FILTER (var(o)= (cxi,.. cxn) ∈ 
{cx}) (For Context triples) 

For all the 6 semantic relationships defined in 
our Contextual Schema: 

-if s ∈ Sc then we associate the vertice s with a 
new variable var(s) and generate the skeleton of the 
following triple: var(s) rdf :type Π(s) where E(s) ∈ 
Ec. 

-if (s,o) ∈ A, from vertice s ∈ Sc to vertice o ∈ 
Sc (inter-entities property) where Π(s,o) ∈Er, then 
we generate the skeleton of the following triple: 
var(s) L(e) var(o) 

-if (s,o) ∈ A, from vertice s ∈ Sc to vertice o ∈ Ss 
(entity-attribute property) where L(o) ∈ Es & Π(s,o) 

∈ Ei, then we generate the skeleton of the following 
triple: var(s) Π(s,o) var (o) FILTER (var(o)=L(o)).  

-if (s,o) ∈ A, from vertice s ∈ Sc to vertice o ∈ Ss 
(entity-attribute property)  where Π(s,o) ∈ Ei, then : 
we generate the skeleton of the following triple: 
var(s) Π(s,o) var (o). 

Last step before query generation is adding more 
restrictions about shared context of keywords and 
about uncertainty property. 

5 EVALUATION 

We present in this section, a brief evaluation of this 
work. 

First of all, we have to make distinguish between 
different results. In fact, they are divided into two 
groups. Results including exact user’s terms and 
results including and considering user intents. This 
implies the existence of correct results and those 
entirely relevant. For this reason, we distinct number 
of keywords best matching to elements from 
Triplestrore in order to find the best sub-graph 
considering all user requirements. In addition, we 
have to distinct correctness degree of results. For 
this, we introduce a measures already used in this 
kind of evaluation (Shekarpour; 2013). 

Let’s take the same example described 
previously. Generated query may return (correct, 
partially correct, or wrong) results. User keywords 
could match exactly with resources but those latter 
may not be the intent of user in terms of meaning. 
On that view, results may deviate towards resources 
just talking about Hillary in other context. 

We introduce those three measures: 
Correctness Rate (CR) : This measure will let us 

assign a score to results matching to the user's 
expectations of his query q. CRq(ߙ) is the fraction of 
correct terms over all terms. ܴܥ(ߙ) = ௧	௧௦ௌ௧		௧௦    (2) 

(Average CR): It represents arithmetic of CR of 
their individual answers A for query q. ܴܥܣ(ܣ) = ଵ|| ∗ ∑ ఈ∈(ߙ)ܴܥ   (3) 

Fuzzy precision (FP): The ACR is the basis of 
this measure, which measures the overall correctness 
of graphs matching answers Aq. 

The ACR is the basis for the fuzzy precision 
metric (FP), which measures the overall correctness 
of a template’s corresponding answers Aq with 
respect to a set of keyword queries Q. 
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ܲܨ = ∑ ோ()∈ೂ|ொ௨௦	௧௨	௦௨௧௦|	  (4) 

After computing the fuzzy precision, we can 
evaluate the quality of the results achieved by graph 
patterns. Afterwards, we compute the Recall 
corresponding to fraction of queries which have got 
results. ܴ݈݈݁ܿܽ	ܴ = ொ௨௦	௧௨	௦௨௧௦	ௌ௧			௨௦ 										(5) 

Finally, we compute F-Score as follow: ܨ = 2 ∗ ி∗ோிାோ																														(6) 

We evaluate 50 queries by using these three 
measures. Table 1 represents a small set of used 
queries for evaluation. 

Table1: Sample set of used queries for evaluation. 

Queries 

Q1:Hillary+Isis 

Q2:Hillary+Isis+Iraq 

Q3:Hillary+visit+Iraq 

Q4:Hillary+meeting+G8 

Q5:Hillary+meeting+Obama 

Q6:europe+Isis+war 

Q7:Europe+Goodluck Jonathan+boko haram 

Q8:Hollande+Goodluck Jonathan+boko haram 

Q9:Hollande+Iraq+war+decisions 

Q10:Angela Merkel+G8+decisions 

Figure 2 shows the accuracy of each query based 
on these three metrics. 

Basing on these three measures, overall F-
Precision and recall values as well as an overall F-
Score value were computed as the average mean of 
 

 

Figure 2: Accuracy of each query in Table 1. 

the F-Precision, recall and F-Score values for all 
queries. This preliminary evaluation shows an 
average of 0.52 of F-Score, 0.43 of Recall and 0.5 of 
F-Precision. 

6 CONCLUSION 

In this research, we proposed an automated system 
for SPARQL query generation from user keywords. 
The process includes three main parts: Preprocessing 
of keywords, detecting best graph matching to 
keywords and finally the query generation. The aim 
of this proposal is to simplify data retrieval for 
novice users with respect of their intents, in fact of 
ambiguous aspects of keywords based search. In the 
last section we showed a brief evaluation of the 
proposed approach. We aim to apply some 
optimizations to our approach, since we currently 
use a keywords based Web interface. 
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APPENDIX 

 

Figure 3: Processing steps of generating SPARQL queries. 
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