
SPARQL Query Generation based on RDF Graph

Mohamed Kharrat, Anis Jedidi and Faiez Gargouri
MIRACL LAB, University of Sfax, Sfax, Tunisia

Keywords: SPARQL, Queries, RDF.

Abstract: Data retrieval is becoming more difficult due to the heterogeneity and the huge amount of Data flowing in
the Web. On the other hand, novice users could not handle querying languages (e.g., SPARQL) or
knowledge based techniques. To simplify querying process, we introduce in this paper, a proposal of
automatic SPARQL query generation based on user-supplied keywords. The construction of a SPARQL
query is based on the top relevant RDF sub-graph, selected from our RDF Triplestore. This latter rely on our
defined semantic network and on our Contextual Schema both published in two different papers of our
previous studies. We evaluate 50 queries by using three measures. Results show an F-Score of about 50%.
This proposal is already implemented as a web interface and the whole queries interpretation and processing
is performed over this interface.

1 INTRODUCTION

The huge amount of data flowing in the Web is
making research harder for end users. In the other
hand, existing query languages and data models,
both are hard to understand for novice users.
Therefore, it’s become a necessity to simplify
retrieval process. Keyword search is one of available
solutions enabling users expressing their
requirements. Expect that Keywords based queries
are usually ambiguous to interpret. On the contrary,
we can easily and clearly write a SPARQL queries.

We outline in this paper a procedure for
automatic SPARQL query generation based on user
keywords.

After a linguistic processing of keywords, we
create and select the more relevant query matching
the user keywords through the construction of a set
of suitable graphs acting like patterns for queries.

Our RDF TripleStore is the outcome of applying
the translation process from our XML dataset using
a small semantic network (Kharrat, 2015). All the
querying process is based on this latter.

This proposal, is part of our retrieval solution
composed by a unique search box which provides
access to the whole dataset. Each result is illustrated
by a node represented a physical resource (video,
image, text, audio) and are linked together with
other (semantically related) resources or related to
another matched triples. If the user clicks on one of

those nodes, a window appears, leading to details of
this latter (details are specific to the type of resource
result: description, playing video or audio….)

Triples are linked together, constructing a
connected graph with typed links. An RDF triple is
structured as SPO (Subject, Predicate, Object).
Subject and object can be a simple or component
noun. Theoretically, by using a keywords search, it
is not possible to make a complete mapping of
keywords query to a triple. Because the keywords
used un a query could be ambiguous or do not match
any of triples elements. In addition, there are hidden
relationships between resources that could not be
expressed explicitly by keywords. Keywords used in
search engine for retrieving information can match
to nodes or edges of a subgraph. However, many
other nodes and edges could be selected as result
since they have relationships with other results.
Selecting this type of results is called induction.

This paper is organized as follows: In section II
we present an overview of some studies along with
our proposed approach of SPARQL query
generation. The subsequent section III introduces the
first step of our approach. In section IV we describe
the process of automatic query generating based on
graph patterns. We described a brief evaluation of
this approach in section V. Conclusion will be
finally found in last section.

450
Kharrat, M., Jedidi, A. and Gargouri, F.
SPARQL Query Generation based on RDF Graph.
DOI: 10.5220/0006091904500455
In Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2016) - Volume 1: KDIR, pages 450-455
ISBN: 978-989-758-203-5
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

2 RELATED WORK

Actual querying languages are largely used
nowadays. However, their biggest drawback is their
complexity of manipulation which make them
intended for experts only.

It is obvious that there are other alternatives for
novice users to manipulate RDF data. Automatic
query generation is one of them which has been
integrated many times in certain solutions. In the
following, we present recent works about SPARQL
query generation.

In (Shekarpour; 2013), author introduce a novel
approach of question answering system, which
transforms user keywords or sentences into
conjunctive SPARQL queries. For query generation
from user keywords, he employs a hidden Markov
model for resources disambiguation and he use
inference for the creation of a graph corresponding
to SPARQL query.

Authors of (Wollbrett, 2013) and (Lehmann,
2011) have creates and annotated RDF views that
enable automatic generation of SPARQL queries.
Another way to generate queries is proposed in the
work of Haag (Haag, 2015) who proposed a
graphical manner to construct a complex queries
using logical symbols. The proposed approach of
(Acosta, 2015) aims first to design a model for
estimating RDF completeness and then the creation
of a query planner able to decide which parts of a
SPARQL query will be executed. Finally, (Zhao,
2014) has presented a different approach for
SPARQL queries generation based on profiling
representing abstracts of heterogeneous data.

Our proposal is different from those approaches
since they could not interpret implicit meaning of
keywords and handle semantic relationships existing
between queried data resources. In fact, in our
proposal we consider two major elements: our
semantic network and our Contextual Schema
(Kharrat, 2015).

3 QUERYING PROCESS AND
PREPROCESSING

Currently, Keywords based research is the most used
for data retrieval. In the other hand, there is a huge
amount of available RDF data which are getting
more complex. Using SPARQL queries over them is
the most adequate solution but not for novice users.
Many studies for generating automatically this type
of queries have been carried out. However, this kind

of solutions is implying ambiguity when interpreting
user’s intention. To avoid as possible this problem
before generating SPARQL queries we process
user’s keywords as a first step of our proposal.

To make a disambiguation of keywords, we
compute a relatedness score of used terms to get the
shared context of research and the aim of each one
of them. We used Wordnet Web service which offer
free linguistic processing (Grammar detection,
Synonyms, proximity relations…) of any introduced
term.

Taking as example the keyword « Write »,
Wordnet, return all derived terms of this latter
(written, writing, ….). In addition, we detect Named
Entities (NE) to avoid treating composed NE as
separated terms and to avoid processing them as
verbs, nouns or adjectives. ∀ Keyword k ∈ Query q, we define a set of
derived terms of k as LE ={x1, …, xn}.

We then construct another representative set for
NE called “EE” to increase the chance to find closed
concept to seeking keywords.

“EE” set is more generic than ‘synsets’ (sets of
synonyms within dictionary-oriented terms). Except
that is not intended for all keywords. “EE” is a set of
derived concepts of keywords in DBpedia.

This set return APk= { r1,r2,…, rn } as APk ⊂
(C ∪ I ∪ P) where C, I and P, are respectively
Classes, Instances and Properties from DBpedia
containing k as label. ∀ r i ϵ APk , we derive resources semantically
related through these properties: rdfs:seeAlso,
owl:sameAs skos:narrower and skos:narrowMatch,
skos:closeMatch, skos:mappingRelation and
skos:exactMatch. Notice that in DBpedia, categories
are related to their top-level-categories through
skos:broader and support dcterms:subject rather than
skos:subject.

Taking the famous example of « Apple »,
returned terms from DBpedia could be : dbpedia-
owl:apple_(Company), dbpedia-owl:Apple_(Fruit),
dbpedia-owl:Apple_(Band)…

Using this set, we are able to eliminate ambiguity
of keywords and detect shared context of them by
computing relatedness score as follow: 1݇)ݎݏ, ݇2) = ୭(ୟ୶(||,||))ି୪୭(|⌒|)(|ௐ|)ି((||,||)) (1)

Where k1 and k2 are two keywords, A and B are
sets of derived terms respectively of k1 and k2. W is
the set of all terms.

SPARQL Query Generation based on RDF Graph

451

4 QUERY GENERATION
PROCESS

4.1 Formal Representation

Answering a semantic query could be formulated as
retrieval of interconnected objects through relations
and restrictions. Figure 1 represent a view of a
sample set of RDF data under two different formats.
(a) triples and graphs(b). A query could be written in
the following formal representation.

The RDF data set is defined as: D: {C,I,L,R,t}
where C & R represent the set of Classes and
relationships. I and L are respectively the set of
Instances and literals.

A function T : {C ᴜ I} x{C ᴜ I ᴜ L}→R defines
all triples in D. in addition we define {e}: {C ᴜ R ᴜ I
ᴜ L} to represent all Classes, relationships, instances
and literals. A keyword K is a set of terms {t}.

Figure 1: Sample RDF set represented as triples (a) and as
a graph (b).

Formally, we represent a query as : RF : ‹C’, R’,
I’, L’, V, T’› under D, a set of variables gatherings
relationships and nodes.

R’:‹I’ ᴜ C’ ᴜ V› x ‹ I’ ᴜ C’ ᴜ V ᴜ L’› →R define
all triples in RF.

Considering this definition, the problem of
constructing a query could be designed as follow:

Taking a graph D, typing a keyword K, we
construct queries {RF}.

To do construct s a SPARQL query covering
user’s keywords, we have to apply a sequel of steps
to construct a graph acting as pattern. For every
keyword ki ∈ K, we look for all matched Ci inside
TripleStore. We then look for contexts cx inside
graph as cxi ⊂ {cx} ∈ Si. Contexts are already
defined inside our semantic network.

Moreover, we calculate all possible combination
W for matching Q of those keywords: W = Q1 × ...
× Qn = {w = (q1,...,qn)|qi ∈ Qi, ∀i = 1,...,n}. User
could type one or many keywords. In case of three
words for example, system may return results by
combining two of them. For every combination w =
(q1,...,qn) ∈ W which contains only one matched
element qi per keyword ki, we generate a graph D
letting us constructing it corresponding SPARQL
query. Furthermore, we eliminate from graph, all
elements which have low value in their uncertain
property: UN. Finally, we select automatically
Storylink triples: Sln ignoring contexts of the latter.
Those triples do not obviously represent information
seeked by user, however, they are certainly related
to the same storytelling forming part of the
chronological series of events. Those steps are
depicted in Figure 3.

The graph D, which acting like a pattern for
SPARQL query generation is defined as follow:

D=(S,A, Π) where S is a finite set of vertices
defined as Cartesian product of Se ∪ Sc ∪ Sl= ({0}
x Ss) ∪ ({0} x Sc) ∪ ({0} x Sl), where Ss is the set
of vertices representing entities, Sc is the set of
vertices representing classes and finally Sl is a set of
vertices representing literals.

- A ⊆ S × S is a set of finite pairs (s’,s’’) edges,
where s’, s’’ ∈ S

Π is the projection of a vertices on edge
- Π: {S U A} → α is a function which assign ∀s ∈ S and ∀ (s1,s2) ∈ A, a label of α alphabet defined

as Cartesian product Ee U Es U Ec U Er U Ei.
Where Ee is a set of labels for entities (applied only
if e ∈ Se), Es is the set of labels for literals (applied
only if e ∈ Sl), Ec is a set of labels for classes
(applied only if e ∈ Sc), Er is a set of labels for
properties between entities (applied only if e1 e’ and
e’’ ∈ Se), finally, Ei is a set of labels for properties
between an attribute and an entity (applied only if e’ ∈ Sa & e’’ ∈ Sl)

Let’s take the set ENS (q1,...,qn) ∈ W, graph is
constructed as following:

-if qi ∈ Es, add an edge (w, sqi) and a friend
vertice with D (sqi) = qi. The latest inserted edge
(w, qi) will be related to the exact w ∈ Sc, labeled

:Zidane

(a)

{ (: Z i d a n e , : Or i g in , x)
(Z i d an e , : n a me , « Z i n e d d in e Z i d an e »)
(x , : n a me , « F r a n c e »)
(: T r a i n e r , rd f s : su b C l as s Of , : P e r so n
(: Z i d an e , rd f : t yp e , : T r a in e r)
(: Z i d an e , rd f : t yp e , : P e r s on)
(Z i d an e , : To p ic , « S p o r t ») }

« Sport »

:Person

:subClassOf

« France »

:Trainer

:Origin

x

:name rdf :type

« Z i n e d d i n e
Z i d an e »

rdf :type

:name
(b)

:Topic

KDIR 2016 - 8th International Conference on Knowledge Discovery and Information Retrieval

452

D(w, sqi) = Π(a), according to information given by
term index of wq.

-if qi ∈ ΠA then we add an edge (с,s) with an
edge s. Inserted edge will be related exactly to w ∈
Sc and labeled as D(w, s) = Π(w) ∈ Ei.

-if qi ∈ Er / Qi ∈ Ec then we verify if ∃ qi=Sln. If
yes, then we add an edge (w,s) with a vertice s and
labeled D (w,s) = Sln.

-∀qi ∈ Er, if ∃ property ∈ UN, then eliminate
triple from graph.

The graph which will be kept, is the less
connected of matched elements qi ∈ с with the
lowest score SCO. SCO is defined as average
distance between matched elements pairs qi. SCO =
∑ distance (qi, qj) ∀i, j = 1, ..., n and i ≠ j. To reduce
SCO, we look for the shortest path in graph D.
However, by calculating this shortest path, in some
cases, qi may be an edge, so the distance between
two matched elements is computed including edges
and vertices leading to qi. Finally, we combine all
shortest distances forming a connected sub-graph.
To find relevant graph, we keep only the lowest
scores.

We can, at this level, generate a SPARQL query
basing on the kept graph. Prior to this, we have to
apply preprocessing of keywords, as result of
preprocessing, we may add a derived terms to
originals ones. The entire terms and keywords will
be submitted for querying.

4.2 Query Construction

We generate SPARQL queries for every graph while
considering:

-if (s,o) ∈ A, where s & o ∈ Ss, L(o) ∈ Es &
Π(s,o) ∈ Ei, then we generate the skeleton of the
following triple: var(s) Π(s,o) var (o) FILTER
(var(o)=Sln) (For Storylink triples)

-∀ (s,o) ∈ A, where s & o ∈ Ss and Π(s,o)=cx,
then we generate the skeleton of the following triple:
var(s) Π(s,o) var (o) FILTER (var(o)= (cxi,.. cxn) ∈
{cx}) (For Context triples)

For all the 6 semantic relationships defined in
our Contextual Schema:

-if s ∈ Sc then we associate the vertice s with a
new variable var(s) and generate the skeleton of the
following triple: var(s) rdf :type Π(s) where E(s) ∈
Ec.

-if (s,o) ∈ A, from vertice s ∈ Sc to vertice o ∈
Sc (inter-entities property) where Π(s,o) ∈Er, then
we generate the skeleton of the following triple:
var(s) L(e) var(o)

-if (s,o) ∈ A, from vertice s ∈ Sc to vertice o ∈ Ss
(entity-attribute property) where L(o) ∈ Es & Π(s,o)

∈ Ei, then we generate the skeleton of the following
triple: var(s) Π(s,o) var (o) FILTER (var(o)=L(o)).

-if (s,o) ∈ A, from vertice s ∈ Sc to vertice o ∈ Ss
(entity-attribute property) where Π(s,o) ∈ Ei, then :
we generate the skeleton of the following triple:
var(s) Π(s,o) var (o).

Last step before query generation is adding more
restrictions about shared context of keywords and
about uncertainty property.

5 EVALUATION

We present in this section, a brief evaluation of this
work.

First of all, we have to make distinguish between
different results. In fact, they are divided into two
groups. Results including exact user’s terms and
results including and considering user intents. This
implies the existence of correct results and those
entirely relevant. For this reason, we distinct number
of keywords best matching to elements from
Triplestrore in order to find the best sub-graph
considering all user requirements. In addition, we
have to distinct correctness degree of results. For
this, we introduce a measures already used in this
kind of evaluation (Shekarpour; 2013).

Let’s take the same example described
previously. Generated query may return (correct,
partially correct, or wrong) results. User keywords
could match exactly with resources but those latter
may not be the intent of user in terms of meaning.
On that view, results may deviate towards resources
just talking about Hillary in other context.

We introduce those three measures:
Correctness Rate (CR) : This measure will let us

assign a score to results matching to the user's
expectations of his query q. CRq(ߙ) is the fraction of
correct terms over all terms. ܴܥ(ߙ) = ௧	௧௦ௌ௧		௧௦ (2)

(Average CR): It represents arithmetic of CR of
their individual answers A for query q. ܴܥܣ(ܣ) = ଵ|| ∗ ∑ ఈ∈(ߙ)ܴܥ (3)

Fuzzy precision (FP): The ACR is the basis of
this measure, which measures the overall correctness
of graphs matching answers Aq.

The ACR is the basis for the fuzzy precision
metric (FP), which measures the overall correctness
of a template’s corresponding answers Aq with
respect to a set of keyword queries Q.

SPARQL Query Generation based on RDF Graph

453

ܲܨ = ∑ ோ()∈ೂ|ொ௨௦	௧௨	௦௨௧௦|	 (4)

After computing the fuzzy precision, we can
evaluate the quality of the results achieved by graph
patterns. Afterwards, we compute the Recall
corresponding to fraction of queries which have got
results. ܴ݈݈݁ܿܽ	ܴ = ொ௨௦	௧௨	௦௨௧௦	ௌ௧			௨௦ 										(5)

Finally, we compute F-Score as follow: ܨ = 2 ∗ ி∗ோிାோ																														(6)

We evaluate 50 queries by using these three
measures. Table 1 represents a small set of used
queries for evaluation.

Table1: Sample set of used queries for evaluation.

Queries

Q1:Hillary+Isis

Q2:Hillary+Isis+Iraq

Q3:Hillary+visit+Iraq

Q4:Hillary+meeting+G8

Q5:Hillary+meeting+Obama

Q6:europe+Isis+war

Q7:Europe+Goodluck Jonathan+boko haram

Q8:Hollande+Goodluck Jonathan+boko haram

Q9:Hollande+Iraq+war+decisions

Q10:Angela Merkel+G8+decisions

Figure 2 shows the accuracy of each query based
on these three metrics.

Basing on these three measures, overall F-
Precision and recall values as well as an overall F-
Score value were computed as the average mean of

Figure 2: Accuracy of each query in Table 1.

the F-Precision, recall and F-Score values for all
queries. This preliminary evaluation shows an
average of 0.52 of F-Score, 0.43 of Recall and 0.5 of
F-Precision.

6 CONCLUSION

In this research, we proposed an automated system
for SPARQL query generation from user keywords.
The process includes three main parts: Preprocessing
of keywords, detecting best graph matching to
keywords and finally the query generation. The aim
of this proposal is to simplify data retrieval for
novice users with respect of their intents, in fact of
ambiguous aspects of keywords based search. In the
last section we showed a brief evaluation of the
proposed approach. We aim to apply some
optimizations to our approach, since we currently
use a keywords based Web interface.

REFERENCES

Acosta, M., Simperl, E., Flöck, F., Vidal, M., Studer, R.,
2015. RDF-Hunter: Automatically Crowdsourcing the
Execution of Queries Against RDF Data Sets.
Journal: The Computing Research Repository (CoRR).

Haag, F., Lohmann, S., Siek, S., Ertl, T., 2015.
QueryVOWL: Visual Composition of SPARQL
Queries. In Proceedings of Extended Semantic Web
Conference-Satellite Events. Slovenia.

Kharrat, M., Jedidi, A., Gargouri, F., 2015. A semantic
approach for transforming XML data to RDF triples.
IEEE/ACIS 14th International Conference on
Computer and Information Science (ICIS). USA.

Kharrat, M., Jedidi, A., Gargouri, F., 2015. Defining
Semantic Relationships to Capitalize Content of
Multimedia Resources. IFIP Advances in Information
and Communication Technology, vol 456.

Lehmann, J., Buhmann, L., 2011. Autosparql: Let users
query your knowledge base. In Proceedings of
Extended Semantic Web Conference. Greece.

Shekarpour, S., et al., Generating SPARQL queries using
templates. 2013. Journal of Web Intelligence and
Agent Systems, vol 11, pp. 283-295.

Wollbrett, J., Larmande, P., De Lamotte, F., Ruiz, M.,
2013. Clever generation of rich SPARQL queries from
annotated relational schema: application to Semantic
Web Service creation for biological databases. Journal
Bmc Bioinformatics, vol 14.

Zhao, J., HongHan,W., Pan, JZ., 2014. Towards Query
Generation for PROV-O Data. In Proceedings of
Provenance Analytics at ProvWeek. Germany.

0
0,2
0,4
0,6
0,8

1 2 3 4 5 6 7 8 9 10

Queries

F-precision Recall F-Score

KDIR 2016 - 8th International Conference on Knowledge Discovery and Information Retrieval

454

APPENDIX

Figure 3: Processing steps of generating SPARQL queries.

S P O

Hillary

Hillary daff

Hillary Clinton

Hollande

Hollandais

G8-Congress

Meet Meeting

Hillary
G8
Hollande
Meeting

Hillary Hollande

Meeting G8

Hillary G8

Hollande

Meeting

Step4 : Creating candidates

Step5: Graphs candidates

Step6: Seeking for top relevant graph Step7: Query generation

Step2 : Considering derived
terms

Step3 Filtering according
to contexts

Step1: Processing of keywords & shared
context detection

? X

meet In

…

Hillary G8

…

? X

? X

G8 meeting Context

G8 negotiation ? X

Meet
Meeting
Discuss

Assembly
Confrontation

…

Appear_In

Concern

? Y

Hollande

Appear_In

Meet

? X

G8

Concern

Hillary

Hollande

Meet

Matching

Hillary
G8

Hollande
Meeting

 Political context

SPARQL Query Generation based on RDF Graph

455

