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Abstract: The Y Balance Test (YBT) is one of the most commonly used dynamic balance assessments in clinical and 
research settings. This study sought to investigate the ability of a single lumbar inertial measurement unit 
(IMU) to discriminate between the three YBT reach directions, and between pre and post-fatigue balance 
performance during the YBT. Fifteen subjects (age: 23±4, weight: 67.5±8, height: 175±8, BMI: 22±2) were 
fitted with a lumbar IMU. Three YBTs were performed on the dominant leg at 0, 10 and 20 minutes. A 
modified Wingate fatiguing intervention was conducted to introduce a balance deficit. This was followed 
immediately by three post-fatigue YBTs. Features were extracted from the IMU, and used to train and evaluate 
the random-forest classifiers. Reach direction classification achieved an accuracy of 97.80%, sensitivity of 
97.86±0.89% and specificity of 98.90±0.56%. “Normal” and “abnormal” balance performance, as influenced 
by fatigue, was classified with an accuracy of 61.90%-71.43%, sensitivity of 61.90%-69.04% and specificity 
of 61.90%-78.57% depending on which reach direction was chosen. These results demonstrate that a single 
lumbar IMU is capable of accurately distinguishing between the different YBT reach directions and can 
classify between pre and post-fatigue balance with moderate levels of accuracy.

1 INTRODUCTION 

Dynamic balance requires the maintenance of 
equilibrium during tasks that involve  movement of 
the centre of mass outside of the base of support 
(Gribble et al., 2012). The Star Excursion Balance 
Test (SEBT) is one of the most commonly used 
dynamic balance assessment tools (Holden et al., 
2016, Doherty et al., 2016, Gribble et al., 2012, Smith 
et al., 2015). It assesses many facets of the 
sensorimotor spectrum, including strength, proprio-
ception and dynamic balance, closely mimicking the 
functional demands required for optimal sports 
performance. The SEBT requires the individual to 
maintain their balance, while reaching as far as 
possible in eight directions (Gribble et al., 2012).  

Large bodies of research have demonstrated 
dynamic balance deficits, as measured by the SEBT, 
between control and pathological groups with 
conditions such as acute ankle injuries (Doherty et al., 
2015), chronic ankle instability (Doherty et al., 2016) 
and anterior cruciate ligament injuries (Herrington et 

al., 2009). Additionally, researchers have attempted 
to establish the role these assessments play in the 
detection of risk factors that may predispose 
individuals to lower limb injuries (Gribble et al., 
2015, Plisky et al., 2006). Despite this, there are a 
number of limitations to the SEBT which should be 
considered. These include the non-standard stance 
surface, the lack of a definite starting point reference, 
the time consuming nature of completing eight reach 
directions and the requirements of the assessor to 
visually monitor the stance foot, while marking the 
maximal reach distance (Gribble et al., 2012, Plisky 
et al., 2009). In an attempt to address some of these 
limitations, improve the reliability and the uptake of 
dynamic balance tests in clinical practice, the 
redundancy of five of the eight reach directions was 
demonstrated. This resulted in the development of the 
commercially available Y Balance Test (YBT) 
(functionalmovement.com, Danville, VA) which 
incorporates the anterior (ANT), posteromedial (PM) 
and posterolateral (PL) reach directions of the SEBT 
(Plisky et al., 2009). 
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While the YBT does address some of these 
aforementioned limitations, there are a number of 
challenges which continue to restrict its use in clinical 
practice. Firstly, while research has shown that these 
assessments are capable of demonstrating statistically 
significant differences in reach distances between 
groups (Plisky et al., 2006, Gribble et al., 2015, 
Doherty et al., 2016, Doherty et al., 2015, Herrington 
et al., 2009), it has been difficult to determine 
clinically relevant cut off points. Plisky and 
colleagues (2006) and Smith and colleagues (2015) 
reported that a right/left asymmetry of greater than 
4cm on the ANT reach direction of the SEBT and 
YBT respectively is associated with an increased risk 
of a lower limb injury. While Gribble and colleagues 
(2015) reported that a reduced ANT reach distance, in 
combination with high BMI, is associated with 
increased risk of lower limb injury. Schaefer and 
colleagues (2012) reported that the minimally 
detectable change for normalised reach distances 
ranged from 4.9-5.4% for the different reach 
directions, while Munro et al (2010) showed that the 
smallest detectable difference ranged from 6.87-
8.15% of leg length depending on the reach direction. 
While these thresholds provide guidance for 
clinicians on the reach distances that can be 
considered clinically relevant, they are population 
specific, and only provide a small amount of 
clinically relevant information. Another is the time 
consuming nature of the YBT testing protocol, which 
requires the individual to complete 4 practice trials 
followed by 3 recorded trials in order to obtain a 
reliable and repeatable score (Gribble et al., 2012). 

An additional strategy which has been employed 
to improve the accuracy and objectivity of the SEBT 
and YBT is the use of marker based motion analysis 
and force platform systems, providing information on 
the control of movement and balance strategy 
employed during the task (Coughlan et al., 2012, 
Fullam et al., 2014, Doherty et al., 2015). However, 
these methods have a number of major limitations, 
restricting their application in clinical practice. 
Firstly, the set-up is time intensive and requires 
training, increasing the overall testing time and 
limiting the number of clinicians with the experience 
required to use the systems with efficacy. The 
systems are expensive (> €100,000). They are 
commonly not accessible outside of a laboratory 
environment. The application of markers may hinder 
natural movement during dynamic tasks (Bonnechère 
et al., 2014, Ahmadi et al., 2014). The data recorded 
from such systems also requires extensive processing 
and analysis, which is time consuming. 

In recent times, there has been a shift away from 
traditional motion capture systems towards 
unobtrusive systems that incorporate inertial 
measurement units (IMUs) (Ahmadi et al., 2014). 
Such systems address some of the aforementioned 
limitations of traditional motion capture, as they 
allow for inexpensive, accessible quantification of 
human movement, in an unconstrained environment 
(Giggins et al., 2013). These IMU systems have been 
used in the objective quantification of a range of 
activities, from static balance tasks (King et al., 2014, 
Alberts et al., 2015, Furman et al., 2013), to dynamic 
tasks such as the squat (O'Reilly et al., 2015) and 
single leg squat (Whelan et al., 2015), walking 
(Zijlstra and Hof, 2003, Yang et al., 2013) and 
running (Lee et al., 2010). Early work investigating 
the use of IMUs in balance assessment has shown that 
a static balance assessment, instrumented with an 
IMU mounted on the lumbar spine, was not as 
effective as the traditional subjectively scored 
assessment in identifying balance deficits post-
concussion (Furman et al., 2013). More recently, 
King et al (2014) demonstrated improved levels of 
sensitivity and specificity from the instrumented 
balance error scoring system (BESS). It is likely that 
the conflicting results are due to the different 
quantified variables selected in the two studies. King 
et al (2014) utilised root mean squared acceleration, 
whereas Furman et al (2013) used sway path length, 
which may not be capable of detecting subtle changes 
in balance, when measured using a lumbar mounted 
IMU. While these initial studies have demonstrated 
the ability of IMUs to detect differences in static 
balance between groups, there is a paucity of 
evidence surrounding their ability to classify dynamic 
balance performance during tasks such as the YBT.  

Previous research has established the effect 
various forms of muscle fatigue such as high intensity 
intermittent exercise (Whyte et al., 2015), lower limb 
functional exercises (Gribble et al., 2009) and isolated 
muscle fatigue (Gribble and Hertel, 2004, Gribble et 
al., 2009) have on dynamic balance. The combined 
physiological effects of central and peripheral fatigue 
mechanisms may result in changes to the integration 
of sensorimotor information from the balance 
subsystems, leading to decreased balance 
performance.  Therefore, this research sets out to 
evaluate the ability of a single lumbar mounted IMU 
to objectively quantify dynamic balance 
performance. It is hypothesised that a single IMU 
system has the potential to accurately differentiate the 
three reach directions (ANT, PM and PL) and 
distinguish “normal” and “abnormal” balance as 
influenced by fatigue. 
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2 METHODS 

2.1 Subjects 

Fifteen healthy participants aged between 18 and 40 
(age: 23±4, weight: 67.5±8, height: 175±8, BMI: 
22±2) who actively participate in sport were recruited 
from the wider university population. Participants 
were excluded from the study if they suffered from 
chronic ankle instability, had sustained a lower limb 
injury in the last six months, had vestibular, visual or 
balance impairment, cardiovascular disease, any 
neurological disease, or answered yes to any 
questions on the PAR-Q (Warburton et al., 2011). 
Ethical approval was obtained from the University 
Human Research Ethics Committee and all 
participants provided informed consent prior to 
participating in the study. 

2.2 Measures 

2.2.1 Y-Balance Test 

The YBT is an instrumented alternative to the SEBT, 
capable of measuring dynamic postural control. The 
YBT utilises three of the eight original SEBT reach 
directions (ANT, PM and PL) and was developed in 
order to provide a more objective reach distance 
measurement, allowing for more accurate results, 
collected in a less time consuming manner. The YBT 
has been reported to demonstrate excellent intra-
tester (0.85-0.89) and inter-tester (0.97-1.00) 
reliability (Plisky et al., 2009). The YBT requires 
participants to stand on one leg, with their hands on 
their hips, and slide a block as far as possible in the 
three specified directions, with the contralateral limb, 
before returning to bilateral stance. A fail is recorded 
if the participant (1) uses the block for support, (2) 
raises the stance heel from the platform, (3) makes 
ground contact, (4) kicks the block forward to gain 
extra distance or (5) removes one or both hands from 
the hips during the task. The reach distances are then 
normalised against the participant’s leg length using 
the formula: 

݁ܿ݊ܽݐݏ݅ܦ	ℎܴܿܽ݁	݀݁ݏ݈݅ܽ݉ݎܰ  =(ܴ݁ܽܿℎ	݁ܿ݊ܽݐݏ݅ܦ) ⁄ (1) (ℎݐ݃݊݁ܮ	݃݁ܮ)

Leg length is obtained by the same investigator 
for each study participant by measuring the distance 
from the anterior-superior iliac spine to the most 
distal aspect of the medial malleolus (Gribble and 
Hertel, 2003). The average YBT reach distances 
scores used for analysis were obtained by finding the 
mean of the three normalised maximal YBT scores in 

each reach direction. The YBT testing protocol was 
developed and conducted according to the guidelines 
outlined by Gribble and colleagues (2012). 

2.2.2 Modified Wingate Test 

The Wingate test is traditionally used in the 
measurement of peak anaerobic power and anaerobic 
capacity (Smith and Hill, 1991). A modified version 
of the extended Wingate test protocol employed by 
Carey and Richardson (2003) was used during this 
study in order to maximally fatigue participants. The 
modified test requires participants to cycle at 
maximal intensity for 60 seconds, rather than the 
traditional 30 second protocol. The cycle ergometer 
resistance is set to 0.075 g·kg-1 as per previously 
published methods (Kraemer et al., 2000, Laurent et 
al., 2007). Prior to commencement of the Wingate 
test, participants completed a 5-minute warm-up 
cycling at 50-60 RPM, which included 3 x 5 second 
sprints. Following the 5-minute warm-up, 
participants commenced cycling at a cadence of 50-
60 RPM for 30 seconds. At the end of the 30 second 
period, the 60 second Wingate test commenced, and 
participants were encouraged to maintain a maximal 
effort for the duration of the 60 seconds in order to 
ensure maximal fatigue. 

2.2.3 Inertial Measurement Unit 

A Shimmer3 IMU (Shimmer, Dublin, Ireland) was 
mounted at the level of the fourth lumbar vertebra 
(Figure 1). The IMU was calibrated and configured to 
stream tri-axial accelerometer (±2 g), gyroscope 
(±500 ◦/s) and magnetometer (±1 gauss) data at 102.4 
Hz via Bluetooth to an Android tablet, using Multi-
Shimmer sync software (Shimmer, Dublin, Ireland). 
These data acquisition parameters were chosen based 
on previous work carried out by our research group 
 

 
Figure 1: Illustrates the mounting location of the Lumbar 
IMU.  
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investigating the use of IMUs in the evaluation of 
exercise technique during similar movements, such as 
the single leg squat (O'Reilly et al., 2015). 

2.3 Procedure 

On arrival to the performance laboratory, the 
experimental protocol was explained to the 
participants, and individuals completed 4 practice 
trials in each direction, on their dominant leg (all right 
leg dominant). Leg dominance was obtained by 
asking the participants which leg they would use to 
kick a ball (Wilkins et al., 2004). Following 
completion of the practice trials, each participant was 
fitted with the IMU as described above. Participants 
then completed three recorded YBT in each direction 
(randomised order) on the dominant limb. This was 
repeated at 0, 10 and 20-minutes in order to provide a 
pre-fatigue baseline measurement of dynamic 
balance. YBT maximal reach distances and IMU data 
were collected for each YBT attempt. If a participant 
failed to complete the test as described above, the 
individual reach direction was repeated, and an 
annotation was recorded in the IMU data to denote a 
failed and repeated reach direction. 

Following the baseline assessment, participants 
completed the modified Wingate protocol in order to 
elicit maximal anaerobic fatigue. Immediately 
following the Wingate protocol, participants 
completed the YBT to capture the reduced dynamic 
balance performance elicited by maximal anaerobic 
fatigue. 

2.4 Data Analysis 

Nine signals were collected from the IMU; 
accelerometer x, y, z, gyroscope x, y, z and 
magnetometer x, y, z. Data were analysed using 
MATLAB (2012, The MathWorks, Natwick, USA). 
To ensure the data analysed applied to each 
participant’s movement and in order to eliminate 
unwanted high-frequency noise, the nine signals were 
low pass filtered with an 8th order Butterworth filter 
with a 20Hz cut-off. Nine additional signals were then 
calculated. The 3-D orientation of the IMU was 
computed using the gradient descent algorithm 
developed by (Madgwick et al., 2011). The resulting 
W, X, Y and Z quaternion values were also converted 
to pitch, roll and yaw signals. The pitch, roll and yaw 
signals describe the inclination, measured in radians, 
of each IMU in the sagittal, frontal and transverse 
planes respectively. The magnitude of acceleration 
was also computed using the vector magnitude of 
accelerometer x, y, z. The magnitude of acceleration 

describes the total acceleration of the IMU in any 
direction. This is the sum of the magnitude of inertial 
acceleration of the lumbar spine and acceleration due 
to gravity. Additionally, the magnitude of rotational 
velocity was computed using the vector magnitude of 
the gyroscopes x, y and z. 

Each reach direction from each completed 
YBT was extracted from the IMU data and resampled 
to a length of 1000 samples; this was undertaken to 
minimise the influence of the speed of repetition 
performance on signal feature calculations. It ensures 
the computed features related to differences in 
movement patterns and not the participant’s exercise 
tempo.  Descriptive features were computed in order 
to characterise the pattern of each of the eighteen 
signals as the YBT was completed. These features 
were namely  'Mean', 'RMS', 'Standard Deviation', 
'Kurtosis', 'Median',  'Skewness', ‘ Range', ‘Variance', 
'Max', ‘Index of Max’, 'Min', ‘Index of Min’, 
'Energy', '25th Percentile', '75th Percentile', 'Level 
Crossing Rate' and' Fractal Dimension' (Katz and 
George, 1985) . This resulted in 17 features for each 
of the 18 available signals producing a total of 306 
features. These features were then used to develop 
and evaluate a classifier for the automated detection 
of reach direction in the YBT and a separate classifier 
for the detection of pre-fatigue or fatigued YBT 
performance. The random-forests method was 
employed to perform classification of reach direction 
and for the detection of fatigued YBT performance 
(Breiman, 2001). This technique was chosen as it has 
been shown to produce superior accuracy, sensitivity 
and specificity scores in analysing exercise technique 
with IMUs in comparison  to the Naïve-Bayes and 
Radial-basis function network techniques (Mitchell et 
al., 2015). Four hundred decision trees were used in 
each random-forest classifier.  

The quality of the exercise classification 
system was established using leave-one-subject-out-
cross-validation (LOSOCV) and the random-forests 
classifier with four hundred trees (Fushiki, 2011). 
Each participant’s data corresponds to one fold of the 
cross validation. At each fold, one participant’s data 
is held out as test data while the random forests 
classifier is trained with all other participants’ data. 
The held out data is used to assess the classifier’s 
ability to correctly categorise unseen data. The use of 
LOSOCV ensures that there is no biasing of the 
classifiers, meaning the test subjects data is 
completely unseen by the classifier prior to testing. 
Previous research by Taylor et al (2010) has shown 
that not employing this method of testing can skew 
results significantly. In our system, each individual 
reach direction was classified. 
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The scores used to measure the quality of 
classification were total accuracy, average sensitivity 
and average specificity. Accuracy is the number of 
correctly classified observations divided by the total 
number of observations completed; this is calculated 
as the sum of the true positives (TP) and true 
negatives (TN) divided by the sum of the true 
positives, false positives (FP), true negatives and false 
negatives (FN): ݕܿܽݎݑܿܿܣ = ்ା்ே்ାிା்ேାிே	               (2) 

The sensitivity and specificity were calculated for 
each of the reach directions, sequentially treating 
each label as the ‘positive’ class, and then the mean 
and standard deviation across the five values was 
taken. Sensitivity and specificity were computed 
using formulas 3 and 4 below: ܵ݁݊ݕݐ݅ݒ݅ݐ݅ݏ = ்்ାிே                   (3) ܵݕݐ݂݅ܿ݅݅ܿ݁ = ்ே்ேାி                   (4) 

Sensitivity measures the effectiveness of a classifier 
at identifying a desired label, while specificity 
measures the classifiers ability to detect negative 
labels. In the detection of fatigued balance, single 
sensitivity and specificity scores were calculated, 
treating pre-fatigued balance as the positive class and 
fatigued balance as the negative class. 

In reviewing the accuracy, sensitivity and 
specificity scores produced by each classifier, 90% or 
over was considered an excellent result, 80-89% was 
considered a 'good' quality result, 60-79% was 
considered a 'moderate' result and anything less than 
59% was deemed a poor result. These values were 
chosen by the authors after reviewing existing 
literature on identifying exercises with IMUs. In 
reviewing such literature, an existing accepted 
standard for a good, moderate or poor classifier could 
not be found. Therefore, the above system was agreed 
on by the authors to facilitate interpretation of our 
range of results. 

3 RESULTS 

ICC values for the three normalised reach directions 
ranged from 0.976 – 0.986, indicating excellent test-
retest reliability across the pre-fatigue measures. Due 
to the excellent ICC scores observed, the final pre-
fatigue measure was considered representative of the 
pre-fatigue state, and was used in the comparison pre 
and post-fatigue. The SEM ranged from 0.792-1.48 

for the three YBT reach directions. The average 
decrease in YBT reach distances following the fatigue 
protocol was 2.65 ± 4.91 (ANT), 2.44 ± 3.06 (PM) 
and 3.57 ± 4.27 (PL). Paired samples t-tests 
demonstrated statistically significant differences (p < 
0.05) between the final pre-fatigue YBT 
measurement and the first post-fatigue measurement 
in all reach directions (Table 1).  

Table 1: Comparison of ICC, SEM and paired sample t-tests 
for the YBT normalised Reach Direction for all three 
directions. The level of significance was set to p < 0.05 and 
statistically significant values were denoted with an*. 

Reliability Analysis 
Pre01, Pre02 & Pre03 

Level of Significance
(p Values) for Post-hoc 

Paired t-test 
Reach 

Distance 
ICC SEM 

Pre03 vs 
Post01 

ANT 0.986 0.792 0.049* 
PM 0.976 1.482 0.008* 
PM 0.978 1.134 0.006* 

The classification algorithm for a single lumbar 
mounted IMU was capable of differentiating the three 
reach directions in the pre-fatigue baseline measures 
with an accuracy of 97.80%, Sensitivity of 97.86 ± 
0.89% and specificity of 98.90 ± 0.56%. Figure 2 
presents a confusion matrix that illustrates the exact 
percentage of reach direction repetitions that were 
classified correctly and incorrectly. The rows 
represent the actual reach direction recorded and the 
columns show the classifier’s predicted reach 
direction. 

 

Figure 2: A confusion matrix showing multi-class 
classification results for the three reach directions. The 
percentage of reach direction attempts classified correctly 
are marked in bold. 

A single lumbar mounted IMU was capable of 
discriminating pre and post-fatigue balance 
performance with an accuracy of 61.90%-71.43%, 
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sensitivity of 61.90%-69.04% and specificity of 
61.90%-78.57% depending on which reach direction 
was chosen (Table 3). When all reach directions were 
considered together, balance performance was 
classified with an accuracy of 70.24%, sensitivity of 
64.28% and specificity of 76.19%. 

Table 2: The accuracy, sensitivity and specificity results of 
the classification algorithm in the detection of baseline and 
fatigued dynamic balance. 

 
ANT PM PL 

All 
Directions

Accuracy 61.90 71.43 70.24 70.40 
Sensitivity 61.90 69.04 61.90 64.28 
Specificity 61.90 73.80 78.57 76.19 

4 DISCUSSION 

The purpose of this study was to determine if data 
derived from a single lumbar mounted IMU is 
capable of accurately differentiating the individual 
reach directions of the YBT, and classifying pre and 
post-fatigue dynamic balance performance.  

The traditional normalised YBT reach distance 
results presented demonstrate that the modified 
Wingate protocol had a detrimental effect on the 
participant’s dynamic balance. The ICC values for the 
pre-fatigue baseline assessments presented suggest 
that the normalised YBT reach distance scores for 
each reach direction possess excellent test-retest 
reliability. The paired sampled t-test results (Table 1) 
demonstrate that there was a statistically significant 
difference between the final pre-fatigue measurement 
and the post-fatigue measurements, suggesting that 
the fatigue intervention had a detrimental effect on 
the YBT reach distances for all three reach directions. 
Additionally, the SEM results for all reach directions 
was smaller than the average decrease in reach 
distance between the final pre-fatigue and the post-
fatigue measurement, indicating that the fatigue 
intervention had a negative effect on reach distance 
scores. When the SEM is viewed in conjunction with 
the ICC, it allows us to be sure that any deviation from 
the baseline is as a result of the fatiguing intervention, 
and not a consequence of natural biological variation.  

The results presented in this paper support 
previously published ones indicating that dynamic 
balance is heavily influenced by isolated muscle 
fatigue (Gribble et al., 2004, Gribble et al., 2009), 
lower limb fatiguing exercises (Gribble et al., 2009), 
treadmill running (Wright et al., 2013) and high 
intensity intermittent exercise protocols (Whyte et al., 

2015). Whyte and colleagues (2015) investigated the 
effect of high intensity intermittent exercise on 
dynamic balance, as measured by the SEBT. It was 
reported that the percentage reduction in SEBT reach 
distance, for the ANT, PM and PL directions were 
marginally lower than those presented in our study. 
Importantly, these differences may be a result of the 
different fatiguing interventions influencing the 
sensorimotor system to different extents (Whyte et 
al., 2015). Additionally, different methods of 
dynamic balance assessments were utilised in the two 
studies. Whyte and colleagues (2005) used the SEBT, 
whereas the YBT was implemented in our study, 
potentially explaining the difference in the magnitude 
of change (Coughlan et al., 2012). These past 
findings, combined with the results from this study, 
demonstrate that at a group level, the fatigue 
intervention had a negative effect on dynamic 
balance. 

The IMU classification system was capable of 
differentiating individual YBT reach directions with 
excellent levels of accuracy, sensitivity and 
specificity. The confusion matrix (Figure 2) 
illustrates the percentage of the reach directions 
classified correctly and incorrectly, indicating where 
the confusion occurred. The ANT reach direction was 
classified with the greatest success rate of 99%, 
followed by PM (98%), and then PL (97%). These 
results may be expected as the three reach directions 
utilise different strategies to complete a maximal 
reach. The ANT reach direction involves a single 
planar movement which incorporates a single leg 
squat type movement, while the individual reaches 
outside of their base of support. In contrast, the PM 
and PL movements involve multi-planar movements, 
requiring the individual to enter a single leg squat, 
while rotating at the pelvis and trunk in order to 
achieve a maximal reach distance. Indeed, previous 
research conducted by Kang and colleagues (2015) 
investigating trunk, pelvic and lower limb kinematic 
strategies utilised during the YBT. The results 
presented by their group demonstrate that the ANT 
reach direction requires a largely different strategy to 
the PM and PL directions. The ANT direction 
requires minimal trunk and pelvic kinematic 
movements, with 1° trunk extension, 4° trunk 
ipsilateral flexion, 9° anterior pelvic tilt, and 1° of 
pelvic ipsilateral rotation. The majority of the 
movement strategies stem from sagittal plane 
movements at the hip (30° flexion), knee (62° 
flexion) and ankle (39° dorsiflexion). In contrast, the 
PM and PL reach directions require large changes in 
trunk and pelvic kinematics, with the PM reach 
direction requiring 43° trunk flexion, 21° trunk 
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ipsilateral flexion, 39° anterior pelvic tilt and 0° of 
pelvic contralateral rotation, and the PL reach 
direction requiring 48° trunk flexion, 16° trunk 
contralateral flexion, 38° anterior pelvic tilt and 11° 
of pelvic contralateral rotation. These results clarify 
the similarities and differences between the 
movement strategies utilised during each reach 
direction, contextualising how the classification 
algorithm was capable of classifying the individual 
reach directions with such high degrees of accuracy.  

The YBT reach direction classification results 
presented in this study are in line with previously 
published IMU exercise identification results which 
range between 85-95% depending on the exercises 
and IMU setups (Giggins et al., 2014, Pernek et al., 
2015, Chang et al., 2007). Giggins and colleagues 
(2014) demonstrated that a single IMU location could 
differentiate between seven basic rehabilitation 
exercises with an accuracy of between 93-95% 
depending on the mounting location. Additionally, 
Pernek and colleagues (2015) reported that a single 
IMU system can correctly identity upper limb free 
weight exercises with 85% accuracy.  This is 
significant as the excellent levels of accuracy (98%) 
presented in this study were achieved using just 252 
observations. In contrast, the exercise classification 
work presented above used a greater number of 
observations to train the classifiers, with Giggins et al 
(2014) utilising 3940 observations and Pernek et al 
(2015) using 440 observations per exercise.   

The lumbar IMU classification algorithm was 
capable of differentiating dynamic balance 
performance, as influence by fatigue, with and 
accuracy of between 62% and 71%, depending on the 
reach direction (Table 3). The PM reach direction 
demonstrated the highest classification accuracy 
(72%), followed by the PL (70%) and then the ANT 
(62%) reach direction. When all reach directions were 
considered together, the classification algorithm was 
able to differentiate normal and abnormal balance 
with an accuracy of 70%.  

These results would be expected, because as we 
previously discussed above, the three reach directions 
require different levels of movement strategy 
complexity. The ANT reach direction presented with 
the lowest degree of classification accuracy. The 
ANT reach direction is the least complex movement, 
predominantly requires sagittal plane movement of 
the stance limb (Kang et al., 2015). It may be that the 
ANT reach direction movement does not sufficiently 
challenge the sensorimotor system in all individuals 
to elicit a balance deficit large enough to be 
consistently detected by the lumbar mounted IMU. In 
contrast, the higher degree of accuracy observed in 

the detection of abnormal balance during the PM and 
PL reach directions are expected as these movements 
require the individual to implement a more complex 
multi-planar movement strategy. Both the PM and PL 
reach directions require the individual to reach 
outside of their base of support while utilising their 
trunk as a mobile counter-lever, involving a 
combination of complex multi-planar movements 
occurring at the trunk, pelvis, hips, knee and ankle 
(Kang et al., 2015, Fullam et al., 2014, Doherty et al., 
2016). This complex multi-planar movement may 
more comprehensively challenge the integration of 
the sensorimotor subsystems, resulting in more 
pronounced strategy changes following the 
introduction of a balance deficit, thus leading to 
differences in the IMU data. 

To the best of the authors knowledge this is the 
first research study that has attempted to classify 
dynamic balance performance using an IMU. 
Previous research has investigated the ability of 
single and multiple IMUs to detect technique 
breakdown during compound lower limb exercises 
such as the squat (O'Reilly et al., 2015) and single leg 
squat (Whelan et al., 2015). Lower limb exercises 
such as the single leg squat incorporate many of the 
requirements involved during the YBT reach 
directions, such as maintaining one’s balance while 
executing a dynamic task on a single leg. Whelan and 
colleagues (2015) reported that a single lumbar based 
IMU mounted on the lumbar spine was capable of 
classifying correct and incorrect single leg squat 
technique with an accuracy of 92%. While the 
classification accuracy presented by Whelan and 
colleagues is higher than that of the YBT balance 
performance classification presented in our study, it 
is probable that the YBT classification performance 
would be greatly improved by increasing the number 
of observations used to train and test the classifier. 

The results presented in this paper demonstrate 
the potential of a single lumbar mounted IMU to 
automatically classify YBT reach direction and 
balance performance. This lays the groundwork for 
the development of an accurate dynamic balance 
performance classification system that can provide 
accessible, in depth, clinically relevant information, 
surrounding an individual’s dynamic balance, outside 
of the constraints of a laboratory. Future work will 
allow us to detect changes in movement and balance 
strategy during the YBT, characterising the dynamic 
balance defects. This would provide clinicians with 
more in depth information which can be used to 
comprehensively and objectively assess the 
integration of the sensorimotor subsystems, in an 
accessible manner. This has the potential to provide 
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information in areas such as lower limb injuries, 
identification of lower limb injury risk factors, 
assessment of the motor function domain post-
concussion, as well as balance training in strength and 
conditioning and rehabilitation.  

A number of limitations to the study must be 
acknowledged. The sample size and resultant number 
of observations that could be used to train and 
evaluate the classification algorithms were relatively 
small, potentially resulting in decreased levels of 
accuracy. It can be expected that as the number of 
participants and observations are increased, there will 
be a resultant increase in the accuracy of the balance 
performance identification. Secondly, no gold 
standard motion capture system was employed in this 
study. However, YBT reach directions are commonly 
accepted as the standard in clinical balance 
assessments, and each participant was educated and 
supervised by a Chartered Physiotherapist throughout 
the duration of the study.  

Extensive future work is required to improve the 
classification results presented in this paper. Firstly, a 
greater number of participants is required to increase 
the size of the data set in order to establish a 
normative dataset. Additionally, a classification 
system with improved accuracy, sensitivity and 
specificity will be developed. This may be achieved 
through investigating the effectiveness of a single 
IMU located at different anatomical positions, 
collecting a larger data set to allow for more training 
data for the classification algorithms and the 
identification of new features to input into the 
classifiers which enable further distinction of normal 
and abnormal balance. Novel classification 
techniques for IMU data may also be employed such 
as the application of deep learning on the data. This 
will also require a larger data set to be collected. 

5 CONCLUSION 

To conclude, the results presented in this paper 
demonstrate that a lumbar mounted IMU is capable 
of accurately distinguishing the three YBT reach 
directions, as well as classifying balance performance 
as influenced by a maximal anaerobic fatigue. This 
work lays the foundations for the development of a 
single IMU system, that can accurately differentiate 
the YBT reach directions, as well as detect changes in 
balance strategy, characterising and classifying 
dynamic balance performance.  
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