
Development and Evaluation of a Software Requirements Ontology

He Tan1, Muhammad Ismail1, Vladimir Tarasov1, Anders Adlemo1 and Mats Johansson2

1Department of Computer Science and Informatics, School of Engineering, Jönköping University, Jönköping, Sweden
2Saab Avionics Systems, Jönköping, Sweden

Keywords: Ontology, Software Requirements, Ontology Development, Ontology Evaluation, Avionics Software Devel-
opment.

Abstract: This paper presents an ontology which has been developed to represent the requirements of a software compo-
nent pertaining to an embedded system in the avionics industry. The ontology was built based on the software
requirements documents and was used to support advanced methods in the subsequent stages of the software
development process. In this paper it is described the process that was used to build the ontology. Two perti-
nent quality measures that were applied to the ontology, i.e. usability and applicability, are also described, as
well as the methods used to evaluate the quality measures and the result of these evaluations.

1 INTRODUCTION

One commonly cited definition of ontology is: ”an
ontology is a formal explicit specification of a
shared conceptualization” (Studer et al., 1998), which
merges the two definitions from Gruber (Gruber,
1995) and Borst (Borst, 1997). By explicitly mod-
elling domain knowledge in a machine readable for-
mat, ontologies provide the possibility for represent-
ing, organizing and reasoning over the knowledge of
a domain of interest, and can serve as a basis for dif-
ferent purposes.

Requirements engineering (RE) is an area con-
cerned with elicitation, specification and validation
of the requirements of software systems (Nuseibeh
and Easterbrook, 2000). The use of ontologies in RE
can date back to the 1990s, e.g. (Mylopoulos et al.,
1990; Greenspan et al., 1994; Uschold and Gruninger,
1996). There exists a clear synergy between the onto-
logical modelling of domain knowledge and the mod-
elling of requirements performed by requirement en-
gineers (Dobson and Sawyer, 2006). Recently, the
interest in utilizing ontologies in RE, as well as soft-
ware engineering in general, has been renewed due to
the emergency of semantic web technologies (Dobson
and Sawyer, 2006; Happel and Seedorf, 2006).

In this paper we present an ontology which has
been developed to represent the software require-
ments of an application from the avionics industry.
In the avionics industry, many of the systems are re-
quired to be highly safety-critical. For these systems,

the software development process must comply with
several industry standards, like DO-178B (RTCA,
1992). The requirements of the entire system, or units
making up the system, must be analyzed, specified
and validated before initiating the design and imple-
mentation phases. In our work an ontology was de-
veloped representing the requirements of a software
component pertaining to an embedded system. The
requirements are provided in natural language docu-
ments and have been manually validated by domain
experts within the avionic industry. The requirements
ontology developed based on these requirements is to
be used in the subsequent stages of the software de-
velopment process in order to support advanced ap-
proaches. To be more specific, the ontology is used
to automate a part of the testing process in our work,
namely the creation of test cases generation.

The evaluation of an ontology is very important
to demonstrate its correctness and usefulness and
many publications have been presented over the years
within this area of ontology research. The focus of
the evaluation in this work is on the usefulness of the
requirements ontology. This is due to the fact that,
in most cases, the users of an ontology are normally
not the people who developed the ontology. This is
also true for the requirements ontology presented in
this paper where the users can be quality engineers or
testers within the avionic industry. In our work, even
a program can take the ontology as input to automate
a part of the testing process. The evaluation results
presented in this paper are focused on the evaluation

Tan, H., Ismail, M., Tarasov, V., Adlemo, A. and Johansson, M.
Development and Evaluation of a Software Requirements Ontology.
DOI: 10.5220/0006079300110018
In Proceedings of the 7th International Workshop on Software Knowledge (SKY 2016), pages 11-18
ISBN: 978-989-758-202-8
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

11



of the user experiences when using the requirements
ontology and, in particular, we consider the usability
and applicability of the ontology.

The rest of the paper is organised as follows. Sec-
tion 2 presents related work in the field of require-
ments ontologies, ontology development methods and
ontology evaluations. In section 3 we present the de-
veloped requirements ontology. In section 4 we de-
scribe the ontology development method used. The
evaluation of the ontology from a user perspective as
well as the validation of the output when applying in-
ference rules on the ontology are presented and dis-
cussed in section 5. Section 6 presents our conclu-
sions and discussions on future work.

2 RELATED WORK

In this section we present pertinent references to re-
lated work, specifically in the areas of requirements
ontologies, ontology development methods and ontol-
ogy evaluation.

2.1 Requirements Ontologies

A lot of research has been done on the application
of ontologies in RE (e.g. (Lin et al., 1996; Mayank
et al., 2004; Siegemund et al., 2011)). Much of the
research deals with inconsistency and incompleteness
problems in requirement specifications. For exam-
ple, in (Lin et al., 1996), an ontology is proposed
to support the cooperation between requirements en-
gineers. The ontology provides a formal represen-
tation of the engineering design knowledge that can
be shared among engineers, such that the ambiguity,
inconsistency, incompleteness and redundancy can
be reduced when engineers concurrently develop re-
quirements for sub-systems of a complex artifact.

In other related work, such as described
in (Greenspan et al., 1994; Mayank et al., 2004),
ontologies are proposed to provide a framework for
the requirements modeling in order to support the re-
quirements engineering process. Such a framework
can help mitigating the difficulties encountered in re-
quirements engineering, such as negotiating a com-
mon understanding of concepts, dealing with ambi-
guity, and clarifying desires, needs and constraints.

Another direction of the application of ontologies
in RE is to represent requirements in formal ontol-
ogy languages in order to support consistency check-
ing, question answering, or inferring propositions
(e.g.(Mylopoulos et al., 1990; Moroi et al., 2012)).
Most of the work within this direction is focused on
analysis of consistency, completeness and correctness

of requirements through reasoning over requirements
ontologies. The work presented in this paper is also
concerned with representing requirements in an on-
tology, but the ontology is mainly employed to sup-
port advanced methods in the subsequent stages of the
software development process.

2.2 Ontology Development Methods

A number of methods have been put forward
for building ontologies. Ontology 101 (Noy and
McGuinness, 2001) proposes a very simple but prac-
tical guide for building an ontology using an ontology
editing environment, such as Protége (Gennari et al.,
2003). Another famous method in ontology develop-
ment is METHONTOLOGY (Fernández-López et al.,
1997). METHONTOLOGY contributes with a gen-
eral framework for ontology development, which de-
fines the main activities that people need to carry out
when building an ontology, and outlines three differ-
ent processes: management, technical, and support-
ing. The OTK Methodology (Fensel et al., 2000) is
focused on application-driven ontology development.
According to this method, engineering and industrial
experts should actively be involved in the develop-
ment of an ontology, in particular during the early
stages of ontology engineering. There exist also other
methods, e.g. (Presutti et al., 2009), that introduce Ex-
treme programming, which initially was a software
development method, to ontology engineering. These
methods focus on a collaborative, incremental, and it-
erative process of ontology development.

Unfortunately, no one single ontology develop-
ment method was sufficient to guide us in our on-
tology development process. In section 4 we briefly
present the development process used in our research,
a process that combines features from the methods de-
scribed above.

2.3 Ontology Evaluation

The challenge in ontology evaluation is to determine
the quality features that are to be evaluated as well as
the evaluation method. Many different evaluation cri-
teria have been discussed in literature (e.g. (Gómez-
Pérez, 2004; Gangemi et al., 2006; Vrandečić, 2009)).
Which quality features to evaluate depend on vari-
ous factors, such as the type of ontology, the focus of
an evaluation and who is performing the evaluation.
Burton-Jones et al. argue that different types of on-
tologies require different evaluation criteria (Burton-
Jones et al., 2005). For example, for an application or
domain ontology it is enough to evaluate the features
important to the application or domain. Gangemi et

SKY 2016 - 7th International Workshop on Software Knowledge

12



al. (Gangemi et al., 2006) propose that the feature of
ontology quality can be considered in three main di-
mensions: the structural dimension focusing on syn-
tax and formal semantics, the functional dimension
related to the intended use of an ontology and the
usability-profiling dimension focusing on the commu-
nication context of an ontology.

Most ontology evaluation methods can fall into
one of the following categories (Brank et al., 2005;
Tan and Lambrix, 2009; Hlomani and Stacey, 2014):
1) Gathering statistics about the nature of ontologies.
For example, in (Gangemi et al., 2006) the authors
propose a set of metrics to measure the cohesion in an
ontology, such as the depth, width, fan-out of an on-
tology, etc. However, it is often hard to validate how
these statistics are capable of indicating the quality of
an ontology. 2) Comparing an ontology to a gold stan-
dard. The limitation of this method is that it is diffi-
cult to establish the gold standard and furthermore the
gold standard itself needs to be evaluated. 3) Com-
paring an ontology against a source of data stemming
from the domain that the ontology strives to model.
The assumption behind this method is that the domain
knowledge is constant. However, the domain knowl-
edge can at times be dynamic. 4) Evaluation per-
formed by a human evaluator. The evaluation can be
performed by an ontology expert, a domain expert, or
a user of an ontology. The measurement of ontology
quality is based on a set of predefined criteria, stan-
dards, or requirements. As a consequence, the evalu-
ation results can be subjective because of the back-
ground of the evaluator. 5) Application-dependent
evaluations. For example, in (Clarke et al., 2013) the
quality of the gene ontology is evaluated regarding
the effectiveness of the ontology and its annotations
performed in the gene-set enrichment analysis exper-
iment. The results from application-dependent evalu-
ations are applicable to at least one context, but they
cannot be generalized to other contexts. It is also ex-
pensive to perform application-dependent evaluations
on many ontologies.

The ontology developed in this work is a domain
ontology that has been used to support a particular
application. In section 5 we will present the quality
features we consider pertinent to evaluate as well as
the evaluation methods used.

3 A REQUIREMENTS
ONTOLOGY IN AVIONICS
INDUSTRY

In the research project undertaken, an ontology repre-

senting the requirements of a telecommunication soft-
ware component pertaining to an embedded system
used in an avionics system has been developed. The
software component is fully developed in compliance
with DO-178B standard. As defined in DO-178B, the
requirements of the software component have been
prepared, reviewed and validated. The requirements
ontology for the software component has been devel-
oped to support the automation of a part of the soft-
ware development process.

The ontology includes three pieces of knowledge:
1) a meta model of the software requirements, 2) the
domain knowledge of the application, e.g. general
knowledge of the hardware and software, the elec-
tronic communication standards etc., and 3) each sys-
tem requirements specifications.

The current version of the ontology contains 42
classes, 34 object properties, 13 datatype properties,
and 147 instances in total. Figure 1 presents the
meta model of the software requirements. As indi-
cated in the figure, each requirement is concerned
with certain functionalities of the software compo-
nent. For example, a requirement may be concerned
with data transfer. Each requirement consists of at
least requirement parameters, which are inputs of a re-
quirement, requirement conditions, and results, which
are usually outputs of a requirement, and exception
messages. Some requirements require the system to
take actions. Furthermore, there exists traceability
between different requirements, e.g. traceability be-
tween an interface requirement and a system require-
ment. Figure 2 illustrates an ontology fragment of
the domain knowledge about the telecommunication
software component. Figure 3 shows the ontology
fragment for one particular functional requirement,
i.e. SRSRS4YY-431. The ontology fragments for all
the other individual requirements are similar to this
one. The functional requirement defines that if the
communication type is out of its valid range, the ini-
tialization service shall deactivate the UART (Univer-
sal Asynchronous Receiver/Transmitter), and return
the result ”comTypeCfgError”. In figures 1 to 3, the
orange boxes represent the concepts of the ontology;
the white boxes represent the instances; and the green
boxes provide the data values of the datatype property
for instances.

4 THE ONTOLOGY
DEVELOPMENT METHOD

The general development process applied during the
creation of the requirements ontology is illustrated
in Figure 4. During the development of the ontol-

Development and Evaluation of a Software Requirements Ontology

13



Figure 1: The meta model of the software requirements in
the ontology.

ogy, the developers worked as a pair and followed
an iterative and incremental process. In each itera-
tion, the developers basically followed the steps sug-
gested in Ontology 101, and considered the activi-
ties described in the supporting process in METHON-
TOLOGY. Lightweight competence questions (CQs)
were used as a guidance to build the ontology. These
CQs are simple and quickly prepared. In each itera-
tion the developers had an opportunity to meet with
the industry experts and discuss the issues they had
encountered during the acquisition and specification
steps. The developers also received feedback from
the users of the ontology, and modified the ontology
when needed.

The development tool used was the Protégé. Her-
miT reasoner (Shearer et al., 2008) was used to check
the consistency of the ontology. Finally, the ontology
was written in OWL (Bechhofer, 2009).

5 EVALUATION OF THE
ONTOLOGY

Any type of application domain model has to be eval-
uated, to demonstrate its appropriateness for what it
was contemplated. As described in section 2, there
exist a great number of different principles for the
evaluation of the quality of an ontology. However, the
focus in this paper is on two specific principles, the
usability and the applicability of an ontology. The on-
tology that has been developed in the research project
can be considered as being both a domain ontology
and an application ontology, as illustrated in Figure 2
and 3. In this paper we define usability as a set of at-
tributes that describe the effort needed by a human to
make use of the ontology. The evaluation of the us-
ability is performed by humans, i.e. typical potential
users of the ontology. We define applicability as the
quality of the ontology being correct or appropriate
for a particular application domain or purpose. The
evaluation of the applicability of the ontology is car-
ried out by a developer of a software component that

uses the ontology to implement its functionality.

5.1 Evaluation of Usability

The evaluation of the usability of a product or system
is something that goes back in time. In 1986, Brooke
developed a questionnaire, the System Usability Scale
(SUS) (Brooke, 1996). During the years since then,
it has been demonstrated that the SUS is applicable
over a wide range of systems and types of technol-
ogy and that it produces similar results as more ex-
tensive attitude scales that are intended to provide
deeper insights into a users attitude to the usability
of a systems. SUS also has a good ability to discrimi-
nate and identify systems with good and poor usabil-
ity (Brooke, 2013). In this work we make use of the
version of SUS introduced in (Casellas, 2009). The
scale, including its ten questions and the result, is pre-
sented in Table 1. The texts in the ten questions have
only been slightly modified to adjust to the domain of
ontologies.

The evaluation of the usability of an ontology is
especially important when the ontology is going to be
used by domain experts who are normally not ontol-
ogy experts. Hence, the ontology was evaluated by
two persons, one being an application domain expert
(in software testing) and the other being an ontology
expert, in order to compare their different views on
the usability of the ontology. An evaluation of only
two persons will only provide an indication of the
usability of the ontology. However, Tullis and Stet-
son (Tullis and Stetson, 2004) has shown that it is
possible to get reliable results with a smaple of 8-12
users. As a consequence, we are planning a more ex-
tensive evaluation in the near future.

The statements at odd numbered positions in Ta-
ble 1 are all in positive form and the even numbered
positions are all in negative form, as defined in SUS.
The reason for this alternation is to avoid response bi-
ases, especially as the questionnaire invites rapid re-
sponses by being short; by alternating positive and
negative statements, the goal is to have respondents
read each statement and make an effort to reflect
whether they agree or disagree with it.

The scoring is calculated as described in (Brooke,
1996). When applying the scoring procedure on the
result presented in the table, the SUS scores indicate
that the usability result for the application domain ex-
pert was 70 while the ontology expert had a result of
87.5. This implies that the usability of the ontology
from the application domain expert’s point of view
was in the 57 percentile rank (i.e. seen as being ”ac-
ceptable” (see the red line in Fig 5)) while the usabil-
ity of the ontology from the ontology expert’s point of

SKY 2016 - 7th International Workshop on Software Knowledge

14



Figure 2: Ontology fragment for the domain knowledge.

Figure 3: Ontology fragment for a requirement specification SRSRS4YY-431.

Figure 4: The ontology development process.

view was in the 97 percentile rank (i.e. seen as being
close to ”the best imaginable” (see the blue line in the
figure)) . A closer analysis of the answers from the
two experts indicate the following.

Application domain expert: Due to inexperience
in reading and using ontologies in testing activities
at first it was not obvious how to apply the require-
ment ontology. However, after a reasonable amount

of time, the almost one-to-one correspondence be-
tween the requirements identified in the software re-
quirements specification and the corresponding parts
found in the ontology, made it quite straightforward
to understand their interrelationship. Thus, the com-
plexity of the ontology was not considered to be over-
whelming. To overcome the initial problems in under-
standing some of the technicalities within the ontol-

Development and Evaluation of a Software Requirements Ontology

15



Table 1: Ontology usability evaluation. (AE:Application Domain Expert, OE:Ontology Expert, score: 1=strongly disagree,
2=disagree, 3=no preference, 4=agree, 5=strongly agree).

Statements to evaluate the usability of the requirement ontology AE OE
1 I think that I could contribute to this ontology 3 5
2 I found the ontology unnecessarily complex 3 2
3 I find the ontology easy to understand 4 4
4 I think that I would need further theoretical support to be able to understand

this ontology
2 1

5 I found that various concepts in this system were well integrated 4 4
6 I thought there was too much inconsistency in this ontology 2 1
7 I would imagine that most domain experts would understand this ontology very

quickly
4 3

8 I find the ontology very cumbersome to understand 2 1
9 I am confident I understand the conceptualization of the ontology 4 5
10 I needed to ask a lot of questions before I could understand the conceptualiza-

tion of the ontology
2 1

Figure 5: Percentile rankings of SUS scores (Sauro, 2011).
(Red line: AE evaluation result, blue line: OE evaluation
result).

ogy, several questions had to be posed to the ontology
experts. As a consequence, some extra capacitation
in the field of ontologies would have been helpful. To
sum up; ”it is my strong belief that I have a fairly good
understanding of the conceptualization of the require-
ment ontology”.

Ontology expert: By using the ontology in the ap-
plication, it was easy to determine changes that would
improve the usability of the ontology for software
testing. These changes were mostly about adding new
instances and object and datatype properties. In gen-
eral, it was easy to understand the ontology by explor-
ing it in Protégé. But some parts required extra explo-
rations by using visualization tools or even looking
at the OWL functional serialization. As soon as the
evaluator is an experienced ontology/knowledge en-
gineer, no extra theoretical support is required. But it

could be different for a less experienced ontology en-
gineer. Most concepts were well integrated but some
of them needed an extra integration, mainly through
object properties. No inconsistencies were found, just
some entities missing from the application viewpoint.
Most ontology engineers would understand the on-
tology quickly but, still, they would need some extra
time because the domain represented by the ontology
is complex. The evaluator did not have to ask a lot of
questions because the documentation was available in
addition to the ontology itself. However, questions
were needed to ask to understand how the ontology
could be improved from an application viewpoint.

5.2 Evaluation through Application

According to our definition of applicability, the on-
tology should exhibit the quality of correctness or ap-
propriateness when used for a particular application
domain or purpose. To evaluate the applicability of
the requirements ontology, it has been used for auto-
matic generation of software test cases based on the
requirements. The generation of test cases has been
done by application of inference rules to the ontol-
ogy. Each inference rule represents a part of a strategy
for test case generation, and is formulated in terms of
the entities in the requirements ontology. The entities
are retrieved from the ontology to check conditions
of the rules as well as to construct different test case
parts. A test case is generated by applying several
inference rules that traverse different ontology paths
starting from the instance that represents the software
requirement.

The inference rules were implemented in the Pro-
log language. To make it work, the requirements on-
tology was first saved in the OWL functional syn-

SKY 2016 - 7th International Workshop on Software Knowledge

16



tax (Motik et al., 2015). Then it was translated into
the Prolog syntax(Bratko, 2001). As a result, OWL
statements from the requirements ontology could be
directly used in the inference rules. During the first
experiment, 40 inference rules were used to generate
18 test cases for 15 requirements. 66 distinct entities
form the ontology were used for the test case con-
struction. The test cases were generated as plain text
in English. The experiment showed an almost one-
to-one correspondence between the texts in the gen-
erated test cases and the texts provided by one of our
industrial partners.

The evaluation showed that the developed require-
ments ontology can fulfil its purpose, that is to sup-
port different stages of a software development pro-
cess. The ontology has been used for automation of a
part of the testing process and allowed for successful
generation of test cases. The test cases generated by
application of the inference rules to the ontology were
almost the same as the ones manually constructed by
the testers. The ontology allowed for a straightfor-
ward way of formulating inference rules. It was fairly
easy to integrate the ontology in the OWL functional
syntax in the Prolog program containing the inference
rules. The OWL expressions were directly employed
in the inference rules (after small syntactic changes
in the translation phase) thanks to the availability of
instances in the ontology. Exploring the ontology
paths allowed to capture strategies for test case gen-
eration. The minor deficiencies in the ontology that
were discovered during the development of inference
rules were addressed in the following iterations.

6 CONCLUSION AND FUTURE
WORK

In this paper we have presented an ontology which
was developed to represent the software requirements
found in an embedded system in the avionics industry.
The ontology was built from software requirements
documents. From an ontology development perspec-
tive, we propose a method which combines features
from several different ontology development meth-
ods. The combined method is very practical and pro-
vides the necessary guidance for developing a require-
ments ontology from requirements documents for a
particular application or purpose. One direction of
the future work is to evaluate and improve the method
through similar ontology development tasks.

Until now, very little work has been performed on
the evaluation of an ontology from a user or an ap-
plication’s point of view. In this work we define two
quality features pertinent to the evaluation of an on-

tology, i.e. usability and applicability, along with the
evaluation method used. In the future we will con-
tinue the investigation of possible methods for evalu-
ating the usability and applicability of ontologies. We
would also like to develop guidelines to facilitate the
evaluation of the quality of ontologies in connection
with usability, applicability and other quality features
with a focus on user experiences.

The ontology created from the software require-
ments documents is intended to support the automa-
tion of the different tasks in the subsequent stages of
software development process, in order to reduce the
cost of the software development. However, the de-
velopment of an ontology itself is an expensive and
difficult task. Hence, another direction in our future
work is the automation of building ontologies from
software requirements documents. Thus, when the
ontology-based approach for software engineering is
deployed in an industry environment, the real cost
of the software development activities can be signifi-
cantly reduced.

ACKNOWLEDGEMENT

The research reported in this paper has been car-
ried out in the project ”Ontology-based Software Test
Case Generation”, which was financed by grant KKS-
20140170 from the Knowledge Foundation in Swe-
den.

REFERENCES

Bechhofer, S. (2009). OWL: Web ontology language. In
Encyclopedia of Database Systems, pages 2008–2009.
Springer.

Borst, W. N. (1997). Construction of engineering ontolo-
gies for knowledge sharing and reuse. Universiteit
Twente.

Brank, J., Grobelnik, M., and Mladenic, D. (2005). A sur-
vey of ontology evaluation techniques. In Proceedings
of the conference on data mining and data warehouses
(SiKDD 2005), pages 166–170.

Bratko, I. (2001). Prolog Programming for Artificail Intel-
ligence. Pearson Education, 4th ed. edition.

Brooke, J. (1996). SUS-A quick and dirty usability scale.
Usability evaluation in industry, 189(194):4–7.

Brooke, J. (2013). SUS: a retrospective. Journal of usability
studies, 8(2):29–40.

Burton-Jones, A., Storey, V. C., Sugumaran, V., and
Ahluwalia, P. (2005). A semiotic metrics suite for as-
sessing the quality of ontologies. Data & Knowledge
Engineering, 55(1):84–102.

Development and Evaluation of a Software Requirements Ontology

17



Casellas, N. (2009). Ontology evaluation through usability
measures. In OTM Confederated International Con-
ferences” On the Move to Meaningful Internet Sys-
tems”, pages 594–603. Springer.

Clarke, E. L., Loguercio, S., Good, B. M., and Su, A. I.
(2013). A task-based approach for gene ontology eval-
uation. Journal of biomedical semantics, 4(1):1.

Dobson, G. and Sawyer, P. (2006). Revisiting ontology-
based requirements engineering in the age of the se-
mantic web. In Proceedings of the International
Seminar on Dependable Requirements Engineering of
Computerised Systems at NPPs, pages 27–29.

Fensel, D., Van Harmelen, F., Klein, M., Akkermans, H.,
Broekstra, J., Fluit, C., van der Meer, J., Schnurr,
H.-P., Studer, R., and Hughes, J. (2000). On-To-
Knowledge: Ontology-based tools for knowledge
management. In Proceedings of the eBusiness and
eWork, pages 18–20.

Fernández-López, M., Gómez-Pérez, A., and Juristo, N.
(1997). METHONTOLOGY: from ontological art to-
wards ontological engineering.

Gangemi, A., Catenacci, C., Ciaramita, M., and Lehmann,
J. (2006). Modelling ontology evaluation and valida-
tion. In European Semantic Web Conference, pages
140–154. Springer.

Gennari, J. H., Musen, M. A., Fergerson, R. W., Grosso,
W. E., Crubézy, M., Eriksson, H., Noy, N. F., and
Tu, S. W. (2003). The evolution of protégé: an
environment for knowledge-based systems develop-
ment. International Journal of Human-computer stud-
ies, 58(1):89–123.

Gómez-Pérez, A. (2004). Ontology evaluation. In Hand-
book on ontologies, pages 251–273. Springer.

Greenspan, S., Mylopoulos, J., and Borgida, A. (1994). On
formal requirements modeling languages: RML revis-
ited. In Proceedings of the 16th international confer-
ence on Software engineering, pages 135–147. IEEE
Computer Society Press.

Gruber, T. R. (1995). Toward principles for the design of
ontologies used for knowledge sharing? International
journal of human-computer studies, 43(5):907–928.

Happel, H.-J. and Seedorf, S. (2006). Applications of on-
tologies in software engineering. In Proc. of Work-
shop on Sematic Web Enabled Software Engineer-
ing”(SWESE) on the ISWC, pages 5–9. Citeseer.

Hlomani, H. and Stacey, D. (2014). Approaches, methods,
metrics, measures, and subjectivity in ontology evalu-
ation: A survey. Semantic Web Journal, pages 1–5.

Lin, J., Fox, M. S., and Bilgic, T. (1996). A requirement
ontology for engineering design. Concurrent Engi-
neering, 4(3):279–291.

Mayank, V., Kositsyna, N., and Austin, M. (2004). Re-
quirements engineering and the semantic web, part II.
representaion, management, and validation of require-
ments and system-level architectures.

Moroi, T., Yoshiura, N., and Suzuki, S. (2012). Conversion
of software specifications in natural languages into
ontologies for reasoning. In 8th International Work-
shop on Semantic Web Enabled Software Engineering
(SWESE’2012).

Motik, B., Patel-Schneider, P., and Parsia, B. (2015). OWL
2 web ontology language: Structural specification and
functional-style syntax, 2nd edn.(2012).

Mylopoulos, J., Borgida, A., Jarke, M., and Koubarakis, M.
(1990). Telos: Representing knowledge about infor-
mation systems. ACM Transactions on Information
Systems (TOIS), 8(4):325–362.

Noy, N. F. and McGuinness, D. L. (2001). Ontology devel-
opment 101: A guide to creating your first ontology.
Technical report, Stanford Knowledge Systems Labo-
ratory. KSL-01-05.

Nuseibeh, B. and Easterbrook, S. (2000). Requirements
engineering: a roadmap. In Proceedings of the Con-
ference on the Future of Software Engineering, pages
35–46. ACM.

Presutti, V., Daga, E., Gangemi, A., and Blomqvist, E.
(2009). extreme design with content ontology design
patterns. In Proceedings of the 2009 International
Conference on Ontology Patterns-Volume 516, pages
83–97. CEUR-WS. org.

RTCA (1992). Software Considerations in Airborne Sys-
tems and Equipment Certification.

Sauro, J. (2011). A practical guide to the system usabil-
ity scale: Background, benchmarks & best practices.
Measuring Usability LLC.

Shearer, R., Motik, B., and Horrocks, I. (2008). HermiT:
A highly-efficient owl reasoner. In OWLED, volume
432, page 91.

Siegemund, K., Thomas, E. J., Zhao, Y., Pan, J., and Ass-
mann, U. (2011). Towards ontology-driven require-
ments engineering. In Workshop semantic web en-
abled software engineering at 10th international se-
mantic web conference (ISWC), Bonn.

Studer, R., Benjamins, V. R., and Fensel, D. (1998). Knowl-
edge engineering: principles and methods. Data &
knowledge engineering, 25(1):161–197.

Tan, H. and Lambrix, P. (2009). Selecting an ontology for
biomedical text mining. In Proceedings of the Work-
shop on Current Trends in Biomedical Natural Lan-
guage Processing, pages 55–62. Association for Com-
putational Linguistics.

Tullis, T. S. and Stetson, J. N. (2004). A comparison of
questionnaires for assessing website usability. In Us-
ability Professional Association Conference, pages 1–
12. Citeseer.

Uschold, M. and Gruninger, M. (1996). Ontologies: Princi-
ples, methods and applications. The knowledge engi-
neering review, 11(02):93–136.

Vrandečić, D. (2009). Ontology evaluation. In Handbook
on Ontologies, pages 293–313. Springer.

SKY 2016 - 7th International Workshop on Software Knowledge

18


