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Abstract: The field of swarm robotics studies multi-robot systems, emphasising decentralised and self-organising be-
haviours that deal with limited individual abilities, local sensing and local communication. A robotic system
needs to be flexible to environmental changes, robust to failure and scalable to large groups. These desired
features can be achieved through collective behaviours such as aggregation, synchronisation, coordination and
exploration. We aim to analyse these emerging behaviours by applying an evolutionary approach to a specific
robotic system, called the Kilobot, in order to learn behaviours. If successful, not only would the cost and
computation time for evolutionary computation in mobile robotics decrease, but the reality-gap could also
narrow.

1 INTRODUCTION

Swarm robotics is a developing field within collec-
tive robotics, which focuses on groups of robots that
interact and cooperate with one another in order to
reach a common goal. This form of robotics can be
compared to a class of natural systems such as so-
cial insects – ants, bees and termites – that can ac-
complish intricate tasks by means of interaction. In
a decentralised, problem-solving system such as this,
insects have very limited capabilities. However, by
working together as a group, the overall performance
can be improved through self-organisation: a process
whereby a system transitions from a disordered state
to an ordered state by exploiting local interactions be-
tween robots and between robots and their environ-
ment (Dorigo et al., 2004; Trianni and Dorigo, 2006;
Baldassarre et al., 2007).

Formation control is an emergent collective be-
haviour of self-organisation inspired by nature, which
traditionally demonstrates a ‘follow-the-leader’ ap-
proach in a swarm of robots through coordination,
synchronisation and communication. These abilities
allow robots to dynamically interact with one another
in order to organise into a complex system so as to
work together effectively. Furthermore, these abil-
ities can result in an organised set of actions, such
as choosing a common sense of direction when in a
group formation. This is essential for a team of robots
to work as a whole entity and it can also establish a
basic building block for the design of more complex
behavioural strategies (Trianni et al., 2008). In order

for the coordination of behaviours to be successful,
robots must be able to define communication strate-
gies and protocols among the individuals of the group.
Here, simple forms of communication can be enough
to accomplish the coordination of group activities and
can also be easily scaled up with the number of indi-
viduals involved.

The motivation of the work described here is to
use evolutionary techniques to create parallels with
the biodiversity seen in natural systems; that is, to au-
tomate self-organised, collective behaviours using de-
centralised control and local communication. Evolu-
tionary algorithms are noted for their simplicity; the
Darwinian theory of survival of the fittest is a focal
example: only the fitter individuals of a population
are allowed to reproduce. In evolutionary robotics, a
population of genotypes is initialised and then each
genotype is encoded and mapped into each robot con-
troller. The process of evolution then evaluates the
performance of the robots as individuals or as teams.
The robots that perform above average are allowed
to reproduce and their genetic material can be al-
tered by means of mutation and recombination. This
method is repeated several times until one or more
controllers are found that meets the requirements of
an evaluation, or fitness function. The efficiency of
the algorithm is dependent on the variance and se-
lection applied to the population and so, the algo-
rithm can be tailored to many different approaches
and multi-modal problems. Not only are evolution-
ary algorithms relatively simple, but they can pro-
duce solutions that are robust and flexible to change.
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These abilities to adapt are crucial for practical prob-
lem solving as they significantly decrease the cost,
time required and can be evolved on the fly if unex-
pected anomalies occur.

This position paper aims to outline the advantages
of applying evolutionary computation to swarms of
potentially heterogeneous, mobile robots where each
robot has limited functionality. Furthermore, a ge-
netic algorithm is proposed which we believe is ca-
pable of evolving simple swarms of mobile robots to
carry out the collective behaviour of formation con-
trol. We focus on formation control because this be-
haviour not only demonstrates self-organisation, co-
ordination and synchronisation, but it is also a key
component for more complex behavioural strategies.
Although evolutionary computation has been prac-
tised on Khepera robots (Mondada et al., 1994) and
S-Bots (Mondada et al., 2002), there has been no re-
search carried out on robots with a high level of hard-
ware and software restraints.

The outline of the paper is as follows: initially,
we outline our motivations and challenges in section
2; these include system design, cost, time and the
reality-gap. Next, an overview is given of the robots
which will be used in the work (Kilobots). In sec-
tion 4, we discuss related work in the areas of self-
assembly and decision making, both of which demon-
strate the process of self-organisation. In section 5,
we put forward a methodology, describing our forma-
tion control experiment in detail, making reference to
our chosen evolutionary algorithm and fitness func-
tion evaluations. Lastly, conclusions and future work
are discussed in section 6.

2 MOTIVATIONS AND
CHALLENGES

Designing a control system for robots is a challeng-
ing and complex task as the system needs to be de-
composed into two phases: the behaviours of the in-
dividual and the behaviour of the system. The global
behaviour is a result of dynamical interactions among
its components, be it interactions between individuals
or interactions between individuals and the environ-
ment (Trianni and Dorigo, 2006). As these dynami-
cal interactions are hard to foresee, it is a good idea
to use an evolutionary technique to avoid decompo-
sition at both levels. Such an approach relies on the
evaluation of the system as a whole, particularly on
the emergence of the desired global behaviour start-
ing from the definition of the individual behaviours
(Trianni et al., 2008). By using this approach, the
evolutionary process eliminates unsought behaviours

and selects only the desirable behaviours based on an
evaluation function.

Other challenges that need to be taken into ac-
count are the costs and time required. For instance,
although the evolutionary approach bypasses decom-
position, artificial evolution can take a long time to
compute on a physical robot. Furthermore, if robots
were to be damaged during this evolution period,
costs would increase as hardware would need to be
replaced. It is for these reasons that simple, mobile
robots need to be used. As Kilobots have a low cost
price of around $14 for parts and only take 5 min-
utes to assemble, they can be easily produced in large
numbers (Rubenstein et al., 2012). The evolution of
their controllers can also be done through simulation
and then the most successful individuals can be run on
the physical robots in order to speed up the process.
However, evolving robot behaviours through the use
of simulation can present some other problems such
as a reality-gap: programs may work well on simu-
lated robots, but they can fail on real robots due to the
different actuation and sensing abilities as it can be
very difficult to simulate the actual dynamics of the
real world (Brooks, 1992).

3 KILOBOT

The Kilobot (Rubenstein et al., 2012), shown in Fig-
ure 1, is a low-cost robot designed to make testing col-
lective algorithms on a large number of robots easily
manageable. The Kilobot has an Atmega328 proces-
sor controller, running at 8MHz with 32K of memory.
The controller has two main functions; it is used to
run a user-defined program as well as operating as an
interface between electronics such as motors, power
circuitry and LEDs. It can regulate the speed of the vi-
bration motors by using two pulse width modulation
channels and can measure the intensity of the incom-
ing infra-red signals through 10-bit analog-to-digital
converters.

This robot does not have traditional characteris-
tics as it uses vibration motors for movement, and
reflective infra-red light and distance sensing in or-
der to communicate with other robots. The Kilobot
uses an infra-red LED transmitter and receiver that
allows the robot to receive messages from every di-
rection. When the transmitter is in use, a neighbour-
ing robot can receive light emitted by the transmit-
ting robot once it has been reflected off the surface
on which the Kilobot has been placed. The locomo-
tion of these motors prevent against travelling long
distances by providing noisy locomotion without po-
sition feedback. However, by using measured dis-
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Figure 1: Graphical visualisation of the Kilobot robot in V-
Rep simulation software.

tances between neighbours as feedback, the robot’s
movement can be corrected, as well as being used to
promote the use of collective behaviours (Rubenstein
et al., 2012).

As previously mentioned, the limited range and
lack of bearing systems in the Kilobot make coordi-
nated navigation difficult to implement. Kilobots can
only perceive the distance between each other, but not
the direction their neighbours are travelling in. To
combat this, robots need to continuously communi-
cate and measure the distances between themselves
and their neighbours in order to calculate their neigh-
bour’s pose, that is their orientation and position.

4 RELATED WORK

Much of the previous work in this area has dealt with
collective algorithms that demonstrate basic function-
ality in Kilobots, such as the ability to move within
an environment and communicate with neighbour-
ing robots (Rubenstein et al., 2012). More recently,
Rubenstein et al. (2014) have developed a self-
assembly algorithm which demonstrates edge follow-
ing, gradient formation, localisation and collective
transport. The aim of this work was to create artificial
swarms with the capabilities of natural ones. Further-
more, decision making within a self-organised system
has also been studied by Valentini et al. (2015), which
examines the trade-off between speed and accuracy
when making collective decisions as a swarm. The
decision strategy used was successfully implemented
on 100 robots, proving feasibility in large swarms and
robustness to robot failures.

This type of research tends to gravitate towards
more physics and mathematical based models, rather
than evolutionary developments. Although the no-
free-lunch theorem (Wolpert and Macready, 1997)
states that there cannot be an algorithm that is capable
of solving all problems, evolutionary algorithms can
surpass other methods in respect to solving problems

where heuristics are either not readily available, or do
not give a good performance. For instance, evolution-
ary algorithms may not outrival traditional methods
with simple issues, but in real-world function opti-
misation, where problems can have non-linear con-
straints, non-stationary conditions or even noisy en-
vironments, classic optimization techniques cannot
compare (Fogel, 1997).

Although there has been research carried out that
uses an evolutionary approach to produce emerging
behaviours in robot populations, there has been noth-
ing conducted specifically on Kilobots. The goal is
to have a deeper understanding of, and new evolu-
tionary algorithmic insights, into the emergence of
collective behaviours in these limited individuals and
how we can improve their robustness, flexibility and
scalability. These insights could lead to real-world
potential applications in areas that are too danger-
ous for humans, such as search and rescue and detec-
tion of environmental hazards. Furthermore, swarm
robotics could be used in the nano-medical domain
for early diagnosis of disease or to fight tumour cells
(Mavroidis and Ferreira, 2013).

5 METHODOLOGY

Formation control experiments traditionally have
robots lined up facing a leader that moves in a forward
direction while all the following robots trail along be-
hind in the same path (Figure 2a). This is a typical
finite state machine: the model requires robots to ei-
ther wait or go. For instance, robotA will stay in the
wait state until robotB and robotC are also in the wait
state, then robotA will switch to the go state, whereby
it continuously measures its distance to the robot in
front of it, trying to reduce it. When the distance is
reduced, robotA will switch back to the wait stage and
the process is repeated.

In contrast to this method, we will use a decen-
tralised algorithm which does not require any states.
In a decentralised problem-solving system composed
of simple interacting entities, such as an ant colony,
there is no leader that determines the activities of the
group, nor are there individuals informed of a global
pattern to be executed. Therefore, this type of algo-
rithm can be seen as more robust and flexible com-
pared to others as the system’s behaviours can arise
through the interaction of individual robots. Further-
more, we will change the overall formation structure
from a linear to a hexagon shape (Figure 2b). By
using a hexagon shape, robots will need to continu-
ously measure their distance between their surround-
ing neighbours rather than just the robots in front and
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(a)

(b)
Figure 2: A graphic visualisation of a) the traditional forma-
tion control structure and b) our proposed formation control
structure.

behind. Furthermore, a hexagon shape promotes a
high density; we penalise robots that detract from the
density of the group.

In this experiment, formation behaviour is inte-
grated with a navigational behaviour to enable a team
of robots to reach a goal while avoiding obstacles
and simultaneously remaining in formation. Teams
are rewarded when the average distance of all the
Kilobots from the group centre of mass is minimised.
The robots are randomly placed in an enclosed square
arena with cylindrical obstacles (Figure 3), whereby
they need to reach a set of coordinates on the grid.
Through the use of proximity sensors, individuals can
measure their distance between neighbouring robots
and obstacles. The Kilobot controller uses the read-
ings from the proximity sensors as input nodes and
two output nodes control the robot’s motors. As the
Kilobot has a limited amount of memory and process-
ing power, we will carry out simulations using V-Rep
(Rohmer et al., 2013), a 3D world simulation tool
specifically developed by Coppelia Robotics for de-
signing and evaluating control algorithms. The best
controllers will then be downloaded onto real Kilo-
bots and our hypotheses will be further tested.

5.1 The Evolutionary Algorithm

We use a genetic algorithm for the synthesis of the
robot controllers; this will represent the way in which
the controller will interact with the environment. To
delineate the robot controller, we use a look-up table
(LUT) with two columns: the set of circumstances in
which the robot can find itself and the actions that cor-
relate to each circumstance (Table 1). The input from
the Kilobot’s sensors are used to look-up the specific
situation and find the corresponding action. A sim-

Figure 3: The proposed experimental arena containing 17
randomly placed obstacles.

ple example of a situation could refer to obstacles in
front, left or right of the Kilobot; 1 representing an
obstacle in a specific direction and 0 illustrating an
obstacle free path. The actions within the table are
linked to the robot’s actuators.

The initial population is composed of 100 geno-
types, all of which are binary encoded and are mapped
into the controller of each Kilobot. The robots are
homogeneous by design and genetically similar, but
as they carry out a random action at the beginning
of each run and respond to external stimuli, robots
can exhibit heterogeneous behaviours. Each run of
the experiment lasts a fixed number of generations
and the population in subsequent generations is pro-
duced by a combination of tournament selection and
crossover. In every generation, we evaluate the geno-
types of the population by means of a fitness func-
tion. The best performing genotypes of every popu-
lation are allowed to reproduce in order to create new
offspring where are all subject to a low level of muta-
tion.

Table 1: A simple example of a LUT.

Situation Action
000 Forward
001 Forward
010 Forward
011 Forward
100 Left
101 Left
110 Right
111 Stop

5.2 The Fitness Evaluation

The fitness of the genotype is computed by measur-
ing the performance of the corresponding robot in a
group. The function F is calculated by evaluating the
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behaviour of the group of Kilobots for a number of
trials and then averaging the obtained values. This fit-
ness function is designed to favour exploration, fast
reaction to obstacles and coordinated motion. For
simplicity’s sake, we have split the function into two
parts Fe1 and Fe2. Fe1 is a weighted average of the
components Fc (collision) and Fx (exploration).

Fc =
Tc

T
, (1a)

where Tc is the number of cycles prior to the occur-
rence of a collision and T is the total number of cy-
cles. Here, the Kilobots evolve to avoid collision by
using the LUT. When the robot finds the correct ac-
tion for their situation, their fitness is increased.

The second component rewards Kilobots that ex-
plore the arena:

Fx =
z(Tc)

Z(Tc)
, (1b)

where z(Tc) is the number of zones visited by cycle Tc
and Z(Tc) is the maximum number of zones that can
be visited in Tc cycles.

Fe2 is calculated as the average density of the robot
group throughout the simulation:

Fe2 =
∑T

i=1 density(ti)
T

, (2a)

where there are T intervals.
The density of the group at time ti is calculated as

the average Euclidean distance of the n robots to the
centroid of the group:

density(ti) =
∑n

j=1 dist( j,centroid)

n
(2b)

We evolve the Kilobots by averaging the fitness
functions Fe1 and Fe2. As the robots exhibit poten-
tially heterogeneous behaviours, their individual fit-
ness values in Fe2 are dependent on the other robots
in the current population, which introduces a further
complexity to the problem. That is, if one robot per-
forms poorly in the formation, the other robots’ fit-
nesses will also be affected.

6 CONCLUSIONS

In this position paper we outlined the advantages of
using evolutionary computation on individuals with
limited capabilities. We also proposed an evolution-
ary algorithm which we believe is simple, yet robust
and flexible enough to evolve a swarm of potentially
heterogeneous, mobile robots to carry out collective

behaviours, in particular, formation control. Further-
more, by evolving robots with limited sensing abili-
ties, we contend that the reality-gap can be more eas-
ily overcome as there are less parameters that need to
be validated in comparison to other robots that have a
more complicated set of sensors and motors. Despite
this, there is still a potential chance of a reality-gap,
so simulations need to be carefully modelled to retain
as many features of the robot as possible.

In future work, we intend to examine the system’s
behaviour and the individuals’ behaviours with the
evolutionary approach outlined in this paper by ad-
dressing two main issues: composition and a method
for selection. Robots must either have the same rules
or employ different ones (genetically homogeneous or
heterogeneous) and they will be evaluated using a new
fitness that combines individual fitnesses and team fit-
nesses. Developing upon this, we will then use the
best controller on the hardware to test our hypothe-
ses further. As discussed in this position paper, this
may be easier to accomplish by using simple swarms
of robots, thereby reducing cost and time as well as
diminishing the reality-gap.
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