
Robust Fuzzy Modeling and Symbolic Regression for Establishing
Accurate and Interpretable Prediction Models in Supervising

Tribological Systems

Edwin Lughofer2, Gabriel Kronberger1, Michael Kommenda1, Susanne Saminger-Platz2,
Andreas Promberger3, Falk Nickel3, Stephan Winkler1 and Michael Affenzeller1

1Heuristic and Evolutionary Algorithms Laboratory, School of Informatics, Communications and Media,
Softwarepark 11, 4232 Hagenberg, Austria

2Department of Knowledge-Based Mathematical Systems, Johannes Kepler University Linz, 4040 Linz, Austria
3Miba Frictec, Peter-Mitterbauer-Str., 4661 Roitham, Austria

Keywords: Tribological Systems, Robust Fuzzy Modeling, Generalized Takagi-Sugeno Fuzzy Systems, Symbolic
Regression, Multi-objective Accuracy/Complexity Tradeoff, Enhanced Regularized Learning.

Abstract: In this contribution, we discuss data-based methods for building regression models for predicting important
characteristics of tribological systems (such as the friction coefficient), with the overall goal of improving and
partially automatizing the design and dimensioning of tribological systems. In particular, we focus on two
methods for synthesis of interpretable and potentially non-linear regression models: (i) robust fuzzy modeling
and (ii) enhanced symbolic regression using genetic programming, both embedding new methodological ex-
tensions. The robust fuzzy modeling technique employs generalized Takagi-Sugeno fuzzy systems. Its learning
engine is based on the Gen-Smart-EFS approach, which in this paper is (i) adopted to the batch learning case
and (ii) equipped with a new enhanced regularized learning scheme for the rule consequent parameters. Our
enhanced symbolic regression method addresses (i) direct gradient-based optimization of numeric constants
(in a kind of memetic approach) and (ii) multi-objectivity by adding complexity as a second optimization cri-
terion to avoid over-fitting and to increase transparency of the resulting models. The comparison of the new
extensions with state-of-the-art non-linear modeling techniques based on nine different learning problems (in-
cluding targets wear, friction coefficients, temperatures and NVH) shows indeed similar errors on separate
validation data, but while (i) achieving much less complex models and (ii) allowing some insights into model
structures and components, such that they could be confirmed as very reliable by the experts working with the
concrete tribological system.

1 INTRODUCTION

Friction models have been studied for more than hun-
dred years (Berger, 2002) and are central for under-
standing and accurately describing tribological sys-
tems which occur in almost all mechanical systems.
The main difficulty in modeling friction is that it
is a very complicated phenomenon which depends
on a large variety of parameters including mechani-
cal properties (e.g. surface roughness and hardness,
lubrication), load (e.g. pressure, energy and slid-
ing speed), and environmental conditions (e.g. hu-
midity, temperature) (Berger, 2002). Additionally,
friction is a dynamic phenomenon as abrasive ef-
fects and material deterioration as well as tempera-

ture changes strongly influence friction characteristics
(De Wit et al., 1995).

Mathematical models of friction systems derived
solely from mechanical principles (De Wit et al.,
1995) are strongly simplified and therefore limited.
The forces acting in tribological systems on a micro-
and nano-level depend on the surface characteristics
of the friction materials as well as on the lubrication
and are difficult to describe mathematically (Sellgren
et al., 2003) (Berger, 2002). Many of these factors
are hard to capture in a mathematical model based
solely on physical principles (Aleksendric and Car-
lone, 2015). In particular, we study friction systems
as applied in clutches employed in power-trains (Sen-
atore et al., 2011). Relevant influence factors include
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the composition and mechanical properties of the em-
ployed friction material, the oil, or the geometry of
groovings on friction material.

The overall objective is the improvement of the
design process of these tribological systems by us-
ing accurate models for the most important charac-
teristics. These models should be included in an ex-
pert system for the virtual design and dimensioning
of friction systems to support engineers (Aleksendric
and Carlone, 2015), thus they should be not too com-
plex and interpretable.

1.1 State-of-the-Art

Friction models can be roughly categorized into an-
alytical models derived from physical principles and
purely empirical models (Berger, 2002). Analytical
models such as the one given by (De Wit et al., 1995)
are usually rather sophisticated and describe friction
forces based on surface characteristics of the fric-
tion materials. Drawbacks of these models are the
high complexity as well as the limited applicability
in real scenarios, because important effects such as
non-linear dynamics or abrasive effects are not cap-
tured by the models. Models based on finite elements
simulation, such as the model described in (Sellgren
et al., 2003), are computationally expensive and also
have the drawback that relevant effects in practical ap-
plications are not described accurately.

Empirical models have predictive capabilities but
do not provide a detailed, physically correct and gen-
eral description of friction. Depending on the simu-
lation objectives these empirical models can be rather
simple, such as the non-linear numerical model pre-
sented in (Loh et al., 2000) which estimates the co-
efficient of friction based solely on load parameters.
An example for a more complex numerical model
that also include effects of surface characteristics is
given in (Xiao et al., 2007). In both of these cases,
the model structure has been manually (and not au-
tomatically) defined based on experience and intu-
ition about the main effects and the parameters of the
model have been optimized to fit the model to mea-
surements (which requires high development effort).

Recently, especially artificial neural networks
have been applied successfully in multiple occa-
sions for data-based modeling of tribological systems
(Aleksendric and Carlone, 2015). For example, neu-
ral networks have been used to predict wear of brake
friction materials where the complete formulation of
the friction material, important manufacturing condi-
tions, as well as load parameters, sliding velocity and
the temperature have been used as input for the net-
work (Aleksendri, 2010). Hosenfeldt and colleagues

describe that they trained an artificial neural network
model that “can predict the tribological behaviour
of camshaft and bucket tapped systems” (Hosenfeldt
et al., 2014), and state that they achieved “a deviation
of 8%” which “is a very good result, especially when
considering that the measurement error with reference
to friction is 5%” (Hosenfeldt et al., 2014). On the
other hand, ANNs deliver models which typically ap-
pear as black boxes with high structural complexity.
This makes them unattractive and not usable within
an interpretable expert system.

1.2 Our Approach

We design prediction models for a variety of nine
important system variables during the design and di-
mensioning of tribological systems: four different
measurements of the coefficient of friction, two dif-
ferent measurements of wear, two temperature mea-
surements, vibration and harshness (NVH). We con-
centrated on two architectures for data-driven regres-
sion models, Takagi-Sugeno-type (TS) fuzzy systems
(Takagi and Sugeno, 1985), as recently introduced
in generalized form (Lemos et al., 2011), and sym-
bolic regression models containing functional terms
achieved through genetic progamming (GP) (Affen-
zeller et al., 2009), which both allow interpretation
and inspection of the resulting models, e.g., for gain-
ing better insights into the system behavior. We pro-
pose two major enhancements in our learning engines
to cope robustly with binary input variables and high
noise levels.

In case of (generalized) TS fuzzy systems, we in-
tegrate a convex combination of Lasso and ridge re-
gression for optimizing the linear consequent param-
eters. This is leaned on the concept of elastic net
regularization (Hastie et al., 2010) (Zou and Hastie,
2005), but adopted to the specific (locally weighted)
optimization problem for generalized Takagi-Sugeno
fuzzy systems for the first time. Such a more so-
phisticated learning concept is expected to enhanced
the robustness of the solutions. For learning the
rule structure and the rules’ antecedent parts, we em-
ploy the Gen-Smart-EFS technique, originally devel-
oped for streaming data in (Lughofer et al., 2015),
which we adjust for the batch off-line case by spe-
cific two-stage iterative optimization procedure (see
Section 2.2.2). Joining rule antecedent and enhanced
regularized consequent learning, the new method is
termed as Robust-GenFIS (short for Robust General-
ized Fuzzy Inference Systems) and described in detail
in Section 2.2.2.

In case of symbolic regression models, the genetic
programming (GP) approach in (Affenzeller et al.,
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2009) is extended by gradient-based optimization of
numeric constants (Kommenda et al., 2013) and by
multi-objective optimization of complexity and esti-
mation accuracy (Kommenda et al., 2016). These ex-
tensions are firstly combined to a joint enhanced op-
timization and applied to a real-world scenario in this
paper. In traditional GP-based symbolic regression
numeric constants are optimized side-by-side with the
model structure relying solely on evolutionary opera-
tors of crossover, mutation and selection to find op-
timal constants. Incorporating a gradient-based op-
timizer for constants increases the efficiency of GP-
based symbolic regression and can thus improve final
solution quality. A drawback of GP-based symbolic
regression in practical applications is the tendency
to produce very large (“bloated”) solutions (Langdon
et al., 1999). Selection in combination with crossover
operations has the effect that ineffective parts accu-
mulate in solution candidates and therefore the struc-
tural complexity of solution candidates increases. We
thus employ multi-objective optimization to produce
a set of Pareto-optimal solutions in the context of GP,
where one dimension corresponds to the model com-
plexity and the other to the model error — see Section
2.3.

In this article, we compare the newly extended
fuzzy and symbolic regression modeling approaches
with other state-of-the-art (SoA) techniques such as
support vector regression (Smola and Vapnik, 1997),
random forests (Breiman, 2001) or gradient boosted
trees (Friedman, 2001), as well as with related and
widely used fuzzy system extraction algorithms such
as LoLiMoT (Nelles, 2001), genfis2 (modified version
of it) (Chiu, 1994) and FLEXFIS (Lughofer, 2008), in
terms of predictive accuracy as well as model com-
plexity.

The major finding is that linear models are insuf-
ficient for modeling the main characteristics of tri-
bological systems while the newly proposed robust
fuzzy modeling and enhanced symbolic regression
approaches produce significantly more accurate mod-
els (Section 4.1), which satisfactory for the usage in
virtual design of tribological systems. The predictive
quality on separate test data indeed turned out to be
similar (similar error ranges) to the predictive qual-
ity achieved by related SoA methods. However, the
models produced with our methods have much lower
complexity (see Section 4.2) than those achieved by
related non-linear techniques. They also can be nat-
urally represented in form of linguistically readable
fuzzy rules and in form of symbolic, physically in-
terpretable terms; both can be casted into a tree-like
structure, achieving synergy on structural level, which
induces the possibility of a direct and transparent

Table 1: Variables in the preprocessed data set.
Number Type Identification

22 continuous features x1 . . . x22
3 binary features representing the friction mat. type b1 . . . b3
2 binary features representing the test procedure Source1 , Source2

25 binary features representing the friction material Mat1 . . . Mat25
10 binary features representing the grooving type Gro1 . . . Gro10
11 binary features representing the oil Oil1 . . . Oil11

4 continuous measurements of coeff. of friction (target) Cf1 . . . Cf4
2 continuous measurements of wear (target) Wear1 , Wear2
1 ordinal rating of noise, vibration, and harshness (target) NVH
2 continuous measurements of temperature (target) Temp1 , Temp2

model comparison for operators and experts (Section
4.3).

2 METHODOLOGY

2.1 Data Acquisition and Preparation

The data used for modeling have been acquired
through extensive testing of many different friction
plates on tribological test benches. Each of the fric-
tion plates has been tested using one of two differ-
ent test programs. The first test program is designed
to test and measure coefficient of friction and wear
under different loads, the second test program is de-
signed to test noise and vibration characteristics. In
total, data from almost 1300 individual test runs are
considered. The combined data set contains measure-
ments from test procedures for many different com-
binations of friction materials and oils, whose major
influence factors are friction material, the oil, design
parameters of the friction plate as well as temperature.

In a preprocessing phase we cleaned the data set
by removing obvious measurement errors and incom-
plete test runs so that the resulting data set contains
only valid measurements for the most commonly used
combinations of friction material and oil. To prepare
for the modeling phase we created additional binary
indicator features for each friction material, grooving,
and oil. After preprocessing the dataset contains vari-
ables shown in Table 1. Depending on the target vari-
able the number of rows in the data sets is between
300 and 4000 rows.

2.2 Robust Fuzzy Modeling

2.2.1 Data-driven Fuzzy Modeling Architecture

The advantage of data-driven fuzzy systems among
other types of soft computing based model architec-
tures and machine learning techniques is their joined
characteristics of (i) universal approximation property
(Castro and Delgado, 1996), being able to model any
implicitly contained non-linear relationship with an
arbitrary degree of accuracy and (ii) linguistic inter-
pretability (Lughofer, 2013), allowing some insights

Robust Fuzzy Modeling and Symbolic Regression for Establishing Accurate and Interpretable Prediction Models in Supervising
Tribological Systems

53



into the system dependencies and variable interrela-
tions. While the antecedent parts of the rules embed
the linguistically interpretable description of feature
interrelations, there are various possibilities how to
design the consequent parts, inducing different types
of fuzzy systems (Lughofer, 2011).

For the robust modeling intentions in this paper,
we will employ the (recently introduced) generalized
version of TS fuzzy systems (Lemos et al., 2011),
which induced more compact rule bases with similar
or even less model errors than conventional TS fuzzy
systems during past studies (Lughofer et al., 2015) be-
cause of its ability to model piecewise local correla-
tions between variables in a more compact and accu-
rate way. In the generalized case, the rules are defined
by:

IF ~x IS (about) µi

THEN li(~x) = wi0 +wi1x1 +wi2x2 + ...+wipxp (1)

where li the hyper-plane defining the consequent of
the ith rule, µi denotes a high-dimensional kernel
function, which, in accordance to the basis function
networks spirit, is given by the multivariate Gaussian
distribution:

µi(~x) = exp(−1
2
(~x−~ci)

T Σ−1
i (~x−~ci)) (2)

with~ci the center and Σ−1
i the inverse covariance ma-

trix of the ith rule, allowing any possible rotation and
spread of the rule.

The output of a (generalized) TS system consist-
ing of C rules is a weighted linear combination of the
outputs produced by the individual rules (through the
li’s), thus:

f̂ (~x) = ŷ =
C

∑
i=1

Ψi(~x) · li(~x) Ψi(~x) =
µi(~x)

∑C
j=1 µ j(~x)

,

(3)
with µi(~x) the rule firing degree obtained through (2).

2.2.2 Our Robust Learning Engine for
Generalized TS Fuzzy Models

The learning engine is based on the generalized smart
evolving fuzzy systems approach, shortly termed
Gen-Smart-EFS (Lughofer et al., 2015), which has
been designed for (fast) streaming data, thus allow-
ing only a single-pass over incoming data samples for
expanding or shrinking the structure and recursively
updating the parameters. We thus adopt it here to
the batch, off-line case by performing multiple passes
over the entire (training) data set to optimize the po-
sitioning, shape and direction of the rules.

Rule Structure Elicitation and Initialization of
Non-linear Parameters. The first phase performs
a single-pass over the whole data set in order to elicit
the optimal number of rules for the current problem
(data set) at hand. It follows the same procedure
as used in the Gen-Smart-EFS approach for the an-
tecedent parts by compactly applying the following
steps (with C = 0 initially) (see (Lughofer et al., 2015)
for detailed formulation and motivation of algorith-
mic parts):

1. Load a new sample ~x; if it is the first one, Goto
Step 5 (there, ignoring the if-part);

2. Elicit the winning rule, i.e. the rule closest to
the current sample, which is then denoted as~cwin;
for the distance calculation, standard Mahalanobis
distance is used (as on the right hand side in (4)
below).

3. Check whether the following criterion is met (the
rule evolution criterion):

mini=1,...,C

√
(~x−~c)T Σ−1(~x−~c)> ri

ri = facp1/
√

2 1.0
(1−1/(ki +1))m (4)

with p the dimensionality of the input feature
space and f ac an a priori defined parameter, steer-
ing the tradeoff between stability (update of an old
cluster) and plasticity (evolution of a new cluster).
This is the only sensitive parameter and is var-
ied during the model evaluation phase, see Section
3.1.

4. If (4) is not met, the centre of the winning rule is
updated by

~cwin(N +1) =~cwin(N)+ηwin(~x−~cwin(N)) (5)

and its inverse covariance matrix by (the index
win neglected due to transparency reasons):

Σ−1(k+1) =
Σ−1(k)
1−α

− α
1−α

(Σ−1(k)(~x−~c))(Σ−1(k)(~x−~c))T

1+α((~x−~c)T Σ−1(k)(~x−~c)) (6)

with N the number of samples seen so far and
α = 1

kwin+1 with kwin the number of samples seen
so far for which cwin has been the winning rule
(cluster). The former stems from the idea in vec-
tor quantification (Gray, 1984) by minimizing the
expected squared quantization error. The latter
is a recursive exact update, which is analytically
derived with the usage of the Neumann series
(Lughofer and Sayed-Mouchaweh, 2015).
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5. If (4) is met, a new rule is evolved as covering a
new region in the feature space (i.e. having suffi-
cient novelty content) by setting its center~cC+1 to
the coordinates of ~x and initialize its inverse co-
variance matrix Σ−1

win by setting it to a diagonal
matrix with entries 1 divided by a small fraction
of the range; C =C+1.

Optimizing Non-linear Parameters (New Exten-
sion #1). After the initial phase is finished, a fine-
tuning phase is conducted which optimizes the cen-
ters and inverse covariance matrices of the rules as
initially formed in one single pass. This is achieved
over multiple iterations of the whole data set by suc-
cessively moving the centers and inverse covariance
matrices according to (5) and (6), with

ηwin =
1

iterations+1
α =

1
iterations+1

(7)

This is in accordance with the Robbins-Monroe con-
ditions and thus assures convergence to the optimal
solution in terms of the quantization error.

The iterations are performed as long as the stop-
ping criterion is not fulfilled. We have chosen the de-
gree of change between two cluster partitions from
two consecutive cycles t− 1 and t; so, if the follow-
ing condition is met

C

∑
i=1
‖~ci(t)−~ci(t−1)‖< ε, (8)

with ε set to a small positive number, the optimization
iterations are stopped.

Robust Learning of Linear Consequent Parame-
ters (New Extension #2). Once the rule structure
and antecedent parts are obtained, the aim is to es-
timate the consequent parameters in a way to best
match predicted model outputs with observed target
values. Therefore, the least squares error criterion is
the most conventional choice in data-driven regres-
sion modeling as appropriate optimization problem.
We use its weighted version in order to induce a local
learning scheme, i.e. to estimate the parameters per
rule separately and independently due to robustness
and accuracy reasons (Lughofer, 2011) (Chapter 2).

The (locally) weighted least squares optimization
problem for consequent parameters in all C rules is
formalized as:

Ji =
N

∑
k=1

Ψi(~x(k))e2
i (k)−→min

~wi
i = 1, ...,C (9)

where ei(k) = y(k)− ŷi(k) represents the error of the
local linear model in the kth sample. It can be solved
in closed analytical form:

~̂wi = (RT QiR)−1RT Qi~y (10)

with R the regression matrix, additionally containing
a column of ones for the intercept, and Qi the diagonal
weighting matrix ∈ RNxN , containing the membership
degrees of all N training data samples to the ith rule.

Obviously, the solution in (10) may become unsta-
ble once the matrix RT QiR is of low rank or even sin-
gular. The likelihood for such an occurrence increase
with significant noise levels and especially when bi-
nary variables (containing only either 0s and 1s) are
involved — both is the case in the application of tri-
bological systems, especially the usage of a particular
oil, grooving or friction material type results in bi-
nary inputs (compare with Figure 1). Therefore, it is
indispensable to perform a regularization of the opti-
mization problem in order to assure robust solutions.
The most convenient option is to integrate Tichonov-
type regularization, which leads to the form of classi-
cal ridge regression, see (Hastie et al., 2009) (Chapter
2), which has been also used before in fuzzy systems
training.

Here, we go one step further and employ a gen-
eralization of ridge regression, termed as elastic net
(Hastie et al., 2010), and adopt it for learning of con-
sequent parameters in fuzzy systems. It incorporates
a convex combination of Lasso and ridge regulariza-
tion term, thus its optimization problem in the context
of fuzzy systems consequent training is defined as:

Ji =
N

∑
k=1

Ψi(~x(k))e2
i (k)+λ

p

∑
j=1

(αw2
i j +(1−α)|wi j|)

−→min
~wi

i = 1, ...,C (11)

with λ the regularization parameter and α a parameter
in [0,1], steering the degree of influence of the ’Lasso
term’ ∑p

j=1 |wi j| versus the ’ridge term’ ∑p
j=1 w2

i j
Obviously, the solution representation of the con-

sequent vector ~wi of (11) in a closed analytical form
is given by the (convex) combination of the represen-
tations obtained by Lasso and ridge regression, thus:

~̂wi = (RT QiR+λ1I)−1(RT Qi~y−
λ2

2
sign(~wi)), (12)

with λ1 = λ ∗α and λ2 = λ ∗ (1−α) which results
in a least squares problem with 2p+1 inequality con-
straints, as there are 2p+1 possible sign patterns ∈
{−1,1} for the entries in the consequent parameter
vector ~wi. This can be efficiently solved through a
quadratic programming approach, termed as LARS-
EN, see (Zou and Hastie, 2005).

2.3 Enhanced Symbolic Regression

Symbolic regression is a nonparametric regression
and function discovery method (Koza, 1992), where
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the generated prediction model is a mathematical ex-
pression. An advantage of symbolic regression is
that despite the generated models are able to ex-
press nonlinear relationships, they can be interpreted
and inspected by domain experts (Kronberger, 2011).
Furthermore, because the model is a mathematical
expression, it can be transformed and manipulated,
easily incorporated into expert systems (Affenzeller
et al., 2014) — see Figure 1 for an example.

f (x) = x1x2 +2.5 x2
3 +

x4 +5.0
0.8 x5− x1

Figure 1: Symbolic regression model represented as mathe-
matical expression and the equivalent symbolic expression
tree.

Tree-based genetic programming (GP) (Koza,
1992; Poli et al., 2008), an evolutionary meta-
heuristic optimization method, is commonly used to
solve symbolic regression problems. GP has been
originally developed to evolve solution candidates
that solve a given task without explicitly program-
ming them. In the case of symbolic regression, the
computer programs are mathematical expressions in
the form of a symbolic expression trees predicting the
dependent variable.

2.3.1 Constants Optimization in Symbolic
Regression

An advantage of symbolic regression compared to
other regression methods is that neither the model
structure nor its parameters nor the used variables are
predetermined. As a consequence, solving a symbolic
regression problem can be divided into three separate
but correlated subproblems:

• Selecting the appropriate variables

• Detecting the best suited model structure for the
selected variables

• Determining the numerical constants of a model
structure

Typical symbolic regression systems tend to solve
those three subproblems at the same time by combin-
ing variables, numerical constant and the functions
forming the model structure in the symbolic expres-
sion tree. This has the disadvantage that although the

appropriate model structure and variables are identi-
fied, the model might have a high prediction error due
to wrong numerical constants. For example, when the
function y = 5 x2−x+2 should be identified, a possi-
ble candidate solution f (x) =−2 x2 +2.4 x−3 using
the appropriate variables and model structure would
have a high prediction error due to the wrong numer-
ical constants ([−2,2.4,−3] instead of [5,−1,2]).

One of the first attempts to diminish the effects of
wrong numerical constants has been the introduction
of linear scaling terms in symbolic regression (Kei-
jzer, 2003). For every generated model scaled pre-
dictions in the form of a∗ f (x)+b instead of the raw
predictions f (x) are used for comparison with the de-
pendent variable. Therefore, it is not necessary any-
more to identify the correct scale and offset for the
prediction models, as these can be calculated by a
simple linear transformation. Other methods for de-
termining numerical constants in symbolic regression
range from using heuristic methods such as evolution
strategies (Alonso et al., 2009) or differential evo-
lution (Mukherjee and Eppstein, 2012) to gradient-
based optimization (Topchy and Punch, 2001).

We use a gradient-based optimization method,
similar to (Topchy and Punch, 2001), and combine
it with linear scaling for tuning numerical constants
of symbolic regression models (Kommenda et al.,
2013). The Levenberg-Marquardt algorithm is used
for tuning of numerical constants β by minimizing the
least squares functional: Q(β) = ∑n

i=0 (y− f (xi,β))2 .
Starting from an initial guess for β, which are the cur-
rent numerical values of the expression tree, the con-
stants are iteratively adapted using the current gradi-
ent information w.r.t β that can be efficiently calcu-
lated by automatic differentiation (Rall, 1981). The
Levenberg-Marquardt algorithm only finds a local op-
timum. In combination with evolutionary search, it
leads to a kind of memetic approach, where global
and local optimization is intervened to find better so-
lutions more quickly. The final results of symbolic
regression with constants optimization are more ac-
curate compared to symbolic regression without con-
stants optimization (Kommenda et al., 2013). The
rational behind it is that although fewer models are
generated and evaluated, the search direction for the
algorithm becomes clearer, because it can focus on
building the best suited model structure with appro-
priate variables.

2.3.2 Multi-objective Optimization of Accuracy
and Complexity

Symbolic regression is in general performed as a
single-objective optimization, where only the predic-
tion accuracy of the models is considered as an op-
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Figure 2: Pareto-front evolved by NSGA-II showing the
trade-off between accuracy and complexity for symbolic re-
gression models.

timization objective. This may weaken the com-
pactness and transparency, therefore we switched
from single-objective to multi-objective optimization,
where next to the accuracy the complexity is opti-
mized as well. The result is a whole Pareto-front of
models that shows the trade-off between accuracy and
complexity (Smits and Kotanchek, 2005). An exem-
plary Pareto-front is depicted in Figure 2, where the
accuracy is measured as the correlation coefficient be-
tween the dependent variable y and the model’s pre-
diction f (x) and the complexity is measures as the
symbolic expression tree length.

The non-dominated sorting genetic algorithm
(NSGA-II) (Deb et al., 2002) is used as multi-
objective optimization algorithm to generate the
Pareto-front of symbolic regression models. Similar
to standard genetic programming for single-objective
symbolic regression the models are encoded as ex-
pression trees and initialization, recombination and
mutation work in the same way. Before the prediction
accuracy of a model is evaluated its numeric constants
are improved (see Section 2.3.1) and afterwards its
complexity is calculated. The benefits of this method
are that the generated models are in general simpler,
thus easier to interpret, and the occurrence of bloat
(Poli, 2003), an increase in tree length without accom-
panying accuracy improvement, is less likely.

3 EXPERIMENTAL SETUP

3.1 Test Protocol and Evaluation
Strategy

Cross-validation (CV) was used for validation of the
learning methods over all their tunable parameters
(see subsequent section), whereas a deterministic as-
signment of measurements to folds has been used. We
therefore ordered tests by time and assigned them to
ten folds using a round robin principle. This was nec-

essary in this case as simply shuffling the data would
have delivered a too optimistic CV performance.

The parameter setting achieving the minimal CV
error over the whole parameter grid (see below) was
applied to train a final model on the whole training
data set and to test it on an independent test set —
this was repeated for each of the nine targets (listed in
Table 1).

We use the relative mean of absolute errors
1

Range(y)
1
n ∑n

i=1|yi− ŷi| to express model accurracy on
the separate test data sets. The separate test sets are
drawn from the complete data sets by using the latest
(timely recorded) 30% of all values.

3.2 Parameters for Fuzzy Methods

For the fuzzy modeling variants, the following
parametrization grids has been used within a 10-fold
CV procedure:

• For all methods: iteration over q= {1, ..., p} input
features, either in form of original variables or in
form of principal components (see below): in the
qth iteration, the first q inputs are used for fuzzy
modeling from the ranked list.

• Rob-GenFIS (this paper): iteration over f ac =
{0.5, ...,3.0} in step of 0.35 in order be more or
less conservative in rule evolution criterion; iter-
ation over α = {0, ...,1} in step of 0.1 to balance
lasso versus ridge regression in consequent learn-
ing.

• FLEXFIS (Lughofer, 2008): iteration over vigi =
{0.1, ...,0.9} in order to be more or less conserva-
tive in rule evolution criterion.

• Genfis2 loc (Chiu, 1994) (Lughofer, 2011): it-
eration over radius = {0.1, ...,0.9} (denoting the
range of influence of rules) in steps of 0.1 in or-
der be more or less conservative in rule evolution
criterion.

• LoLiMoT (Nelles, 2001): iteration over
maxNumLL = {1, ...,15} in steps of 1, i.e.
over the maximal number of local linear models
allowed as outcome of the splitting operation.

The dimensionality reduction of the (very) high-
dimensional input space (up to 60 inputs for the var-
ious targets) turned out to be indispensable for pre-
venting severe curse of dimensionality effects and
over-fitting. Therefore, we conducted two variants,
one based on partial least squares (PLS) (Haenlein
and Kaplan, 2004), which transforms the input space
into a principal component space by successively
looking for directions in the data to best explain the
variance in the target, the other performs a ranking
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Table 2: Parameter settings for symbolic regression.

Settings Single-objective Symb. Regr. Multi-objective Symb. Regr.
Algorithm OSGA NSGA-II
Objective function maxR2 maxR2 , min complexity
Constants optim. 10 iterations 5 iterations
Maximum tree length 50 nodes 50 nodes
Allowed functions +, −, ∗, / +, −, ∗, /, ex , log(x)
Allowed terminals constant, constant ∗ variable constant, constant ∗ variable
Population size 1000 1000
Tree Initialization Probabilistic Tree Creator 2 Probabilistic Tree Creator 2
Parent selection Gender specific selection Crowded tournament selection
Crossover probability 100% 90%
Crossover operation Subtree swapping Subtree swapping
Mutation probability 25% 25%

Mutation operations Change node, Shake node+tree, Change node, Shake tree,
Remove and replace branch Remove and replace branch

Termination Generations > 50 Generations > 200
Selection pressure > 100

of the original features based on a modified variant of
forward selection — as also successfully used in (Cer-
nuda et al., 2011) in combination with fuzzy systems
training.

3.3 Parameters for Symbolic Regression

We have tested two variants of symbolic regression,
single-objective symbolic regression using an off-
spring selection genetic algorithm (OSGA) and multi-
objective symbolic regression solved by NSGA-II.
The algorithm parameters of both variants are de-
scribed in Table 2 and have been chosen according
to prior experience with the algorithms. The reason
that parameters have been manually chosen instead of
determining them by using grid-search in combina-
tion with cross validation is that due to the stochas-
tic nature of symbolic regression getting reliable es-
timates of the effects of parameters is hardly possi-
ble. The whole training partition has been used for
learning the symbolic regression models and 50 repe-
titions of each variant have been performed. The most
accurate models on the training partition have been
selected and manually simplified and pruned (Affen-
zeller et al., 2014).

3.4 Parameters for Standard Methods

In order to achieve a fair comparison with related SoA
methods in linear and non-linear regression model-
ing, such as partial least squares (Haenlein and Ka-
plan, 2004), elastic net (Hastie et al., 2010), random
forests (Breiman, 2001), Gaussian process regression
(Rasmussen and Williams, 2006), support vector ma-
chines (Smola and Vapnik, 1997), Gradient boosted
trees (Friedman, 2001) and Gradient boosted trees
(standard) (Friedman, 2001), we varied the most sen-
sitive learning parameters in each of these via a fine
grid and performed the same cross-validation proce-
dure using exactly the same folds as in case of our
methods.

4 RESULTS AND DISCUSSION

4.1 Model Accuracy

Table 3 shows the results achieved for all modeling
methods The values are the relative mean of absolute
errors (MAE in percent) on separate validation data.
The best methods (with lowest perceptual MAE) for
each target over the linear SoA ones, over the non-
linear SoA ones as well as over our enhanced mod-
eling techniques are highlighted in bold font. From
this, it can be quite easily recognized that the linear
methods are outperformed by the non-linear methods
(state-of-the-art and our approaches), which has been
verified in statistical preference analysis tests using
Mann-Whitney test and a (default) significance level
of α = 0.05 (Mann and Whitney, 1947). Furthermore,
the non-linear SoA methods seem to outperform our
proposed modeling techniques for most of the cases
— except for Temp2 where there is a tie between en-
hanced symbolic regression employing NSGA-II and
gradient boosting, however for targets Wear1, CF3,
CF4, and Temp1 there is no statistical evidence for
the out-performance. It is also remarkable that in
four cases enhanced symbolic regression can outper-
form all fuzzy modeling variants, but in other four
cases the new method Rob-GenFIS produces the low-
est MAEs, whereas in two additional targets it also
produces lower MAEs than all other fuzzy modeling
variants.

From first glance, the results seem not to be satis-
factory for our new proposed methods compared to
related state-of-the-art approaches, however an im-
portant issue in our application is to achieve some sort
of interpretability in the model outcomes. Thus, we
performed a deeper investigation of the results, based
on:

1. The compactness of the models measured by their
internal structural complexity (see Section 4.2),
which respects the number of inputs, the number
of components and the number of parameters.

2. The expressiveness power in interpretability of
model structures (Section 4.3).

4.2 Compactness of Models

We examined the compactness of all models achieved
by the various non-linear modeling variants listed in
Table 3. It is represented by the internal structural
complexity of the final model and is elicited by:

• TS fuzzy models: C ∗ (p∗3+1) with C the num-
ber of rules and p the number of inputs; this is be-
cause each rule represents a structural component,
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Table 3: Summary of results for all target variables and all methods that have been tested. The cell values are relative mean
of absolute errors (MAE in percent) on separate validation data; the best methods (with lowest MAE) for each target over the
linear SoA ones, over the non-linear SoA ones as well as over our enhanced modeling techniques are highlighted in bold font.

Algorithm CF1 CF2 CF3 CF4 NVH Temp1 Temp2 Wear1 Wear2

Linear SoA Methods
Constant 17.22 11.99 9.99 11.57 31.18 4.82 16.51 8.46 5.27
Linear Regression 5.70 7.00 8.28 6.79 23.29 4.78 12.56 5.38 3.68
PLS 6.06 6.53 8.02 7.15 23.10 4.61 12.60 5.37 4.48
Elastic Net 5.85 6.83 8.46 7.82 23.90 4.80 13.40 5.24 4.32
Elastic Net + PLS 6.11 6.79 8.66 7.48 24.10 4.80 12.70 5.15 4.11

Non-Linear SoA Methods
SVM-RBF 4.97 5.04 6.90 5.89 16.65 3.78 11.37 5.18 3.52
Random Forest 4.19 5.05 7.22 5.90 17.83 4.20 11.70 4.73 3.32
GPR SEard 4.79 5.18 7.43 6.21 18.62 4.01 12.13 4.78 3.37
GBT 4.56 5.05 7.15 5.83 18.04 4.24 11.81 4.81 3.18
GBT standard 4.44 5.05 7.03 5.64 15.92 3.82 11.61 4.89 3.44

Enhanced Symb. Regr
Symbolic Regr. OSGA 5.34 6.95 8.05 6.72 20.56 4.12 12.08 5.64 3.28
Symbolic Regr. NSGA-II 5.34 6.64 7.75 6.11 20.74 4.42 11.75 5.44 3.18
Fuzzy Modeling Variants
FLEXFIS + FS 5.91 6.73 8.45 7.62 21.30 4.00 12.00 5.30 3.34
FLEXFIS + PLS 10.30 6.16 8.43 20.30 21.00 4.48 11.90 3.48
Rob-GenFIS + FS 5.79 5.56 9.31 7.54 21.90 4.19 14.40 5.92 3.93
Rob-GenFIS + PLS 5.01 5.53 7.94 7.08 19.40 3.94 11.90 5.60 3.36
Genfis2 loc + FS 5.52 5.76 8.73 8.79 24.60 4.19 5.13 3.32
Genfis2 loc + PLS 5.39 5.80 7.96 6.71 21.20 4.13 13.70 5.30 3.54
LoLiMoT +FS 5.85 5.85 8.46 6.34 21.30 4.39 12.10 5.19 3.20
LoLiMoT + PLS 5.61 5.88 7.69 6.93 19.60 4.61 12.60 5.40 3.41

whereas each of the p antecedent parts is com-
posed of two parameters (the input variable and
the assigned fuzzy set with its associated linguis-
tic term) and each consequent part is composed by
a hyper-plane with p+1 parameters (p inputs and
one intercept). This complexity definition shows
up in a structural representation of TS fuzzy mod-
els which is also in full accordance with the repre-
sentation obtained by symbolic regression, as will
be further analyzed in Section 4.3.

• Symbolic regression: the number of operators,
variables and constants in the tree (cf. with Figure
3).

• Support vector machines: C ∗ p with C the num-
ber of support vectors and the p the number of in-
puts; this is because each support vector can be in-
terpreted as one structural component (localizer)
similarly to one rule, whereas each support vec-
tor has only one parameter, namely in form of one
numeric coordinate value.

• Random forests: ∑M
m=1 Cm ∗ (2 ∗ dm) with M the

number of trees in the forest, Cm the number of
leaf nodes (=rules) and dm the depth of the mth
tree (i.e. the number of conditions from the root
to the leaves); in this way, it is also in accordance
to the TS fuzzy model and symbolic regression
tree complexity representation.

• Gradient boosted trees (GBT): the calculation is
done in the same way as for random forest.

• Gaussian process regression (GPR): same calcu-
lation as for support vector machines. The only
difference is that each row is considered as one
structural component (localizer).

In order to combine accuracy and complex-
ity within one value to represent a compact in-
dex for indicating a feasible tradeoff between accu-
racy and complexity, we also investigated an accu-
racy/complexity (A/C) index which is defined by:

ACind =
100−2∗MAE

log(C)
(13)

We applied this measure for the purpose of comparing
the compactness (and thus transparency) of the fuzzy
rule bases obtained by the fuzzy modeling approaches
against each other. In this sense, C denotes the num-
ber of rules plus the number of inputs and MAE the
mean absolute error achieved in the separate test data
set. This measure punishes the accuracy of more com-
plex models, thus the higher its value, the better the
method becomes in terms of representing a good ac-
curacy/complexity tradeoff.

Table 4 shows the internal structural complexity
across all methods, and also the A/C index values
for the fuzzy modeling and symbolic regression ap-
proaches after the slashes in each cell.

The interpretation of this table is obvious: the non-
linear state-of-the-art regression modeling techniques
produce models with extremely huge complexity (at
least a few thousands of parameters in all cases),
which makes them inapplicable for our purposes to
represent transparent and readable models to the ex-
perts. Compared to non-linear SoA methods, the
structural complexity of the symbolic regression mod-
els is much smaller and includes around 50 up to max-
imally 67 nodes for all target variables. The fuzzy
models produced by our new robust method Rob-
GenFIS (and also by FLEXFIS) are slightly larger
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Table 4: Summary of results for all target variables and all non-linear methods that have been tested. The cell values are
the values obtained from the internal structural complexity values as defined in the text, the models with lowest complexity
for each target are highlighted in bold font; for the fuzzy modeling and the enhanced symbolic regression methods, after the
slashes the accuracy/complexity index as defined by (13) is reported.

Algorithm CF1 CF2 CF3 CF4 NVH Temp1 Temp2 Wear1 Wear2

Non-Linear SoA Methods
SVM-RBF 20265 120776 14473 10004 79827 13735 14350 33001 25600
RF 164010 506010 69860 78435 487475 53780 78055 153160 53210
GPR SEard 21385 129890 18040 17876 108035 17999 17876 39040 40896
GBT 267000 267000 267000 267000 267000 267000 267000 267000 267000
GBT standard 721814 745000 708128 703553 739721 709422 706279 744640 744748

Enhanced Symbolic Regr
Symbolic Regr. OSGA 26 / 27.41 48 / 22.24 41 / 22.59 46 / 22.61 43 / 15.65 38 / 25.23 46 / 19.81 42 / 23.74 28 / 28.04
Symbolic Regr. NSGA-II 43 / 23.75 67 / 20.62 36 / 23.58 56 / 21.81 44 / 15.46 47 / 23.68 48 / 19.76 50 / 22.78 49 / 24.06

Fuzzy Modeling Variants
FLEXFIS 96 / 17.40 128 / 18.07 104 / 17.90 144 / 11.95 208 / 10.87 182 / 17.49 130 / 15.65 50 / 23.78
Rob-GenFIS 104 / 19.37 130 / 18.27 21 / 27.63 144 / 17.27 70 / 14.41 182 / 17.70 130 / 15.65 38 / 24.41 48 / 24.10
Genfis2 loc 285 / 15.78 560 / 13.97 160 / 16.57 64 / 20.82 130 / 11.83 1444 / 12.61 95 / 15.94 185 / 17.13 95 / 20.40
LoLiMoT 57 / 21.96 780 / 13.25 301 / 14.83 125 / 17.84 364 / 10.31 10 / 39.43 152 / 14.89 150 / 17.80 171 / 18.12

and in the range of around 100 up to maximal 208
for all targets. The difference between fuzzy models
and symbolic regression are small, such that, together
with the error results in the table above, we can con-
clude that both perform almost equally.

In terms of the fuzzy modeling variants, when
comparing their achieved A/C index values, our
newly proposed method Rob-GenFIS is able to out-
perform the other methods for five targets, whereas
for CF1 and Temp1 LoLiMoT turns now out to be
the best option, although for these two targets Rob-
GenFIS produces the lowest MAEs. On the other
hand, Rob-GenFIS can significantly outperform its
’predecessor’ FLEXFIS for 8 targets. This underlines
that the extension to generalized rules and to an im-
proved, more robust training of consequents (with the
usage of elastic net regularization) pays-off

4.3 Model Interpretation on Structural
Level — Gaining Insights

In case of the well-performing non-linear state-of-the-
art methods, no such insight on structural model level
is possible at all — all models generated by them are
rather appearing as black boxes.

In case of fuzzy models, the interpretable insight
can be achieved through the representation of fuzzy
rules in IF-THEN form (compare with (1)). This
yields some sort of linguistically readable (partial,
local) dependencies between the input variables and
the targets, which can then be associated with pre-
dominant system conditions in certain different op-
eration ranges/modes. This is possible as a fuzzy
model internally provides a granulated viewpoint on
the whole system behavior by partitioning all the in-
puts into several parts with the usage of fuzzy sets,
usually associated with linguistic terms such as LOW,
MEDIUM and HIGH, which are then combined to
form the antecedent parts of the rules. In case when
the fuzzy models are learned from data, the fuzzy

sets and rule antecedent parts can be obtained by the
projection concept (Lughofer et al., 2015) and typ-
ically by also applying some post-operating proce-
dure for removing redundant, significantly overlap-
ping sets/rules (Lughofer, 2013).

We obtained the following five transparent fuzzy
rules with TS-type consequent hyper-planes after
removing three inputs whose partitioning resulted in
one global fuzzy set (which can be associated with
a don’t care part in all rules) and after projecting
the generalized rules to the axes (according to the
projection concept developed in (Lughofer et al.,
2015)) to form standard linguistic fuzzy partitions,
Finally, it ends up with only three antecedent parts
each and a maximum of two fuzzy sets per input
(ON/OFF resp. LOW/HIGH):

Rule 1: IF Source1 is ON and x22 is HIGH and Mat24 is OFF THEN

y = 6.169∗Source1 +0.00205∗ x22−1.113∗Mat24−20.54

Rule 2: IF Source1 is OFF and x22 is LOW and Mat24 is OFF THEN

y = 3.778∗Source1 +0.00013∗ x22−1.973∗Mat24 +2.201

Rule 3: IF Source1 is OFF and x22 is HIGH and Mat24 is OFF THEN

y = 5.705∗Source1 +0.00013∗ x22−2.335∗Mat24 +1.811

Rule 4: IF Source1 is ON and x22 is LOW and Mat24 is OFF THEN

y = 4.176∗Source1 +0.00034∗ x22−0.03488∗Mat24 +1.784

Rule 5: IF Source1 is OFF and x22 is LOW and Mat24 is ON THEN

y = 6.136∗Source1 +0.0002029∗ x22−2.399∗Mat24 +2.069

where the variable y stands for the target ’Wear2’.
The consequents in this form may be interpretable
by experts if she/he is able to associate a physical
meaning of the weighted linear regression formula.
Alternatively, they can be even transferred to linguis-
tic terms as realized in the equivalent tree-structured
representation (Figure 3 left).

In order to obtain a direct valid comparison with
symbolic regression, we transformed this conven-
tional fuzzy rule base representation into a tree struc-
ture in accordance with the conventional tree structure
representation of symbolic regression by still keeping
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Figure 3: Tree-based model structures obtained through fuzzy modeling (left) and symbolic regression (right); all nodes and
assignments of parameters therein are counted to the internal structural complexity.

the correct semantic meaning of the rule base. For
the example above, the corresponding tree is shown
in Figure 3 (left), whereas in (right) the model tree for
the same target (Wear2) spanned by symbolic regres-
sion is shown.

In conventional notation the symbolic regression
model shown in Figure 3 (b) is:

Wear2 = c0 · x19 + c1 ·Mat4 + c2 · x10

+ c8 ·
(
c3 · x17 + x2

17 ·Oil25 · c4
)

· (c5 · x19 + c6 · x10 + c7 ·Grooving4)+ c9

Comparing the two different models shown in Figure
3 it can be observed that the fuzzy model has more
nodes than the symbolic regression model. However,
when determining structural complexity we have not
counted the internal structural nodes ’IF-THEN’ and
’AND’ because they are fixed and can not be changed
by the learning algorithm. In comparison, genetic
programming is free to combine the allowed opera-
tors, functions and their operands in any semantically
valid way. Therefore, we have also counted internal
nodes for symbolic regression models. The symbolic
regression model can be implemented rather easily in
any programming language as it only relies on stan-
dard operators. Implementing the fuzzy model is a
little bit more difficult as it is also necessary to im-
plement the fuzzy inference algorithm which is nec-
essary to interpret the rules correctly.

5 CONCLUSIONS

We have for the first time demonstrated that fuzzy
modeling and symbolic regression can be applied for
empirical modeling of wet tribological systems and
have shown that they can be used successfully for
modeling key metrics of tribological systems. The
errors achieved for nine important targets are signif-
icantly lower than those achieved by linear methods
and similar to those achieved by related non-linear

modeling regression methods. However, 1.) the struc-
tural complexity is much lower (around 100 versus a
few 1000s components) and 2.) the related methods
do not offer any interpretable meaning as appearing as
complete black boxes. Such a high complexity bears
the risk of significant over-fitting. Both of our meth-
ods, fuzzy modeling and symbolic regression can be
represented in tree-based structures, based on which
interpretation is pretty easy (we provided a concrete
example for target ”wear”). Upon such higher level
interpretation possibilities offer by our methods, the
experts and operators working with the system reach
a higher confidence in the models.
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