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Abstract: Mining techniques of infinite data streams often store synoptic information about the most recently observed
data elements. Motivated by space efficient solutions, our work exploits approximate counting over a fixed-size
sliding window to detect distraction events in video. We propose a model that transforms inline the incoming
video sequence to an orthogonal set of thousands of binary micro-streams, and for each of the bit streams we
estimate at every timestamp the count of number-of-ones in a preceding sub-window interval. On window
bound frames, we further extract a compact feature representation of a bag of count-of-1’s occurrences to
facilitate effective query of transitive similarity samples. Despite its simplicity, our prototype demonstrates
robust knowledge discovery to support the intuition of a context-neutral window summary. To evaluate our
system, we use real-world scenarios from a video surveillance online-repository.

1 INTRODUCTION

Instinctive discovery of a context shift in streaming
large volumes of video sequences is a widely studied
problem that has attracted extensive research for the
past dozen years. Change detection is one of principal
interests to diverse real-time application domains, in-
cluding monitoring surveillance feeds, predicting live
weather, tracking stock market fluctuations, and re-
lieving network traffic congestion. Despite its scale
and practical appeal, abnormal event recognition in a
stream remains challenging, as data that arrived be-
fore a change can bias the model towards unsubstan-
tiated characteristics that no longer hold.

Time-varying data streams are of a transient na-
ture and often presented online in a prohibitively
large size. Retaining the entirety of their underpinned
data in an active storage, hence becomes infeasible,
and unless stream elements are processed instantly or
stored, they are disposed of and presumed unaccessi-
ble. Typically, a stream data model allocates a work-
ing space of sufficiently limited capacity for placing
summaries or parts of streams, to facilitate fast re-
sponses in processing continuous queries (Leskovec
et al., 2014). One prevalent approach for stream sum-
marization attaches more significance to recent ele-
ments relative to those entered at a long time past,
and identifies a sliding window of elements arrived
between the current timestamp and some recent time

formerly. To considerably further reduce the mem-
ory footprint required to keep window summaries,
our work explores the concept of maintaining approx-
imate counts in streaming data (Datar et al., 2002;
Arasu and Manku, 2004; Lee and Ting, 2006). Dis-
tinctly, we chose the primitive counting algorithm,
DGIM (Datar et al., 2002), that maintains a time-
based histogram of active 1’s over a bit stream win-
dow, partitioned into exponentially increasing bucket
sizes. A bucket represents a contiguous time inter-
val and is efficiently described by the timestamp of its
most recent end, and the number of ones rendered in
the prescribed period. Bucket creation rules are tai-
lored to trade-off between histogram space require-
ments and the allowable fractional error that tran-
spires in computing approximate counts.

To the best of our knowledge based on published
research to date, our framework is the first to incor-
porate anytime query of approximate element counts,
for telling apart a disruptive event in a sustained video
stream. We operate simultaneously on many thou-
sands of factorizable binary micro-streams that are
created inline, and abide by a uniform arrival data-
rate and a consistent time interval between elements.
As each micro-stream temporally links inbound frame
pixels of a spatially identical, two-dimensional co-
ordinate set. At every window frame boundary, we
further coalesce individual micro-stream summaries
into an extremely compact representation of a bag of
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count-of-1’s occurrences. Our work closely leverages
information retrieval (IR) practices, letting window
feature vectors perceived as directions (Baeza-Yates
and Ribeiro-Neto, 1999) that follow efficient cosine
similarity calculations, directly from the well known
Vector Space Model (Salton et al., 1975).

The main contribution of our work is a high-
performance software prototype that devises to keep
an exceptionally compressed rendition of a window
summary. Our learning model is able to make more
informed decisions by classifying distractions over
potentially a cascade of many retained instances of
past windows, as it gains from expanding on the sin-
gle window visibility that reasons similarity in the
time span defined between the current and previous
windows. Furthermore, to conform to real-time query
responses as new video frames arrive, our system is
designed to update bucket properties of all micro-
streams concurrently. Thus efficiently subscribing to
the processing step implied by the requisite of satis-
fying DGIM bucket terms, evidently the most inten-
sive compute task in our pipeline. To evaluate our
framework, we use real-world datasets obtained from
the Video Surveillance Online Repository (ViSOR)
(Vezanni and Cucchiara, 2010; ViSOR, 2010).

2 APPROXIMATE COUNTING

In this section, we briefly overview the DGIM algo-
rithm (Datar et al., 2002) as it pertains to a single bi-
nary micro-stream. At its core, the sliding window
model continuously maintains active statistics over
the recently observed N data elements of the stream,
as each element expires after exactly N time steps.
An element is identified by an absolute frame arrival-
time, and has a timestamp that corresponds to its rela-
tive position in a window. The DGIM method uses an
effective histogram data structure to represent a win-
dow, and provides at anytime a response time of O(1)
for querying the estimated count of ones in the most
recent k bits, for any 1≤ k ≤ N. A histogram bucket,
b, is defined by both the timestamp modulo N of its
most recent one arrived, ts, and the count of ones it
contains, denoted henceforth as the bucket size, |b|,
that must be a power-of-2 number. Storage wise, to
retain a bucket we need log2 N bits for the timestamp
and log2 log2 N bits for the size, thus a memory area of
O(logN) bits suffices. On the other hand, there are at
most two buckets of all sizes from log2 N down to one,
and no buckets of larger sizes. With O(logN) buckets,
each of O(logN) bits, the total space required for all
the buckets representing a window of size N elements
is therefore O(log2 N) bits.

time 25 40 47 52 55 58 60 61 62 63 64 65

timestamp 25 0 7 12 15 18 20 21 22 23 24 25

bucket size 
distribution

8 8 4 2 2 1 1

8 8 4 4 2 1

8 8 4 4 2 1 1

8 8 4 4 2 2 1

8 8 4 4 2 2 1 1

8 8 4 2 1

Figure 1: Satisfying DGIM rules: showing both arrival-time
and timestamp for a window of N = 40 bits. Current time is
60, and at positions 61 through 65, a series of 1’s appear in
the stream. Bucket size adaptation often involves the merger
of two adjacent buckets of the same size into one bucket of
twice the size. The timestamp of the new bucket is the more
recent of the bucket pair.

A guiding principle in constructing the bucket rep-
resentation of a stream window as a series of (ts, |b|)
pairs, states that every position with a one must be
in some bucket, but in no more than a single bucket.
As a new bit element arrives, we follow these steps to
modify the histogram and satisfy the DGIM rules:

• First, we check the earliest bucket. If its times-
tamp reached N + 1, the bucket has expired and
dropped from the list.

• No change is required for a new data element of
0. Otherwise, we create a new bucket with the
current timestamp and a size of one.

• We then traverse the bucket list in a non-
decreasing size order. If there are more than two
buckets of the same size, we merge the earliest
pair of buckets into a single bucket of twice the
size, and its timestamp set to the more recent of
the two buckets.

The last step may unfold into a chain of bucket
merges, limited however to at most log2 N unique
bucket sizes. Figure 1 further illustrates bucket size
adaptation in a real-world scenario, as new bits ap-
pear in the stream. Respectively, at time 65, bucket
(25,8) falls out of the window and is thereby dropped.
As three buckets of size one are formed, we combine
the leftmost two, (24,1) and (23,1), and replace them
with bucket (24,2). This leads to three buckets of
size two, thus merging (22,2) and (20,2) into (22,4).
Consequently, three buckets of size 4 arise and we
unite (15,4) and (7,4) to create (15,8). Merging
two adjacent buckets of identical size requires con-
stant time and hence, a new data bit can be efficiently
processed in O(logN).

At any time step, to produce an estimate of the
count of active ones in the last k bits of the window,
for some 1 ≤ k ≤ N, we locate the bucket with the
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earliest timestamp that includes at least some of the
k most recent bits. The approximate count of ones
becomes the sum of the sizes of all the succeeding
buckets, plus half the size of the earliest bucket. The
absolute error, ε, in this estimate is hence no greater
than 50% of the earliest bucket size. By increasing
the number of buckets, r, for each size (r > 2), we
introduce more buckets of smaller size and the error
is therefore upper bounded by 1/(r−1). This prop-
erty is essential and implies that choosing sufficiently
large r limits the error to any suitable fraction ε > 0.

3 DISTRACTION DETECTION

Before we detail the steps to learn counting features
in a self-sustained time-series, we introduce some no-
tation. The incoming frame-based video is best inter-
preted in our system as a macro-stream represented
by a matrix S of separable binary micro-streams,
each proceeding along the time course of a respec-
tive frame pixel. Given the uniform frame extent of
width n and height m, the total number of micro-
streams our system maintains and queries simultane-
ously for approximate counts is hence n×m. Spa-
tially, we denote a temporal micro-stream, si j, where
1≤ i≤m and 1≤ j≤ n (Figure 2). Correspondingly,
we define a count matrix, Cw, we sample at successive
window-bound frames ∈ {N,2N, ...,WN}, where W
is the maximum admissible integral number of win-
dows delimited by the length, in frames, of the input
video sequence, as w takes running window indices
∈ {1,2, ...,W}. Elements ci j of the count matrix, cap-
ture the estimate of count of ones in the k frames
preceding the current window boundary, for each bi-
nary micro-stream, respectively. Incidents of identical
counts in Cw, each in the [0,k] range, are summed and
further binned into a compact bag of words vector,
Vw, of a reduced dimensionality |Vw| = k + 1. Vw is
of linear O(k) storage and provides for both efficient
similarity computations, and for retaining an extended
past of window summaries.
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Sliding Windows

m

n

Frames

𝑠𝑚𝑛 = {1,1,1, … , 0,0,1}

𝑠00 = {1,0,1, … , 1,1,0}

Figure 2: Sliding window visualization of the incoming bi-
nary converted macro-stream, highlighting the time course
expansion of bits for micro-streams s00 and smn.

Our process for analyzing distraction events in a
macro-stream, commences with the extraction of win-
dow bound features, as outlined in Algorithm 1. Ev-
ery video frame that enters our pipeline is first bi-
nary converted from a gray-scale or color format by
constructing the frame intensity histogram and apply-
ing pixel-level thresholding. A newly arrived frame is
timestamped modulo N, and is thereafter interpreted
as an m by n array of new bits, each corresponding to
the spatially matching micro-stream, si j. At its out-
set, the baseline of a new frame launches a concur-
rent bucket update for maintaining the DGIM rules,
and affects the entire collection of micro-streams, si j.
We determine a window boundary, after an initial la-
tency of N frames and for every N frames that fol-
low, by testing timestamp modulo N for zero. At win-
dow markers, we query the estimated count of ones
for the past k frames from each micro-stream, si j, and
respectively fill the cells, ci j, of our window specific
count matrix, Cw, simultaneously. Lastly, we perform
a reduction operation on the current count matrix that
leads to our compressed window feature vector, Vw.
The number of active past windows, W , for retaining
window feature vectors, prescribes a fixed time inter-
val to learn distractions from, and is either derived
directly, or set as a not-to-exceed system level param-
eter for an infinite video sequence.

Algorithm 1: Window Feature Extraction.

1: input: frame f , window N, frames-of-interest k
2: output: window feature vector V ← /0
3: timestamp← index( f ) mod N

4: for i = 1 to m do
5: for j = 1 to n do
6: update-bucket(si j, threshold( fi j))
7: if not(timestamp) then
8: ci j← query(si j,k)
9: end if

10: end for
11: end for
12: if not(timestamp) then
13: V ← bag-of-counts(C)
14: end if
15: return V

For detecting distraction, we match features of
the sampled windows at integral multiples of N
frames, by computing a single-term form of simi-
larity between the pair of the current and previous
window representations. Our window properties are
inherently directional and are distributed in a non-
Euclidean space, hence we chose cosine similarity
(Salton et al., 1975; Baeza-Yates and Ribeiro-Neto,
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1999) as the distance metric that measures the angle
between the two window-bound feature vectors

simw =
Vw ·Vw−1

‖Vw ‖2‖Vw−1 ‖2
, (1)

where w is the running index of the current window,
such that w ≥ 2. In addition to the window feature
vector, Vw, we also retain the point similarity measure,
simw, that requires O(1) storage space, per window.
In its basic embodiment, our system alerts a distrac-
tion event on a window edge, as the point similarity
value computed exceeds a globally specified thresh-
old parameter, τ. Conversely, by maintaining a series
of distances for formerly evaluated window pairings,
we fit discretized similarity samples of multiple past
windows onto a curve. We could then use a more gen-
eralized version of the dynamic time warping algo-
rithm (Efrat et al., 2007), for matching a pair of par-
tially overlapping similarity curves, each comprised
of an identical distance sample-count.

4 EVALUATION

To evaluate our system in practice, we have imple-
mented a software prototype that realizes the con-
cept of maintaining stream statistics over sliding win-
dows, for effective distraction detection. A distraction
marks an abrupt shift in a stable context that typifies
the input stream, and may last up to a few seconds.
We use OpenCV to capture real-world surveillance
video and feed each frame to our processing pipeline,
designed with the objective to keep up with incoming
frame rate. For conciseness, we use the compact nota-
tion λ(N,k) to describe our parametrically driven im-
plementation, and seek to analyze the impact of vary-
ing model parameters on our system performance.

4.1 Experimental Setup

One indispensable resource for practitioners in the
field of analyzing surveillance video is the pub-
licly accessible, Video Surveillance Online Reposi-
tory (ViSOR) (ViSOR, 2010). ViSOR is highly exten-
sive and offers over a dozen of surveillance datasets
acquired by tracking both indoor and outdoor en-
vironments for many hours, and captured by either
static or dynamic settings of single and multi camera
installations. The video sequence footage produced is
available in either a compressed or an uncompressed
format, and may optionally contain companion anno-
tation meta-data (Vezanni and Cucchiara, 2010) for
use as a ground-truth reference. In our experiments,

we employed three surveillance streams from the Vi-
SOR dataset of the Unimore university that surveyed
the near outdoors of several campus buildings. The
properties of the sequences, we henceforth denote as
visor i, where i ∈ {1,2,3}, are further listed in Ta-
ble 1. Our experimental videos are natively MPEG-
1 compressed, they share a uniform frame resolu-
tion that translates to 98,304 micro-streams for each,
and frames are presented in a single-component gray-
scale format. The filed length of the videos varies
from over two to about seventeen thousand frames,
and facilitates a reasonable sampling rate for learning
window bound features.

Table 1: Properties of the three ViSOR surveillance se-
quences we use in our experiments. They track the near
outdoors of a confined Unimore campus area by deploying
a multi camera setup.

visor 1 visor 2 visor 3
Width 384 384 384
Height 256 256 256
Frames 2631 8661 17078
FPS 25 25 25

(a) visor 1 (1:40). (b) visor 2 (3:00). (c) visor 3 (5:06).

Figure 3: Distraction snapshots of people entering the field-
of-view of the static camera, shown for each of the ViSOR
sequences (in minutes into the video from start).

Our experimental videos track a fairly benign and
mostly static background (Table 1), as one or several
persons walk or rush their way and occasionally enter
and thereafter exit the camera field-of-view, to estab-
lish a scene distraction (Figure 3). ViSOR test streams
are supplemented by concept data that is rather ab-
stract, and to serve a useful ground-truth in our evalu-
ation required us to manually assemble pertinent tim-
ing information. We have thus extended the ViSOR
meta-data by hand annotating occurrences of distrac-
tion, linking each record to a scene in-and-out time-
interval. Intervals are inherently non-overlapping and
their endpoints assigned absolute frame timestamps.
From our ViSOR videos, we singled out 14, 7, and 44
events of interest, respectively, along with their dis-
tinct intervals (see APPENDIX).

Our experiments ascribe a discrete value set to
each of our model parameters, N and k, listed in Ta-
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(a) visor 1: W = 26 windows. (b) visor 2: W = 86 windows. (c) visor 3: W = 170 windows.

Figure 4: Visualization of temporally distributed, window-bound feature vectors, Vw, extracted for stream counting parameters
N = 100 and k = 50. Presented as a height field over a two-dimensional grid, (W,k+1), and shown for each of our ViSOR
experimental sequences.

Table 2: Experimental parameter selection of window size,
N, in frames, and k, the number of past frames, or prior bits
in the context of a micro-stream, to query an approximate
count of ones.

Window (N) Query (k)
100 10 20 50
200 20 50 100
500 50 100 250

ble 2. For each window length choice, N, there are
three query period selections, k, that range propor-
tionally between 10 to 50 percent of the window size.
Ultimately, we seek the proper design trade-offs in
choosing both intra and inter window parameter pair-
ings, to improve the system success rate for detect-
ing distraction. For the current implementation, we
present results pertained to our point based similar-
ity approach, however, extending to similarity curve
matching (Efrat et al., 2007) is outside the scope of
this study and is deferred to future work.

4.2 Experimental Results

In a system of similar goals as ours, exercising overly
conservative and more cautious practices is often de-
vised for signaling a distraction event in a stream.
The percentage of false positives we encounter is di-
rectly related to the choice of our similarity threshold
value, τ, thus subscribing to more unintentional event
triggers with a lower τ. To properly adapt to action
choices taken upon alert, we made similarity thresh-
old setting a user tunable. On the other hand, attend-
ing to false negatives and sustain a reduced miss rate
is of a taller order in our design. False negatives are
primarily impacted by the error bound to the approx-
imate count of ones we solicit from a micro-stream,
and is inversely proportional to the number of occur-
rences set for the same bucket size, r. For our ex-
periments, we configured the construction of the time
histograms with r = 2, to yield a worst-case counting
error, and report next results that score both the iden-

tifying and misinterpreting distraction events in our
ViSOR samples.

First, we validated the temporal evolution of our
approximate count features in a macro-stream. A sur-
face visualization of the extracted window vectors,
Vw, is shown for each of the three ViSOR sequences,
with W = {26,86,170} progressive windows, respec-
tively, as model parameters, (N,k), are assigned uni-
formly to (100,50) (Figure 4). The height field is ren-
dered over a two-dimensional regular grid, (W,k+1),
and cells depict each a scaled count value, aligned
with elements of the unnormalized feature vectors.

Rather than explore post-threshold results that are
notably less informative, we present unsolicited point
similarities. Given the non-negative elements of our
bag-of-counts window features, Vw, the cosine simi-
larity term produces a value bound to the [0,1] range.
To improve clarity of our reporting, we resort to the
more intuitive metric of cosine distance instead, that
attributes greater distraction, or dissimilarity, to a
higher value. For every ViSOR surveillance video,
Table 3 outlines a curve of point dissimilarities, each
for a pair of window feature vectors, (Vw,Vw−1), as a
function of an ascending window id, and factored by
our test choices of model parameters, (N,k). Along
with Table 4 that provides a complementary matrix
form for summarizing the number of identified in-
cidents obtained from each stream, as a function of
our model parameter choices. Predicted distraction
instances are further correlated with our hand anno-
tated, ground-truth interval data. Every interval rep-
resents a double-edged incident, with distractions oc-
curring upon entry to and exit from the camera field-
of-view, respectively. An interval either overlaps two
or more windows, a form that fits well our current-
to-previous count matching model, or may entirely be
confined to a single window and occasionally give rise
to missing events. To properly account for precedence
of false negatives, we chose the F1-score metric to
assess our system-level distraction detection, as out-
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Table 3: Curve outline of point dissimilarities, each for a pair of window feature vectors, (Vw,Vw−1), as a function of an
increasing window id. Factored by each of our experimental choices of model parameters, (N,k), and shown for each ViSOR
surveillance video.
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Table 4: Distraction occurrence prediction shown as 3x3
matrices for our N by k choices (Table 2), for each of the
ViSOR sequences.

N visor 1 visor 2 visor 3
100 15 13 15 24 24 18 67 54 34
200 7 8 9 18 20 16 51 47 48
500 3 2 2 9 10 8 18 13 16

lined in Table 5 for each of the ViSOR videos. For ref-
erence, Table 6 provides confusion matrices for each
of our videos, as we set false positives uniformly to
zero since they incur little impact on system perfor-
mance. Evidently, the end-to-end F1-score improves
as the stream length increases, and not surprisingly,
both a narrower N for denser sampling of window fea-
tures, and a smaller k for the more recent frames used
to query counts, ameliorate our anomaly hit rate.

Table 5: F1-score measure for system-level distraction de-
tection, for each of the ViSOR video sequences.

visor 1 visor 2 visor 3
0.69 0.73 0.86

Table 6: Confusion matrices of two-class classification for
stream counting parameters N = 100 and k = 10, for each
of the ViSOR video sequences.
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Our system provides for comparing performance
of our pixel-based time histogram with a more base-
line approach of a frame-based intensity histogram.
For this experiment, we retained a window-worth of
intensity histograms that we construct every frame

right before performing binary thresholding. We con-
sidered 256 bins and computed the mean of the his-
tograms over a window of N frames to extract a win-
dow feature vector of cardinality |Vw|= 256. Notably
for the baseline method, we observed an appreciable
increase of false negatives by about 43% on average
across our ViSOR videos. Incurring this higher miss
rate owes primarily to a suboptimal baseline repre-
sentation that severely compromises the stream data.
Rather, our approach decomposes a video into many
thousands of signals processed individually, to closely
preserve the integrity of the original macro-stream
and thus facilitates more robust discovery of distrac-
tion patterns. Computationally, our method with time
complexity O(mn logN) naturally entails more load
when executed serially, however, a parallel GPU con-
cept that assigns a thread to each of the micro-streams
is capable of a markedly O(logN) lower bound.

Table 7: Average frame rate (FPS) and average micro-
stream processing (uSP) time in microseconds as a func-
tion of modified model parameters, (N,k), for each of our
experimental ViSOR video streams.

visor 1 visor 2 visor 3
N k FPS uSP FPS uSP FPS uSP
100 10 12.57 0.72 16.51 0.55 11.48 0.79

20 11.23 0.81 18.31 0.49 12.06 0.75
50 10.86 0.83 19.34 0.47 12.73 0.71

200 20 10.85 0.83 14.98 0.60 11.23 0.81
50 10.17 0.89 18.04 0.50 11.01 0.82
100 10.38 0.87 18.47 0.49 11.49 0.79

500 50 10.40 0.87 14.16 0.64 10.00 0.90
100 9.31 0.97 17.56 0.51 9.17 0.99
250 9.30 0.97 17.60 0.51 9.18 0.98

In Table 7, we provide computational runtime of
our implementation, listing for each of the experimen-
tal ViSOR videos the average of both the frame rate
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Table 8: A distraction event in the visor 3 video that arises as a result of a moving white vehicle (outlined in red) that traverses
the camera field-of-view from right to left in about a second and totals 25 frames of exposure. The event interval starts at
about frame number 5322 and shown are samples captured on three-frame successions.

5325 5328 5331 5334 5337
frame number

(FPS) and micro-stream processing (uSP) time, mea-
sured in microseconds, as we alter our model param-
eters, (N,k). There is a clear monotonic decrease in
performance as we increase the window size, N, at a
rate that is close to the ratio logNi−1/ logNi, where i
associates with the current window-size setting. How-
ever, the runtime depends rather weakly on the model
parameter k, as both the check for bucket expira-
tion and the query of approximate counting are pro-
cessed efficiently. We demonstrate the highest perfor-
mance on visor 2, and this is mainly attributed to its
fairly sparse and temporally low distraction density of
1250 frames-per-event (FPE) on average, compared
to an FPE of 188 and 38 for visor 1 and visor 3, re-
spectively. Noteworthy in this report is the observed
quadratic impact of the surveillance camera resolu-
tion on our running time. To further address high def-
inition video, our implementation is capable of task-
ing groups of micro-streams concurrently and sustain
a required real-time response for notifying distraction
occurrences as they continuously develop.

Distraction events in our ViSOR test sequences
are mostly typified by the motion of humans (Figure
3). However, they also occasionally manifest them-
selves by vehicle passing that transpires in the some-
what far background of the monitored area. Figure 8
depicts such a scenario in the visor 3 video where a
white vehicle moves across the camera field-of-view
right-to-left and thereof constitutes a valid distraction
instance. This event starts at around frame number
5322 and lasts about a second for a total exposure of
25 frames, with samples shown for every third frame.
Vehicular based events either occur autonomously or
may coincide with a human triggered event. Semanti-
cally, our system interprets both event types equally
and makes no attempt to distinguish between them
in processing a distraction alert. We avoided hand-
annotating vehicular episodes in the meta-data of our
experimental videos, and unless a human distraction
occurrence overlaps with a vehicular one, the event is
presumed false positive.

5 RELATED WORK

Over the past decade, a wide range of diverse schemes
were proposed for automating abnormal event de-
tection in surveillance videos. Among some of the
many algorithms considered in published literature
are techniques that incorporate optical flow, including
a Markov Random Field model that divides the video
into a graphically linked grid of spatio-temporal lo-
cal regions to facilitate probabilistic motion patterns
(Jaechul and Grauman, 2009), and the more recent
research that analyzes compressed domains by con-
sulting codec-dependent meta-data to provide more
accurate object boundaries (Li et al., 2014). To ad-
dress complex events, Chen et. al (2015) proposed
a hypergraph based semi-supervised learning method
that blends motion features with semantic concepts.
Compared to techniques that deploy ordinary graphs,
they report better average precision and recall for de-
tecting multiple moving targets. More data driven is
the spectral clustering method that utilizes an eigen-
vector selection to discover natural grouping patterns
(Xiang and Gong, 2008). Whereas a device specific
work by Shimada et. al (2015), embodies a stream
originated by a light-field camera to create and up-
date a light-ray background model that changes dy-
namically, and demonstrates advantage over a single-
view camera. At a higher level of abstraction, Lee
and Nevatia (2014) sought after a tool that uses shape
based approach to validate whether an identified ab-
normal event was triggered by a human or not.

Most of the techniques discussed for detecting
change in an infinite stream tend to build explicit and
often oversubscribed models to associate with many
normal events, thus making a distraction hard to de-
fine. Our work rather compares a current event with
the rest of the events observed (Zhong et al., 2004),
and furthermore, by rendering the video as a col-
lection of opaque bit streams, it makes no prior be-
havioral assumptions and neither subscribes to visual
context dependencies.
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6 CONCLUSIONS

We have demonstrated the apparent potential in tailor-
ing approximate counting to effectively detect distrac-
tions in unbound surveillance videos, with little hu-
man counseling. Our highly compact bag-of-counts
representation is scalable and provides learning of
many windows that outline a deeper past, to facilitate
the expansion of the more conventional, point similar-
ity approach. Running on an unoptimized prototype
version, the obtained sustainable throughput of about
half the input frame-rate on average, consistently on
all of our experimental videos and the full extent of
model parameter settings, provides for real-time ap-
plication compliance.

A natural progression of our work is to reduce the
absolute counting error by introducing more smaller
buckets for constructing the time-based histogram
over a window, and improve overall detection rate.
Rather than a step function that characterizes window
transitions in the current implementation, the use of a
tapered sliding window offers overlapping windows,
as frames gradually enter and exit the window, to fur-
ther assist and lower distraction misses.
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APPENDIX

Our meta-data for hand annotated time intervals that
capture distraction instances from each of our ViSOR
sequences are listed in Table 9.
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Table 9: Hand annotated, in-and-out time intervals that capture distraction events from each of our ViSOR sequences. Interval
endpoints and duration are shown in a minutes:seconds format, as intervals extend to either wholly or partially cover one up
to four windows.

visor 1
event in out duration

1 0:02 0:03 0:01
2 0:18 0:20 0:02
3 0:27 0:28 0:01
4 0:29 0:30 0:01
5 0:40 0:42 0:02
6 0:45 0:47 0:02
7 0:49 0:50 0:01
8 0:51 0:55 0:04
9 0:58 1:02 0:04

10 1:04 1:07 0:03
11 1:17 1:18 0:01
12 1:33 1:35 0:02
13 1:36 1:37 0:01
14 1:40 1:41 0:01

visor 2
event in out duration

1 0:04 0:05 0:01
2 0:55 1:00 0:05
3 1:03 1:06 0:03
4 2:01 2:03 0:02
5 2:10 2:12 0:02
6 2:17 2:20 0:03
7 2:54 3:02 0:08

visor 3
event in out duration

1 0:02 0:03 0:01
2 0:07 0:09 0:02
3 0:17 0:20 0:03
4 0:55 1:01 0:06
5 1:29 1:30 0:01
6 1:51 1:53 0:02
7 1:59 2:06 0:07
8 2:16 2:19 0:03
9 2:29 2:35 0:06

10 3:00 3:03 0:03
11 3:18 3:21 0:03
12 3:48 3:51 0:03
13 3:57 3:59 0:02
14 4:10 4:13 0:03
15 4:27 4:31 0:04
16 4:32 4:34 0:02
17 4:42 4:46 0:04
18 4:49 4:51 0:02
19 4:59 5:02 0:03
20 5:05 5:14 0:09
21 5:38 5:40 0:02
22 5:44 5:47 0:03
23 5:54 5:56 0:02
24 5:59 6:02 0:03
25 6:20 6:23 0:03
26 6:38 6:45 0:07
27 6:49 6:52 0:03
28 7:01 7:04 0:03
29 7:08 7:11 0:03
30 7:24 7:25 0:01
31 7:28 7:31 0:03
32 7:44 7:45 0:01
33 7:47 7:50 0:03
34 7:57 8:00 0:03
35 8:04 8:05 0:01
36 8:07 8:10 0:02
37 8:22 8:24 0:02
38 9:16 9:21 0:05
39 9:53 10:03 0:10
40 10:08 10:11 0:03
41 10:26 10:31 0:05
42 10:54 10:57 0:03
43 10:58 11:00 0:02
44 11:13 11:16 0:03
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