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Abstract: We describe a novel approach to the evolution of whole-body behaviours in the Nao humanoid robot using a 
multi-simulator approach to the alleviation of the reality gap issue.  The initial evolutionary process takes 
place in the V-REP simulator.  Once a viable whole-body motion has been evolved, this evolved motion is 
subsequently transferred for testing onto another simulation platform – Webots.  Only when the evolved 
kicking behaviour has been demonstrated to also be viable on the Webots platform is this behaviour then 
transferred onto the real Nao robot for testing. This eliminates the time-consuming process of transferring 
behaviours onto the real robot which have little chance of successfully crossing the reality gap, and also 
minimises the potential for damage to the real Nao robot and/or it’s environment.  By using this novel 
approach of employing two different simulators, each with its own individual strengths and weaknesses, we 
reduce the likelihood that any individual behaviour will be able to exploit individual simulators’ weaknesses, 
as the other simulator should pick up on this weak point.  Using this procedure we have successfully evolved 
ball kicking behaviour in simulation, which has transferred with reasonable fidelity onto to the real Nao 
humanoid.  

1 INTRODUCTION 

The field of humanoid robotics addresses the creation 
of mobile robots that are broadly humanlike in their 
gross anatomy and/or aspects of their behaviour. 
Humanoid robots have several advantages, not least 
of which is their potential ability to operate in 
environments designed for humans, thus potentially 
having the ability to handle tasks that may be time-
consuming, distasteful, or even dangerous for humans 
to perform (Eaton, 2015).  

A robot in common use today by researchers into 
human-like behaviours is the Nao humanoid robot 
from Aldebaran Robotics (Gouaillier et al., 2009).  
This robot has up to 25 degrees of freedom and stands 
58cm tall.  A version of this robot is used in the 
RoboCup Standard Platform League (SPL), with the 
eventual avowed aim of producing, by the year 2050 
a humanoid robot team that will be able to take on 
(and beat) the current human World Cup champions 
(Kitano and Asada, 1998) (Kitano et al., 1998).  
Central, of course, to being able to take up this 
challenge is the development of an effective kicking 
action, which is the area we address in this paper.  

While some work has been done to date on the 
automatic generation of kicking motions through 
parameter optimisation or other means (e.g. 
(Jouandeau and Hugel, 2014) ,(Li et al., 2015)), little 
work has been done on the direct evolution of 
individual joint motions for the robot, which is the 
approach we take. In general the field of evolutionary 
robotics seeks to evolve some, or all aspects of a 
robots controller and/or morphology (Nolfi and 
Floreano, 2000), (Bongard, 2013).   

Much of the work in the area of generating soccer-
centric skills has involved simulated robots for the 
RoboCup3D simulation league (Depinet et al., 2014), 
however our emphasis is on the evolution of 
behaviours which can be transferred effectively onto 
the real robot.   

1.1 The “Reality Gap” Issue 

A major issue that arises in this regard is the so-called 
“reality gap”; that is the potential disparity between 
evolved (or otherwise generated) behaviours in 
simulation, and their actual implementation on the 
real robot. This can be of particular importance in the 
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evolution of behaviours for multi-jointed robots with 
many degrees of freedom, as in the case discussed in 
this paper. Various approaches have been taken to 
alleviate this issue, including the transferability 
approach (Koos et al., 2013), the grounded simulated 
learning approach (Farchy et al., 2013), the 
leveraging multiple simulators approach (Boeing and 
Bräunl, 2012), combining evolution in simulation 
with pre-programmed behaviours (Duarte et al., 
2012), using an EA to tune the parameters of a 
simulator (Laue and Hebbel, 2009), fitness function 
correction interleaving simulated and real data 
(Iocchi et al., 2007), coevolution of controller and 
simulator (Lipson et al., 2006), (Bongard and Lipson, 
2004), the “back to reality approach” (Zagal and 
Ruiz-Del-Solar, 2007), (Zagal et al., 2004), the online 
adaptation approach (Floreano and Urzelai, 2001), 
the envelope of noise approach (Jakobi, 1997a), 
(Jakobi, 1997b), and scaled experimentation (Eaton, 
2015).  

Although there has been work done to date on 
leveraging the effects of multiple physics simulators 
(Boeing and Bräunl, 2012), (Boeing, 2009) for 
evolutionary robotics experiments, to our knowledge 
this is one of the few, if any, which utilises the 
advantages of using multiple simulation packages, 
rather than just the core physics engines.   

1.2 Simulators used — Webots and 
V-REP 

The two simulation packages we use are Webots 
(Michel, 2004) and the Virtual Robot 
Experimentation Platform (V-REP) (Freese, 2010).  
Both of these packages have been used extensively in 
the simulation of a wide variety of robots including  
wheeled and legged robots of a variety of types, and 
also for the simulation of humanoid robots.  Webots, 
which in original form dates from 1996, is one of the 
longest running simulators in continuous 
development suited for the detailed simulation of 
complex robotic environments.  V-REP  is a more 
recent arrival dating from around the start of this 
decade, and which describes itself as the Swiss army 
knife among robot simulators; an example scene from 
the V-REP simulator is given in Fig. 1.  Regarding 
physics engines Webots relies on the Open Dynamics 
Engine (ODE), while V-REP provides a choice of 4 
engines, ODE, the Bullet physics library, the Vortex 
Dynamics Engine and the Newton Dynamics engine. 
For the work described here we utilise the Bullet 
physics engine. 

1.3 Overall Approach 

 Our approach, then, is to run the evolutionary 
experiments on a simulated Nao robot in the V-REP 
package, and then to transfer successfully evolved 
controllers into the Webots environment for further 
testing and validation of their overall performance. 

One advantage of our approach is that it is 
unlikely that simulation weaknesses that would 
manifest themselves on one simulator would occur on 
the other , and vice versa.  Another advantage of our 
approach is that while Webots is a proprietary 
simulation package, a fully functional version of V-
REP is freely available for non-commercial use.  We 
have observed through experimentation that a 
significant proportion of behaviours evolved using 
the V-REP platform do not transfer successfully to 
the real Nao robot.  As the process of transferral to the 
real robot can be quite time-consuming , and as the 
potential for damage to the robot and/or its 
environment on execution of an incorrectly evolved 
motion involving quite rapid whole-body motion 
such as kicking is nontrivial, it is highly desirable 
only to transfer motions to the real Nao robot which 
have a high probability of success.   

We have observed that it is very unlikely that a 
behaviour  evolved in V-REP, but that fails to operate 
successfully in Webots will transfer onto the real 
robot with any degree of fidelity, however if validated 
in the Webots simulator a high percentage should 
transfer with reasonable accuracy.  Preliminary 
experimental verification of this observation is 
discussed in section 3. 

Another advantage is that while similar models of 
the Nao robot are used in each simulator, there are 
certain differences.  For example, it is known that 
certain problems exist in the precise positioning of the 
centre of mass (COM) of some parts of the simulated 
Nao in V-REP.  Again, by using multiple simulators 
the expectation is that exactly similar problems will 
not exist in all simulators. 

While the work in (Boeing and Bräunl, 2012), 
(Boeing, 2009) involved a parallel evolutionary 
process, with each individual being tested in parallel 
on several physics simulators, and the results 
obtained from the evaluations being combined to 
generate an overall fitness for the individual, we 
employ a serial evolutionary process, with each 
individual in a generation being evaluated initially on 
the V-REP simulator as part of the evolutionary 
process.  Only successful individuals are then 
transferred to the Webots simulator for validation of 
their performance before being then transferred to the 
real robot. 
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Figure 1: An example scene from the V-REP simulator.  On 
the far left are examples of some of the robots that can be 
simulated, next to this is the scene hierarchy for the current 
scene, on the right is an example of an evolved kick.  

2 FITNESS FUNCTION 

For the evolution of ball-kicking behaviour we base 
our fitness function f on the distance travelled by the 
ball in the forward direction in the time allowed for 
each evaluation cycle.  If the robot falls over mid-
cycle we base the fitness on the distance travelled by 
the ball until the robot falls.  This is to encourage 
stable and replicable kicking motions which should 
not cause undue strain to the real robot when 
transferred from simulation.  So, if the robot fails to 
move the ball in the forward direction in the period in 
which it remains upright, or the time limit (T) expires, 
the fitness function is simply  

f=100*t  (1)

where t is the time that the robot remains upright 
(t=T if the robot does not fall in the experimentation 
period).  T is set at 5 seconds for all the experiments 
described here. If the robot does manage to move the 
ball some distance in the forward direction the fitness 
is then given by 

f=(1+d)*100*t  (2)

where d is the distance travelled by the ball.  This 
fitness function is designed in order to reward both 
the robot remaining upright, and the ball being moved 
in the forward direction.  We note, of course, that no 
constraint of remaining upright is placed on human 
soccer players, it may indeed even be advantageous 
to a player to conclude a kicking motion on the 
ground in certain circumstances. The ball used in 
these experiments was of roughly similar diameter to 
that used in the RoboCup Standard Platform League 
(SPL).   

3 EXPERIMENTAL DETAILS  

3.1 Genome Composition 

The genome length is 416 bits in total. This comprises 
4 bits per joint angle (allowing for a total of 16 
different angle positions per joint) for each of the 24 
modelled joints of the robot, for each of 4 keyframe 
values.  4 keyframes were chosen as it was considered 
that this would be a sufficient number to characterise 
a complete kicking motion.  While a certain amount 
of a-priori knowledge was involved in this decision, 
very little was specified about the joint values 
associated with each keyframe, apart from the fact 
that each joint has to keep within the maximum and 
minimum ranges as given by the specifications for the 
physical Nao robot.  These maximum and minimum 
ranges are then modified by the joint restriction 
values evolved in each individual robots’ genome as 
discussed below.  Lower values of this 16-bit 
parameter correspond to higher joint ranges. 

Typically this parameter starts at quite a low value 
early in the evolutionary process as the robot tends to 
move in a “thrashing” fashion, which may, or may 
not, cause ball movement.  This value then increases 
as the robot restricts its joint movement range in order 
to increase the probability of not falling over due to 
“thrashing” motions.  As the evolution progresses this 
value typically decreases gradually as the robot “frees 
up” its joints in order to more effectively perform the 
actions required (Eaton,  2007), (Eaton, 2013).  As an 
example of this progression, for the experiment 
detailed in the next section the average value of this 
parameter for the best genome of generation 1 was 
2.41, rising to a maximum value of 3.91 in generation 
124, and reducing gradually to a value of 3 in 
generation 500. 

A final 16 bits encodes movement durations for 
each of the 4 keyframes.   

3.2 Keyframe Interpolation 

The interpolation between the keyframe values is 
carried out by the V-REP and the Webots simulators 
themselves using inbuilt functions within each 
simulator. Once a sequence of 4 keyframes is 
completed the process cycles over until the time limit 
is exceeded or the run terminates for some other 
reason (the robot falling over). 
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3.3 Evolutionary Algorithm and Robot 
Control 

The code for the evolutionary algorithm and robot 
control software in the V-REP simulator is written in 
the Lua programming language, while the 
corresponding controller for the Webots simulator 
and subsequent transfer to the real robot is written in 
Python. This transferral is semi-automated at present, 
however it is planned to fully automate this process 
in the future.  

A population size of 120 was used using a 
mutation rate of 0.01 and a crossover probability of 
0.2.  These values were arrived at after some 
experimentation.  The genetic algorithm employs 
tournament selection, and single-point crossover.  It 
also employs elitism, where the best individual of 
each generation is guaranteed safe passage to the next 
generation.   

4 EXPERIMENTAL RESULTS  

4.1 Evolution of Kicking Behaviour 

Three runs over 500 generations were performed, 
each taking about a day to complete on a 64-bit Dell 
2.3GHz XPS 15 computer with an Intel i7 quad-core 
CPU and 16GB of RAM.  The results obtained were 
then averaged to produce the fitness graph as shown 
in Fig.2. 

 

Figure 2: Maximum and average fitness, averaged over 
three runs for 500 generations for the evolution of ball 
kicking behaviour. 

An effective kicking behaviour involves learning 
to stand on one foot, and the maintenance of balance 
on this foot while delivering a substantial blow to the 
ball with the other foot.  For our work we also wish 
to maintain this balance (i.e. the robot does not fall 

over on completion of the kicking motion), if 
possible. Once the robot has learned to maintain its 
balance its kicking efficiency (as measured by the 
distance travelled by the ball) increases quite rapidly 
up to about generation 100, with more modest gains 
thereafter.  Fig. 3 gives an example of an evolved kick 
as modelled in the Webots simulator.   

 

   

   

   

Figure 3: An example of an evolved kick, as transferred 
from V-REP to the Webots simulator; read from top left to 
bottom right. 

Fig. 4 then shows this kick as transferred to the 
Nao humanoid robot using the procedure outlined 
earlier.  The main portion of this kicking motion 
transfers directly onto the robot without need for 
human intervention.  The only minor point of 
instability occurs in the final steadying motion before 
the robot comes to rest on completion of the kick, we 
conjecture that this is due to a friction mismatch 
between the surface the real robot rests on, and the 
values used in the V-REP and Webots simulators.  
However the majority of the kicking behaviour 
transferred directly to the robot resulting in an 
effective and quite human-like striking action. The 
entire behaviour sequence depicted in Fig.4 took 
place without the need for human intervention. 

Effective kicking behaviour evolved in all three 
runs. In one of the runs predominately right-footed 
kicks were evolved, whereas a left-footed kick, as 
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demonstrated in Fig. 3 and Fig. 4, was evolved in the 
other two runs, thus demonstrating the robustness and 
flexibility of our approach.  

It should be noted that tests conducted on the real 
Nao robot were conducted at a reduced speed than the 
V-REP and Webots environments to reduce the 
likelihood of damage to the robot; it was also found 
that a behaviour was more likely to transfer 
successfully from simulated to real robot if conducted 
at a lower speed.  However this reduction of speed 
was not, in general, found to cause a major diminution 
in the effectiveness of the behaviours evolved. 

4.2 Validation of Our Approach 

As an additional preliminary test of the effectiveness 
of our approach we chose 10 genomes at random from 
the first of the 3 runs.  All of the fitness’s of the 
evolved behaviours were the best of their generation 
and were around the 3000 mark, corresponding to an 
effective kick as evolved in the V-REP simulator. 

Of these 10 behaviours two resulted in 
consistently unstable behaviour over several 
evaluations in the Webots environment.  When 
transferred to the real Nao humanoid unstable 
motions also resulted, with the robot falling over and 
having to be manually restrained to avoid damage to 
the robot. 

Of the remaining 8 motions three resulted in 
motions in which the either the robot either fell over 
in one of the Webots test evaluations, or, while not 
falling over exhibited significant instability at some 
point in the sequence.  Of these three test runs, when 
transferred to the real Nao robot, two resulted 
instability (robot falling over), and one corresponded 

to an effective kicking motion, however exhibiting 
significant instability towards the end of the motion 
sequence. 

Five of the 10 motions tested in the Webots 
simulator resulted in effective stable kicking motions.  
Of these 5 motions when transferred to the real Nao, 
all but one resulted in successful stable kicks. 

Based on the results of these initial experiments 
we would not now generally consider testing any 
evolved motion on the real Nao robot that had not 
been successful in both the V-REP and Webots 
environments, to avoid potential strain on the Nao 
robots’ actuators and/or actual damage to the robot or 
its environs. 

5 CONCLUSIONS  

In this paper we have demonstrated the evolution of 
kicking behaviour in the Nao humanoid robot.  Using 
a novel dual-simulator approach with a fitness 
function based solely on the stability of the robot and 
the distance travelled by the ball, effective kicking 
behaviours were developed which were demonstrated 
to transfer, with reasonable fidelity, to the real Nao 
robot.   

To our knowledge this is the first time a multi-
simulator approach to the evolution of robot 
behaviours in the manner described in this paper.  
Also to our knowledge this is one of the few, if not 
the only, work which involves the evolution of 
kicking behaviours for direct transferral to the real 
Nao humanoid, rather than for use in the RoboCup 
simulation environment.   
 

Figure 4: The evolved kick from Fig.3 as transferred to the real Nao robot. Compare these whole-body motions with the first 
four frames of Fig. 3. 
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We intend to extend the approach presented in this 
paper to the evolution of further behaviours of a more 
complex nature, including involving multiple robots. 
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