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Abstract: Conventional theories cannot solve many logical problems due to the limitations of the underlying clause
space. In conventional clauses, all variables are universally quantified and no existential quantification is
allowed. Conventional clauses are therefore not sufficiently expressive for representing first-order formulas.
To extend clauses with the expressive power of existential quantification, variables of a new type, called
function variables, have been introduced, resulting in a new space of extended clauses, called ECLSF. This
new space is necessary to overcome the limitations of the conventional clause space. To solve problems
on ECLSF, many equivalent transformation rules are used. We formally defined unfolding transformation on
ECLSF, which is applicable not only to definite clauses but also to multi-head clauses. The proposed unfolding
transformation preserves the answers to model-intersection problems and is useful for solving many logical
problems such as proof problems and query-answering problems on first-order logic with built-in constraint
atoms.

1 INTRODUCTION

Conventional clauses are not sufficiently expres-
sive for equivalently representing first-order formulas
since all variables in a clause are universally quanti-
fied and no existential quantification is allowed. In-
stead of the usual clause space, we use an extended
clause space, called the ECLSF space, in which
a clause may contain three kinds of atoms: user-
defined atoms, built-in constraint atoms, andfunc-
atoms. Variables of a new type, calledfunction vari-
ables, appear in the first argument positions offunc-
atoms, and they are existentially quantified at the top
level of a clause set under consideration.

A model-intersection problem(MI problem) on
ECLSF is a pair 〈Cs,ϕ〉, whereCs is a set of ex-
tended clauses in ECLSF andϕ is a mapping, called
an exit mapping, used for constructing the output
answer from the intersection of all models ofCs.
More formally, the answer to a MI problem〈Cs,ϕ〉
is ϕ(

⋂
Models(Cs)), whereModels(Cs) is the set of

all models ofCsand
⋂

Models(Cs) is the intersection
of all such models.

Note that we can take the intersection of all ele-
ments ofModels(Cs) since each interpretation (hence
each model) is, in our semantics, a set of ground
user-defined atoms, which is similar to a Herbrand
interpretation (Chang and Lee, 1973; Fitting, 1996).

The logical structure theory (Akama and Nantajee-
warawat, 2006; Akama and Nantajeewarawat, 2011a)
has already shown the generality and usefulness of
this semantics.

MI problems on ECLSF constitute a very large
class of logical problems, which is of great impor-
tance. Let FOLc denote the set of all first-order for-
mulas with built-in constraint atoms. As depicted by
Fig. 1, all proof problems and all query-answering
(QA) problems on FOLc are mapped, preserving their
answers, into MI problems on ECLSF (Akama and
Nantajeewarawat, 2015). By solving MI problems on
ECLSF, we can solve proof problems and QA prob-
lems on FOLc.

A proof problem is a “yes/no” problem; it is con-
cerned with checking whether or not one given logi-
cal formula entails another given logical formula. A
QA problem is an “all-answers finding” problem, i.e.,
finding all ground instances of a given query atom

Figure 1: Embedding logical problems into MI problems.
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that are logical consequences of a given formula. The
usual clause space taken by conventional logic pro-
gramming is too small to consider all proof problems
on FOLc and all QA problems on FOLc. By con-
trast, the ECLSF has enough knowledge representa-
tion power for dealing with all these problems. This
is the fundamental reason why we should take the
ECLSF space in place of the usual clause space.

A general schema for solving MI problems
on ECLSF by equivalent transformation (ET) has
been proposed (Akama and Nantajeewarawat, 2015),
where problems are solved by repeated problem sim-
plification using ET rules. The proposed solution
schema for MI problems comprises the following
steps: (i) formalize a given problem as a MI problem
or map it into a MI problem, (ii) prepare ET rules,
(iii) construct an ET sequence, and (iv) compute the
answer.

This paper proposes unfolding transformation on
the ECLSF space, and proves its correctness. Unfold-
ing transformation (also simply called unfolding) has
been one of the most important equivalent transfor-
mation for definite clauses. In contrast to a definite
clause, a clause in ECLSF may contain more than one
user-defined atom in its left-hand side and also func-
tion variables in its right-hand side. Unfolding in the
ECLSF space therefore requires a new definition and
a new correctness proof.

The rest of the paper is organized as follows: Sec-
tion 2 introduces the extended space with function
variables and the semantics of extended clauses. Sec-
tion 3 formalizes MI problems and provides a solu-
tion method for them based on equivalent transforma-
tion (ET). Section 4 defines occurrence relations and
unfolding transformation. Section 5 shows a correct-
ness theorem for unfolding. Section 6 provides con-
clusions. The proofs of all results presented in this
paper can be found in (Akama and Nantajeewarawat,
2016).

The notation that follows holds thereafter. Given
a setA, pow(A) denotes the power set ofA. Given
two setsA and B, Map(A,B) denotes the set of all
mappings fromA to B, and for any partial mapping
f from A to B, dom( f ) denotes the domain off , i.e.,
dom( f ) = {a | (a∈ A) & ( f (a) is defined)}.

2 AN EXTENDED CLAUSE SPACE

2.1 Built-in Atoms

Built-in atoms are essential for representation of
knowledge using first-order formulas. For instance,
the predicatelengthmay be defined as follows:

length(X,Y) iff (not((X = []) or (Y = 0))
and(not(length(X,Y1)) or

not(Y :=Y1+1) or
length([A|X],Y))),

where(X = []), (Y = 0), and(Y :=Y1+1) are built-
in atoms. The meanings of built-in atoms are defined
by specifying the set of all true ground atoms. For
example:

• (s= t) is true iffsandt are the same ground terms.

• (s := t−1) is true iff sandt are numbers ands is
equal tot−1.

This is different from the semantics of user-defined
atoms. The truth or falsity of a ground user-defined
atom is determined by an interpretation. A ground
user-defined atomg is true with respect to an inter-
pretationI iff g is an element ofI .

A first-order formula may determine several mod-
els, and the truth or falsity of a ground user-defined
atom depends on a model under consideration, i.e.,
a ground user-defined atom may be contained in one
model but not in another model. The truth or falsity of
a ground built-in atom is predetermined uniquely. The
objective of representation by first-order formulas is
to determine a set of models, where built-in atoms are
useful and indispensable as shown in thelengthex-
ample above.

2.2 Incompleteness of the Usual Clause
Space

Let CLS be the set of all clauses consisting only of
user-defined atoms, and CLSc the set of all clauses
consisting of user-defined atoms and built-in atoms.
Corresponding to these, let FOL be the set of all first-
order formulas consisting only of user-defined atoms,
and FOLc the set of all first-order formulas consisting
of user-defined atoms and built-in atoms.

It is well-known that there is a mapping SKO such
that each first-order formula in FOL is transformed by
SKO into a set of clauses in CLS preserving satisfia-
bility. This enables resolution-based theorem prov-
ing, and motivates us to consider SKO and CLS as a
foundation for logical problem solving.

However, we need to stress that SKO and CLS

have serious limitations:

• SKO does not preserve the logical meanings of
formulas in FOL and those in FOLc.

• Existential quantification cannot be represented
by clauses in CLS nor those in CLSc.

• SKO does not preserve satisfiability for FOLc.
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Thus CLS and CLSc are not appropriate for entirely
solving all proof problems, QA problems, and MI
problems on FOL and FOLc.

These difficulties are overcome by meaning pre-
serving Skolemization (MPS) and an extended clause
space, called ECLSF. In particular:

• MPS preserves the logical meanings of formulas
in FOL and those in FOLc.

• Existential quantification can be represented by
clauses in ECLSF.

• All proof problems and all QA problems on FOL
and those on FOLc can be transformed into MI
problems on ECLSF.

2.3 Insufficiency of Conventional Logic
Programming

Most of logic programming research uses subspaces
of CLSc, i.e., conventional logic programs are sets of
normal clauses and provide no representation power
of existential quantification. So they can never pro-
vide a general framework of solving logical problems.

Even if a logic programming language (e.g., Pro-
log) is Turing complete, it does not mean that every-
thing can be done using such a language. A pro-
gramming language is said to be Turing complete if
it can be used to simulate any computable function.
Our problem in this paper, however, is not to simulate
procedures, but to invent procedures for giving cor-
rect solutions to MI problems. Such invention is not
an easy task, but once a procedure is invented, a sim-
ulation of it is rather an easy task. Turing complete-
ness means not so large advantages; most practical
programming languages are Turing complete.

2.4 User-defined Atoms, Constraint
Atoms, and func-Atoms

We consider an extended formula space that contains
three kinds of atoms, i.e., user-defined atoms, built-
in constraint atoms, andfunc-atoms. Auser-defined
atom takes the formp(t1, . . . , tn), wherep is a user-
defined predicate and theti are usual terms. Abuilt-in
constraint atom, also simply called aconstraint atom
or abuilt-in atom, takes the formc(t1, . . . , tn), wherec
is a predefined constraint predicate and theti are usual
terms. LetAu be the set of all user-defined atoms,Gu
the set of all ground user-defined atoms,Ac the set
of all constraint atoms, andGc the set of all ground
constraint atoms.

A func-atom (Akama and Nantajeewarawat,
2011b) is an expression of the formfunc( f , t1, . . . , tn,
tn+1), where f is either ann-ary function constant or

ann-ary function variable, and theti are usual terms.
It is aground func-atom if f is a function constant and
theti are ground usual terms.

There are two types of variables: usual variables
and function variables. A function variable is instan-
tiated into a function constant or a function variable,
but not into a usual term. LetFVar be the set of all
function variables andFCon the set of all function
constants. A substitution for function variables is a
mapping fromFVar to FVar∪FCon. Eachn-ary func-
tion constant is associated with a mapping fromGn

t to
Gt, whereGt denotes the set of all ground usual terms.

2.5 Extended Clauses

An extended clause Cis a formula of the form

a1, . . . ,am← b1, . . . ,bn, f1, . . . , fp,

where each ofa1, . . . ,am,b1, . . . ,bn is a user-defined
atom or a built-in constraint atom, andf1, . . . , fp are
func-atoms. All usual variables occurring inC are
implicitly universally quantified and their scope is
restricted to the extended clauseC itself. The sets
{a1, . . . ,am} and{b1, . . . ,bn, f1, . . . , fp} are called the
left-hand sideand theright-hand side, respectively,
of the extended clauseC, and are denoted bylhs(C)
andrhs(C), respectively. LetuserLhs(C) denote the
number of user-defined atoms in the left-hand side of
C. WhenuserLhs(C) = 0, C is called anegative ex-
tended clause. WhenuserLhs(C) = 1, C is called an
extended definite clause. WhenuserLhs(C) > 1,C is
called amulti-head extended clause.

When no confusion is caused, an extended clause,
a negative extended clause, an extended definite
clause, and a multi-head extended clause are also
called aclause, a negative clause, a definite clause,
and amulti-head clause, respectively.

Let DCL denote the set of all extended definite
clauses with no constraint atom in their left-hand
sides. Given a definite clauseC ∈ DCL, the user-
defined atom inlhs(C) is called theheadof C, de-
noted byhead(C), and the setrhs(C) is called the
bodyof C, denoted bybody(C). GivenD ⊆ DCL, let
head(D) = {head(C) |C∈ D}.

2.6 An Extended Clause Space

The set of all extended clauses is denoted by ECLSF.
Theextended clause spacein this paper is the power-
set of ECLSF.

Let Cs be a set of extended clauses. Implicit ex-
istential quantifications of function variables and im-
plicit clause conjunction are assumed inCs. Func-
tion variables inCsare all existentially quantified and
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their scope covers all clauses inCs. With occur-
rences of function variables, clauses inCs are con-
nected through shared function variables. After in-
stantiating all function variables occurring inCs into
function constants, clauses in the instantiated set are
totally separated.

2.7 Interpretations and Models

An interpretationis a subset ofGu. A ground user-
defined atomg is true under an interpretationI iff g
belongs toI . Unlike ground user-defined atoms, the
truth values of ground constraint atoms are predeter-
mined independently of interpretations. Let TCON

denote the set of all true ground constraint atoms,
i.e., a ground constraint atomg is true iff g∈ TCON.
A groundfunc-atomfunc( f , t1, . . . , tn, tn+1) is true iff
f (t1, . . . , tn) = tn+1.

A ground clauseC = (a1, . . . ,am ← b1, . . . ,bn,
f1, . . . , fp) ∈ ECLSF, where{a1, . . . ,am,b1, . . . ,bn} ⊆
Gu∪Gc andf1, . . . , fp are groundfunc-atoms, is true
under an interpretationI (in other words,I satisfies C)
iff at least one of the following conditions is satisfied:
1. There existsi ∈ {1, . . . ,m} such thatai ∈ I ∪

TCON.

2. There existsi ∈ {1, . . . ,n} such thatbi /∈ I ∪
TCON.

3. There existsi ∈ {1, . . . , p} such thatf i is false.
GivenCs⊆ECLSF and a substitution for function

variablesσ ∈ Map(FVar,FVar∪ FCon), let Csσ =
{Cσ | C ∈ Cs}, i.e., Csσ is the clause set obtained
from Csby instantiating all function variables appear-
ing in it usingσ.

An interpretationI is amodelof a clause setCs⊆
ECLSF iff there exists a substitutionσ for function
variables that satisfies the following conditions:

1. All function variables occurring inCsare instan-
tiated byσ into function constants.

2. For any clauseC ∈ Cs and any substitutionθ for
usual variables, ifCσθ is a ground clause, then
Cσθ is true underI .

Let Modelsbe a mapping that associates with each
clause set the set of all of its models, i.e.,Models(Cs)
is the set of all models ofCsfor anyCs⊆ ECLSF.

Note that the standard semantics is taken in this
paper, i.e., all models of a formula are considered in-
stead of specific ones, such as those considered in the
minimal model semantics (Clark, 1978; Lloyd, 1987)
(i.e., the semantics underlying definite logic program-
ming) and those considered in the stable model se-
mantics (Gelfond and Lifschitz, 1988; Gelfond and
Lifschitz, 1991) (i.e., the semantics underlying an-
swer set programming).

3 SOLVING MI PROBLEMS BY
EQUIVALENT
TRANSFORMATION (ET)

3.1 MI Problems on ECLSF

A model-intersection problem(for short,MI problem)
on ECLSF is a pair〈Cs,ϕ〉, whereCs⊆ ECLSF and
ϕ is a mapping frompow(Gu) to some setW. The
mappingϕ is called anexit mapping. The answer to
this problem, denoted byansMI (Cs,ϕ), is defined by

ansMI (Cs,ϕ) = ϕ(
⋂

Models(Cs)),

where
⋂

Models(Cs) is the intersection of all models
of Cs. Note that whenModels(Cs) is the empty set,⋂

Models(Cs) = Gu.

Example 1. Assume thatCsconsists of the following
four clauses:

pat(oe)←
prob(io), pat(po)←
prob(io)← pat(po)
prob(oe)← pat(po)

Consider a MI problem〈Cs,ϕ〉, where for anyG⊆
Gu, ϕ(G) = {x | prob(x) ∈G}. Obviously,

• M1 = {pat(po), prob(io), prob(oe), pat(oe)} is a
model ofCs, and
• M2 = {prob(io), pat(oe)} is also a model ofCs.

Moreover, for anyM ⊆ Gu, M is a model ofCs iff
there existsM0 ⊆ Gu such that

1. M = M0∪M1 or M = M0∪M2, and
2. pat(po) /∈M0.

So
⋂

Models(Cs) = {prob(io), pat(oe)}. Therefore
ansMI (Cs,ϕ) = {io}.

3.2 Target Mappings

Given a MI problem〈Cs,ϕ〉, sinceansMI (Cs,ϕ) =
ϕ(

⋂
Models(Cs)), the answer to this MI problem is

determined uniquely byModels(Cs) andϕ. As a re-
sult, we can equivalently consider a new MI problem
with the same answer by switching fromCsto another
clause setCs′ if Models(Cs) = Models(Cs′), i.e., MI
problems can be transformed into simpler forms by
equivalent transformation (ET) preserving the map-
pingModels.

In order to use more partial mappings for simpli-
fication of MI problems, we extend our consideration
from the specific mappingModelsto a class of partial
mappings, called GSETMAP, defined below.
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Definition 1. GSETMAP is the set of all partial map-
pings frompow(ECLSF) to pow(pow(Gu)).

As defined in Section 2.7,Models(Cs) is the set
of all models ofCs for any Cs⊆ ECLSF. Since a
model is a subset ofGu, Modelsis regarded as a total
mapping frompow(ECLSF) to pow(pow(Gu)). Since
a total mapping is also a partial mapping, the map-
ping Modelsis a partial mapping frompow(ECLSF)
to pow(pow(Gu)), i.e., it is an element of GSETMAP.

A partial mappingM in GSETMAP is of par-
ticular interest if

⋂
M(Cs) =

⋂
Models(Cs) for any

Cs∈ dom(M). Such a partial mapping is called atar-
get mapping.

Definition 2. A partial mappingM ∈ GSETMAP is a
target mappingiff for any Cs∈ dom(M),

⋂
M(Cs) =⋂

Models(Cs).

It is obvious that:

Theorem 1. The mapping Models is a target map-
ping.

The next theorem provides a sufficient condition
for a mapping in GSETMAP to be a target mapping.

Theorem 2. Let M∈ GSETMAP. M is a target map-
ping if the following conditions are satisfied:

1. M(Cs)⊆Models(Cs) for any Cs∈ dom(M).
2. For any Cs∈ dom(M) and any m∈ Models(Cs),

there exists m′ ∈M(Cs) such that m′ ⊆m.

3.3 Answer Mappings

A set of problems that can be solved at low cost is
useful to provide a desirable final destination for ET
computation. It can also be specified as a partial map-
ping that is preserved by ET. Such a specification is
useful to invent and to justify a new ET rule. This
motivates the concept of answer mapping, which is
formalized below.

Definition 3. Let W be a set. A partial mappingA
from

pow(ECLSF)×Map(pow(Gu),W)

to W is an answer mappingiff for any 〈Cs,ϕ〉 ∈
dom(A), ansMI (Cs,ϕ) = A(Cs,ϕ).

If M is a target mapping, thenM can be used for
constructing answer mappings.

Theorem 3. Let M be a target mapping. Suppose that
A is a partial mapping such that

• dom(M) = {x | 〈x,y〉 ∈ dom(A)}, and
• for any〈Cs,ϕ〉 ∈ dom(A),

A(Cs,ϕ) = ϕ(
⋂

M(Cs)).

Then A is an answer mapping.

3.4 ET Steps and ET Rules

Next, a schema for solving MI problems based on ET
preserving answers is formulated.

Let STATE be the set of all MI problems. Elements
of STATE are calledstates.

Definition 4. Let 〈S,S′〉 ∈ STATE×STATE. 〈S,S′〉 is
an ET stepiff if S= 〈Cs,ϕ〉 andS′ = 〈Cs′,ϕ′〉, then
ansMI (Cs,ϕ) = ansMI (Cs′,ϕ′).
Definition 5. A sequence[S0,S1, . . . ,Sn] of ele-
ments of STATE is an ET sequenceiff for any i ∈
{0,1, . . . ,n−1}, 〈Si ,Si+1〉 is an ET step.

The role of ET computation constructing an ET
sequence[S0,S1, . . . ,Sn] is to start withS0 and to reach
Sn from which the answer to the given problem can be
easily computed.

The concept of ET rule on STATE is defined by:

Definition 6. An ET rule r on STATE is a partial
mapping from STATE to STATE such that for any
S∈ dom(r), 〈S, r(S)〉 is an ET step.

We also define ET rules onpow(ECLSF) as fol-
lows:

Definition 7. An ET rule r with respect to a target
mappingM is a partial mapping frompow(ECLSF) to
pow(ECLSF) such that for anyCs∈ dom(r), M(Cs)=
M(r(Cs)).

We can construct an ET rule on STATE from an
ET rule with respect to a target mapping.

Theorem 4. Assume that M is a target mapping and
r is an ET rule with respect to M. Suppose thatr̄ is a
partial mapping fromSTATE to STATE such that

• dom(r) = {x | 〈x,y〉 ∈ dom(r̄)}, and
• r̄(S) = 〈r(Cs),ϕ〉 if S= 〈Cs,ϕ〉 ∈ dom(r̄).

Thenr̄ is an ET rule onSTATE.

3.5 A Correct Solution Method based
on ET Rules

A MI problem 〈Cs,ϕ〉, whereCs⊆ ECLSF andϕ is
an exit mapping, can be solved as follows:
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Figure 2: ET computation paths constructed by a combina-
tion of target mappings and answer mappings.

1. LetA be an answer mapping.

2. Prepare a setRof ET rules on STATE.

3. TakeS0 such thatS0 = 〈Cs,ϕ〉 to start computa-
tion fromS0.

4. Construct an ET sequence[S0, . . . ,Sn] by applying
ET rules inR, i.e., for eachi ∈ {0,1, . . . ,n−1},
Si+1 is obtained fromSi by selecting and applying
r i ∈R such thatSi ∈ dom(r i) andr i(Si) = Si+1.

5. Assume thatSn = 〈Csn,ϕn〉. If the computation
reaches the domain ofA, i.e.,〈Csn,ϕn〉 ∈ dom(A),
then compute the answer by using the answer
mappingA, i.e., outputA(Csn,ϕn).

Given a setCs of clauses and an exit map-
ping ϕ, the answer to the MI problem〈Cs,ϕ〉, i.e.,
ansMI (Cs,ϕ) = ϕ(

⋂
Models(Cs)), can be directly ob-

tained by the computation shown in the leftmost path
in Fig. 2. Instead of taking this computation path, the
above solution takes a different one, i.e., the lowest
path (fromCs to Cs′) followed by the rightmost path
(through the answer mappingA) in Fig. 2.

The selection ofr i in Rat Step 4 is nondeterminis-
tic and there may be many possible ET sequences for
each MI problem. Every output computed by using
any arbitrary ET sequence is correct.

Theorem 5. When an ET sequence starting from S0=
〈Cs,ϕ〉 reaches Sn in dom(A), the above procedure
gives the correct answer to〈Cs,ϕ〉.

4 UNFOLDING ON ECLS F

4.1 Occurrence Relations

For definite-clause unfolding, a body atom in a target
clause is specified for unification with each head atom
in a set of definite clauses. An atom occurrence is usu-
ally used for such specification, which is generalized
into an occurrence relation defined below.

GivenCs⊆ECLSF, a subsetoccof Cs×Au is said
to be anoccurrence relationonCs iff for any C∈Cs,
if 〈C,b〉 ∈ occ, thenb∈ rhs(C).

Assume thatocc is a given occurrence relation
on Cs. Let dom(occ) = {C | 〈C,b〉 ∈ occ} and
ran(occ) = {b | 〈C,b〉 ∈ occ}. Let gran(occ) be de-
fined as the set

{bθ | (〈C,b〉 ∈ occ) &
(θ is a substitution for usual variables) &
(bθ is ground)}.

For any clauseC, let occ(C) = {b | 〈C,b〉 ∈ occ}.

Example 2. Assume thatCsconsists of the following
clauses:

C1: p6, p4←
C2: p5, p4←
C3: p4, p1←
C4: ← p1, p2
C5: p3← p6
C6: ← p4
C7: p2← p5, p3

Let occ= {〈C4, p2〉}. Thenoccis an occurrence rela-
tion onCs, with dom(occ) = {C4}.

4.2 Unfolding Operation on ECLSF

An unfolding operation for a clause setCs by using
an arbitrary setD of definite clauses is defined below.
For unfolding to preserve answers to MI problems,
some additional conditions onCs, D, and a specified
occurrence relation are required. They will be given
in Section 5 (Theorem 6).

Assume that

• Cs⊆ ECLSF,

• D is a set of definite clauses in DCL, and

• occ is an occurrence relation onCs.

By unfolding Cs using D at occ, Cs is transformed
into UNF(Cs,D,occ), which is defined by

UNF(Cs,D,occ) = (Cs−dom(occ))
∪ Reso(dom(occ),D,occ),
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whereReso(dom(occ),D,occ) is the set
⋃{resolvent(C,C′,b) | (C∈ dom(occ)) & (C′ ∈D) &

(b∈ occ(C))},

and for anyC ∈ dom(occ), any C′ ∈ D, and any
b ∈ occ(C), resolvent(C,C′,b) is defined as follows,
assuming thatρ is a renaming substitution for usual
variables such thatC andC′ρ have no usual variable
in common:

1. If b andhead(C′ρ) are not unifiable, then

resolvent(C,C′,b) =∅.

2. If they are unifiable, then

resolvent(C,C′,b) = {C′′},
whereC′′ is the clause obtained fromC andC′ρ
as follows, assuming thatθ is the most general
unifier ofb andhead(C′ρ):

(a) lhs(C′′) = lhs(Cθ)
(b) rhs(C′′) = (rhs(Cθ)−{bθ})∪body(C′ρθ)

5 CORRECTNESS THEOREM

5.1 Correctness of Unfolding

We provide in Theorem 6 a sufficient condition for
unfolding to preserve the answer to a MI problem.
Given Cs⊆ ECLSF, let gleft(Cs) denote the set of
all ground instances of user-defined atoms in the left-
hand sides of extended clauses inCs.

Theorem 6. Assume that:

1. Cs⊆ ECLSF.
2. D⊆ Cs∩DCL such that

gleft(D)∩gleft(Cs−D) =∅.

3. occ is an occurrence relation on Cs such that
dom(occ)⊆ Cs−D.

4. gran(occ)∩gleft(Cs−D) =∅.
5. ϕ is an exit mapping.

Then ansMI (Cs,ϕ) = ansMI (UNF(Cs,D,occ),ϕ).

Given a setCs of extended clauses, one way to
apply unfolding is as follows:

1. Select a clauseC in Cs.

2. Select an atomb in the right-hand side ofC.

3. Assuming thatp is the predicate of the selected
atom b, determine the setD consisting of all
clauses inCs that containp-atoms in their left-
hand sides.

4. If C /∈ D andD consists only of definite clauses,
then unfoldCswith respect tob usingD into Cs′,
i.e., makeCs′ = UNF(Cs,D,occ), whereocc=
{〈C,b〉}.

According to Theorem 6, this unfolding transforma-
tion is equivalent transformation.

Example 3. Consider the clause setCs and the
clausesC1–C7 in Example 2. Unfolding can be ap-
plied successively to this clause set as follows:

• By unfolding Cs with respect top2 in C4 using
D = {C7}, we obtainCs1 = (Cs−{C4})∪{C′4},
whereC′4 = (← p1, p5, p3).
• By unfoldingCs1 with respect top3 in C′4 using

D′ = {C5}, we obtainCs2 = (Cs1−{C′4})∪{C′′4},
whereC′′4 = (← p1, p5, p6).
• By unfoldingCs2 with respect top3 in C7 using

D′ = {C5}, we obtainCs3 = (Cs2−{C7})∪{C′7},
whereC′7 = (p2← p5, p6).

The resulting setCs3 contains the following clauses:

C1: p6, p4←
C2: p5, p4←
C3: p4, p1←
C′′4 : ← p1, p5, p6
C5: p3← p6
C6: ← p4
C′7: p2← p5, p6

No further application of unfolding is possible to the
clause setCs3.

5.2 Target MappingMM

The answer preservation of a given MI problem by
unfolding comes from the preservation of a target
mapping, calledMM, which is given as follows:
Given a setCs of extended clauses,MM(Cs) is the
set of all the least models ofD(σ,sel,Cs) such that
σ is a possible function-variable instantiation andsel
is a possible head-atom selection function, where
D(σ,sel,Cs) is the set of all ground definite clauses
obtained by

1. applying the function-variable instantiationσ to
clauses inCs,

2. instantiating the resulting clauses by using all pos-
sible usual-variable instantiations,

3. simplification of the instantiated clauses, and

4. applying the head-atom selection functionsel to
the resulting simplified clauses.

The precise definition ofMM can be found in (Akama
and Nantajeewarawat, 2016).
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To illustrate, suppose thatCs consists of the fol-
lowing three clauses:

taxcut(x)← hc(x,y),hc(x,z),(y 6= z)
hc(Peter,Paul)←
hc(Peter,x)← func( f ,x)

ThenMM(Cs) is the union of

{{hc(Peter, Paul),hc(Peter, t), taxcut(Peter)}
| (t is a ground term) & (t 6= Paul)}

and{{hc(Peter,Paul)}}.

6 CONCLUSIONS

The usual clause space has been extensively em-
ployed to compute the answers to proof problems and
QA problems on first-order logic. However, it has
not been successfully used for larger classes of proof
problems and QA problems. A fundamental reason
is the incompleteness of its representation power of
existential quantification.

Considering the representation power of built-in
constraint atoms and existential quantification, we
take the ECLSF space. The ECLSF space is sufficient
for representing all proof problems on FOLc and all
QA problems on FOLc. MI problems on FOLc consti-
tute a large class of logical problems that can integrate
all proof problems on FOLc and all QA problems on
FOLc.

Equivalent transformation is a general principle
for solving MI problems on ECLSF, where many
equivalent transformation rules (ET rules) are used.
Many solution algorithms and procedures will be de-
veloped by inventing new ET rules. In the usual
space, unfolding has been one of the most important
and most often used ET rules. It is natural to try to ex-
tend unfolding rules used in the definite-clause space
into unfolding on the ECLSF space.

The basic differences between the two spaces are
as follows: A clause in the ECLSF space may con-
tain (i) more than one atom in its left-hand side and
(ii) function variables in its right-hand side. We pro-
posed an unfolding operation that can be applied in
the ECLSF space, which avoids the influence of non-
definite clauses in a given clause setCs. A setD of
definite clauses inCs is selected and used for unfold-
ing at specified target atoms. The predicates appear-
ing in the heads of definite clauses in the selected set
D are required not to appear in the left-hand sides of
clauses outsideD.

In this paper, we also have reported a correctness
theorem for unfolding transformation on the ECLSF
space. The proof is given in (Akama and Nantajee-
warawat, 2016) and is based on preservation of the

target mappingMM. The preservation ofMM im-
plies, with an unchanged exit mapping, the preserva-
tion of the answer to a given MI problem.
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