Unfolding Existentially Quantified Sets of Extended Clauses

Kiyoshi Akama1 and Ekawit Nantajeewarawat2

1Information Initiative Center, Hokkaido University, Hokkaido, Japan
2Computer Science, Sirindhorn International Institute of Technology, Thammasat University, Pathumthani, Thailand

Keywords: Unfolding, Extended Clause, Function Variable, Model-intersection Problem, Equivalent Transformation.

Abstract: Conventional theories cannot solve many logical problems due to the limitations of the underlying clause space. In conventional clauses, all variables are universally quantified and no existential quantification is allowed. Conventional clauses are therefore not sufficiently expressive for representing first-order formulas. To extend clauses with the expressive power of existential quantification, variables of a new type, called function variables, have been introduced, resulting in a new space of extended clauses, called ECLS. This new space is necessary to overcome the limitations of the conventional clause space. To solve problems on ECLS, many equivalent transformation rules are used. We formally defined unfolding transformation on ECLS, which is applicable not only to definite clauses but also to multi-head clauses. The proposed unfolding transformation preserves the answers to model-intersection problems and is useful for solving many logical problems such as proof problems and query-answering problems on first-order logic with built-in constraint atoms.

1 INTRODUCTION

Conventional clauses are not sufficiently expressive for equivalently representing first-order formulas since all variables in a clause are universally quantified and no existential quantification is allowed. Instead of the usual clause space, we use an extended clause space, called the ECLS space, in which a clause may contain three kinds of atoms: user-defined atoms, built-in constraint atoms, and function atoms. Variables of a new type, called function variables, appear in the first argument positions of function atoms, and they are existentially quantified at the top level of a clause set under consideration.

A model-intersection problem (MI problem) on ECLS is a pair (Cs, φ), where Cs is a set of extended clauses in ECLS and φ is a mapping, called an exit mapping, used for constructing the output answer from the intersection of all models of Cs. More formally, the answer to a MI problem (Cs, φ) is $\varphi(\bigcap \text{Models}(Cs))$, where Models$(Cs)$ is the set of all models of Cs and $\bigcap \text{Models}(Cs)$ is the intersection of all such models.

Note that we can take the intersection of all elements of Models(Cs) since each interpretation (hence each model) is, in our semantics, a set of ground user-defined atoms, which is similar to a Herbrand interpretation (Chang and Lee, 1973; Fitting, 1996).

The logical structure theory (Akama and Nantajeewarawat, 2006; Akama and Nantajeewarawat, 2011a) has already shown the generality and usefulness of this semantics.

MI problems on ECLS constitute a very large class of logical problems, which is of great importance. Let FOL denote the set of all first-order formulas with built-in constraint atoms. As depicted by Fig. 1, all proof problems and all query-answering (QA) problems on FOL are mapped, preserving their answers, into MI problems on ECLS (Akama and Nantajeewarawat, 2015). By solving MI problems on ECLS, we can solve proof problems and QA problems on FOL.

A proof problem is a “yes/no” problem; it is concerned with checking whether or not one given logical formula entails another given logical formula. A QA problem is an “all-answers finding” problem, i.e., finding all ground instances of a given query atom.
that are logical consequences of a given formula. The usual clause space taken by conventional logic programming is too small to consider all proof problems on FOL
 and all QA problems on FOL
. By contrast, the ECLS
 has enough knowledge representation power for dealing with all these problems. This is the fundamental reason why we should take the ECLS
 space in place of the usual clause space.

A general schema for solving MI problems on ECLS
 by a clause space equivalent transformation (ET) has been proposed (Akama and Nantajeewarawat, 2015), where problems are solved by repeated problem simplification using ET rules. The provided solution schema for MI problems comprises the following steps: (i) formalize a given problem as a MI problem or map it into a MI problem, (ii) prepare ET rules, (iii) construct an ET sequence, and (iv) compute the answer.

This paper proposes unfolding transformation on the ECLS
 space, and proves its correctness. Unfolding transformation (also simply called unfolding) has been one of the most important equivalent transformations for definite clauses. In contrast to a definite clause, a clause in ECLS
 may contain more than one user-defined atom in its left-hand side and also function variables in its right-hand side. Unfolding in the ECLS
 space therefore requires a new definition and a new correctness proof.

The rest of the paper is organized as follows: Section 2 introduces the extended space with function variables and the semantics of extended clauses. Section 3 formalizes MI problems and provides a solution method for them based on equivalent transformation (ET). Section 4 defines occurrence relations and unfolding transformation 3 formalizes MI problems and provides a solution 2 introduces the extended space with function

2.1 Built-in Atoms

Built-in atoms are essential for representation of knowledge using first-order formulas. For instance, the predicate length may be defined as follows:

\[
\text{length}(X, Y) \iff (\text{not}((X = [])) \text{ or } (Y = 0)) \\
\text{and} (\text{not}(\text{length}(X, Y))) \text{ or } \\
\text{not}(Y := Y + 1) \text{ or } \\
\text{length}([A[X], Y]),
\]

where \((X = []), (Y = 0),\) and \((Y := Y + 1)\) are built-in atoms. The meanings of built-in atoms are defined by specifying the set of all true ground atoms. For example:

- \((s = t)\) is true iff \(s\) and \(t\) are the same ground terms.
- \((s := t - 1)\) is true iff \(s\) and \(t\) are numbers and \(s\) is equal to \(t - 1\).

This is different from the semantics of user-defined atoms. The truth or falsity of a ground user-defined atom is determined by an interpretation. A ground user-defined atom \(g\) is true with respect to an interpretation \(I\) iff \(g\) is an element of \(I\).

A first-order formula may determine several models, and the truth or falsity of a ground user-defined atom depends on a model under consideration, i.e., a ground user-defined atom may be contained in one model but not in another model. The truth or falsity of a ground built-in atom is predetermined uniquely. The objective of representation by first-order formulas is to determine a set of models, where built-in atoms are useful and indispensable as shown in the length example above.

2.2 Incompleteness of the Usual Clause Space

Let CLS be the set of all clauses consisting only of user-defined atoms, and CLS
 the set of all clauses consisting of user-defined atoms and built-in atoms. Corresponding to these, let FOL be the set of all first-order formulas consisting only of user-defined atoms, and FOL
 the set of all first-order formulas consisting of user-defined atoms and built-in atoms.

It is well-known that there is a mapping SKO such that each first-order formula in FOL is transformed by SKO into a set of clauses in CLS preserving satisfiability. This enables resolution-based theorem proving, and motivates us to consider SKO and CLS as a foundation for logical problem solving.

However, we need to stress that SKO and CLS have serious limitations:

- SKO does not preserve the logical meanings of formulas in FOL and those in FOL
.
- Existential quantification cannot be represented by clauses in CLS nor those in CLS
.
- SKO does not preserve satisfiability for FOL
.
Thus CLS and CLS_c are not appropriate for entirely solving all proof problems, QA problems, and MI problems on FOL and FOL_c.

These difficulties are overcome by meaning preserving Skolemization (MPS) and an extended clause space, called ECLS_f. In particular:

- MPS preserves the logical meanings of formulas in FOL and those in FOL_c.
- Existential quantification can be represented by clauses in ECLS_f.
- All proof problems and all QA problems on FOL and those on FOL_c can be transformed into MI problems on ECLS_f.

2.3 Insufficiency of Conventional Logic Programming

Most of logic programming research uses subspaces of CLS_c, i.e., conventional logic programs are sets of normal clauses and provide no representation power of existential quantification. So they can never provide a general framework of solving logical problems.

Even if a logic programming language (e.g., Prolog) is Turing complete, it does not mean that everything can be done using such a language. A programming language is said to be Turing complete if it can be used to simulate any computable function. Our problem in this paper, however, is not to simulate procedures, but to invent procedures for giving correct solutions to MI problems. Such invention is not an easy task, but once a procedure is invented, a simulation of it is rather an easy task. Turing completeness means not so large advantages; most practical programming languages are Turing complete.

2.4 User-defined Atoms, Constraint Atoms, and func-Atoms

We consider an extended formula space that contains three kinds of atoms, i.e., user-defined atoms, built-in constraint atoms, and func-atoms. A user-defined atom takes the form \(p(t_1, \ldots, t_n) \), where \(p \) is a user-defined predicate and the \(t_i \) are usual terms. A built-in constraint atom, also simply called a constraint atom or a built-in atom, takes the form \(c(t_1, \ldots, t_n) \), where \(c \) is a predefined constraint predicate and the \(t_i \) are usual terms. Let \(\mathbb{A}_u \) be the set of all user-defined atoms, \(\mathbb{G}_a \) the set of all ground user-defined atoms, \(\mathbb{A}_c \) the set of all constraint atoms, and \(\mathbb{G}_c \) the set of all ground constraint atoms.

A func-atom (Akama and Nantajeewarawat, 2011b) is an expression of the form \(\text{func}(f, t_1, \ldots, t_n, t_{n+1}) \), where \(f \) is either an \(n \)-ary function constant or an \(n \)-ary function variable, and the \(t_i \) are usual terms. It is a ground func-atom if \(f \) is a function constant and the \(t_i \) are ground usual terms.

There are two types of variables: usual variables and function variables. A function variable is instantiated into a function constant or a function variable, but not into a usual term. Let \(FVar \) be the set of all function variables and \(FCon \) the set of all function constants. A substitution for function variables is a mapping from \(FVar \) to \(FCon \). Each \(n \)-ary function constant is associated with a mapping from \(\mathbb{G}_a^n \) to \(\mathbb{G}_c \), where \(\mathbb{G}_c \) denotes the set of all ground usual terms.

2.5 Extended Clauses

An extended clause \(C \) is a formula of the form

\[
a_1, \ldots, a_m \leftarrow b_1, \ldots, b_n, f_1, \ldots, f_p,
\]

where each of \(a_1, \ldots, a_m, b_1, \ldots, b_n \) is a user-defined atom or a built-in constraint atom, and \(f_1, \ldots, f_p \) are func-atoms. All usual variables occurring in \(C \) are implicitly universally quantified and their scope is restricted to the extended clause \(C \) itself. The sets \(\{a_1, \ldots, a_m\} \) and \(\{b_1, \ldots, b_n, f_1, \ldots, f_p\} \) are called the left-hand side and the right-hand side, respectively, of the extended clause \(C \), and are denoted by \(lhs(C) \) and \(rhs(C) \), respectively. Let \(userLhs(C) \) denote the number of user-defined atoms in the left-hand side of \(C \). When \(userLhs(C) = 0 \), \(C \) is called a negative extended clause. When \(userLhs(C) = 1 \), \(C \) is called an extended definite clause. When \(userLhs(C) > 1 \), \(C \) is called a multi-head extended clause.

When no confusion is caused, an extended clause, a negative extended clause, an extended definite clause, and a multi-head extended clause are also called a clause, a negative clause, a definite clause, and a multi-head clause, respectively.

Let \(DCL \) denote the set of all extended definite clauses with no constraint atom in their left-hand sides. Given a definite clause \(C \in DCL \), the user-defined atom in \(lhs(C) \) is called the head of \(C \), denoted by \(head(C) \), and the set \(rhs(C) \) is called the body of \(C \), denoted by \(body(C) \). Given \(D \subseteq DCL \), let \(head(D) = \{head(C) \mid C \in D\} \).

2.6 An Extended Clause Space

The set of all extended clauses is denoted by \(ECLS_f \). The extended clause space in this paper is the powerset of \(ECLS_f \).

Let \(Cs \) be a set of extended clauses. Implicit existential quantifications of function variables and implicit clause conjunction are assumed in \(Cs \). Function variables in \(Cs \) are all existentially quantified and
their scope covers all clauses in C_s. With occurrences of function variables, clauses in C_s are connected through instantiated function variables occurring in C_s into function constants, clauses in the instantiated set are totally separated.

2.7 Interpretations and Models

An interpretation is a subset of G_a. A ground user-defined atom g is true under an interpretation I iff g belongs to I. Unlike ground user-defined atoms, the truth values of ground constraint atoms are predetermined independently of interpretations. Let $TCON$ denote the set of all true ground constraint atoms, i.e., a ground constraint atom g is true iff $g \in TCON$. A ground func-atom $func(f, t_1, \ldots, t_n, t_{n+1})$ is true iff $f(t_1, \ldots, t_n) = t_{n+1}$.

A ground clause $C = (a_1, \ldots, a_m \leftarrow b_1, \ldots, b_n, f_1, \ldots, f_p) \in ECLS_F$, where $\{a_1, \ldots, a_m, b_1, \ldots, b_n\} \subseteq G_a \cup G_c$ and f_1, \ldots, f_p are ground func-atoms, is true under an interpretation I (in other words, I satisfies C) iff at least one of the following conditions is satisfied:

1. There exists $i \in \{1, \ldots, m\}$ such that $a_i \in I \cup \text{TCON}$.
2. There exists $i \in \{1, \ldots, n\}$ such that $b_i \notin I \cup \text{TCON}$.
3. There exists $i \in \{1, \ldots, p\}$ such that f_i is false.

Given $C_s \subseteq ECLS_F$ and a substitution for function variables $\sigma \in \text{Map}(FVar, FVar \cup FCon)$, let $C_s \sigma = \{C \mid C \in C_s\}$, i.e., $C_s \sigma$ is the clause set obtained from C_s by instantiating all function variables appearing in it using σ.

An interpretation I is a model of a clause set $C_s \subseteq ECLS_F$ iff there exists a substitution σ for function variables that satisfies the following conditions:

1. All function variables occurring in C_s are instantiated by σ into function constants.
2. For any clause $C \in C_s$ and any substitution Θ for usual variables, if $C \Theta \sigma$ is a ground clause, then $C \Theta \sigma \Theta$ is true under I.

Let Models be a mapping that associates with each clause set the set of all its models, i.e., $\text{Models}(C_s)$ is the set of all models of C_s for any $C_s \subseteq ECLS_F$.

Note that the standard semantics is taken in this paper, i.e., all models of a formula are considered instead of specific ones, such as those considered in the minimal model semantics (Clark, 1978; Lloyd, 1987) (i.e., the semantics underlying definite logic programming) and those considered in the stable model semantics (Gelfond and Lifschitz, 1988; Gelfond and Lifschitz, 1991) (i.e., the semantics underlying answer set programming).

3 SOLVING MI PROBLEMS BY EQUIVALENT TRANSFORMATION (ET)

3.1 MI Problems on ECLS_F

A model-intersection problem (for short, MI problem) on ECLS_F is a pair $\langle C_s, \varphi \rangle$, where $C_s \subseteq ECLS_F$ and φ is a mapping from $\text{pow}(G_a)$ to some set W. The mapping φ is called an exit mapping. The answer to this problem, denoted by $ans_{MI}(C_s, \varphi)$, is defined by

$$ans_{MI}(C_s, \varphi) = \varphi(\bigcap \text{Models}(C_s))$$

where $\bigcap \text{Models}(C_s)$ is the intersection of all models of C_s. Note that when $\text{Models}(C_s)$ is the empty set, $\bigcap \text{Models}(C_s) = \emptyset$.

Example 1. Assume that C_s consists of the following four clauses:

- $\text{pat}(oe) \leftarrow \text{prob}(io), \text{pat}(po) \leftarrow \text{prob}(io) \leftarrow \text{pat}(po)$
- $\text{prob}(oe) \leftarrow \text{pat}(po)$

Consider a MI problem $\langle C_s, \varphi \rangle$, where for any $G \subseteq G_a$, $\varphi(G) = \{x \mid \text{prob}(x) \in G\}$. Obviously,

- $M_1 = \{\text{pat}(po), \text{prob}(io), \text{prob}(oe), \text{pat}(oe)\}$ is a model of C_s, and
- $M_2 = \{\text{prob}(io), \text{pat}(oe)\}$ is also a model of C_s.

Moreover, for any $M \subseteq G_a$, M is a model of C_s iff there exists $M_0 \subseteq G_a$ such that

1. $M = M_0 \cup M_1$ or $M = M_0 \cup M_2$, and
2. $\text{pat}(po) \notin M_0$.

So $\bigcap \text{Models}(C_s) = \{\text{prob}(io), \text{pat}(oe)\}$. Therefore $ans_{MI}(C_s, \varphi) = \{io\}$.

3.2 Target Mappings

Given a MI problem $\langle C_s, \varphi \rangle$, since $ans_{MI}(C_s, \varphi) = \varphi(\bigcap \text{Models}(C_s))$, the answer to this MI problem is determined uniquely by $\text{Models}(C_s)$ and φ. As a result, we can equivalently consider a new MI problem with the same answer by switching from C_s to another clause set C_s' if $\text{Models}(C_s) = \text{Models}(C_s')$, i.e., MI problems can be transformed into simpler forms by equivalent transformation (ET) preserving the mapping Models.

In order to use more partial mappings for simplification of MI problems, we extend our consideration from the specific mapping Models to a class of partial mappings, called GSETMAP, defined below.
Definition 1. \(\text{GSETMAP} \) is the set of all partial mappings from \(\text{pow(} \text{ECLS}_F \text{)} \) to \(\text{pow(} \text{pow(} \text{Gu} \text{)}) \).

As defined in Section 2.7, \(\text{Models}(Cs) \) is the set of all partial mappings from \(\text{pow(} \text{ECLS}_F \text{)} \) to \(\text{pow(} \text{pow(} \text{Gu} \text{)}) \). Since a model is a subset of \(\text{Ga} \), \(\text{Models} \) is regarded as a total mapping from \(\text{pow(} \text{ECLS}_F \text{)} \) to \(\text{pow} \text{pow(} \text{Ga} \text{)}) \). Since a total mapping is also a partial mapping, the mapping \(\text{Models} \) is a partial mapping from \(\text{pow(} \text{ECLS}_F \text{)} \) to \(\text{pow(} \text{pow(} \text{Ga} \text{)}) \), i.e., it is an element of \(\text{GSETMAP} \).

A partial mapping \(M \) in \(\text{GSETMAP} \) is of particular interest if \(\bigcap M(Cs) = \bigcap \text{Models}(Cs) \) for any \(Cs \in \text{dom}(M) \). Such a partial mapping is called a target mapping.

Definition 2. A partial mapping \(M \in \text{GSETMAP} \) is a target mapping if for any \(Cs \in \text{dom}(M) \), \(\bigcap M(Cs) = \bigcap \text{Models}(Cs) \).

It is obvious that:

Theorem 1. The mapping \(\text{Models} \) is a target mapping.

The next theorem provides a sufficient condition for a mapping in \(\text{GSETMAP} \) to be a target mapping.

Theorem 2. Let \(M \in \text{GSETMAP} \). \(M \) is a target mapping if the following conditions are satisfied:
1. \(M(Cs) \subseteq \text{Models}(Cs) \) for any \(Cs \in \text{dom}(M) \).
2. For any \(Cs \in \text{dom}(M) \) and any \(m \in \text{Models}(Cs) \), there exists \(m' \in M(Cs) \) such that \(m' \subseteq m \).

3.3 Answer Mappings

A set of problems that can be solved at low cost is useful to provide a desirable final destination for ET computation. It can also be specified as a partial mapping that is preserved by ET. Such a specification is useful to invent and to justify a new ET rule. This motivates the concept of answer mapping, which is formalized below.

Definition 3. Let \(W \) be a set. A partial mapping \(A \) from \(\text{pow(} \text{ECLS}_F \text{)} \times \text{Map(pow(} \text{Ga} \text{)), } W \) to \(W \) is an answer mapping iff for any \(\langle Cs, \varphi \rangle \in \text{dom}(A) \), \(\text{ans}_{\text{ET}}(Cs, \varphi) = A(Cs, \varphi) \).

If \(M \) is a target mapping, then \(M \) can be used for constructing answer mappings.

Theorem 3. Let \(M \) be a target mapping. Suppose that \(A \) is a partial mapping such that

- \(\text{dom}(M) = \{ x \mid \langle x, y \rangle \in \text{dom}(A) \} \), and
- for any \(\langle Cs, \varphi \rangle \in \text{dom}(A) \), \(A(Cs, \varphi) = \varphi(\bigcap M(Cs)) \).

Then \(A \) is an answer mapping.

3.4 ET Steps and ET Rules

Next, a schema for solving MI problems based on ET preserving answers is formulated.

Let \(\text{STATE} \) be the set of all MI problems. Elements of \(\text{STATE} \) are called states.

Definition 4. Let \(\langle S, S' \rangle \in \text{STATE} \times \text{STATE} \). \(\langle S, S' \rangle \) is an ET step iff if \(S = \langle Cs, \varphi \rangle \) and \(S' = \langle Cs', \varphi' \rangle \), then \(\text{ans}_{\text{MI}}(Cs, \varphi) = \text{ans}_{\text{MI}}(Cs', \varphi') \).

Definition 5. A sequence \([S_0, S_1, \ldots, S_n] \) of elements of \(\text{STATE} \) is an ET sequence iff for any \(i \in \{ 0, 1, \ldots, n - 1 \} \), \((S_i, S_{i+1}) \) is an ET step.

The role of ET computation constructing an ET sequence \([S_0, S_1, \ldots, S_n] \) is to start with \(S_0 \) and to reach \(S_n \) from which the answer to the given problem can be easily computed.

The concept of ET rule on \(\text{STATE} \) is defined by:

Definition 6. An ET rule \(r \) on \(\text{STATE} \) is a partial mapping from \(\text{STATE} \) to \(\text{STATE} \) such that for any \(S \in \text{dom}(r) \), \(\langle S, r(S) \rangle \) is an ET step.

We also define ET rules on \(\text{pow(} \text{ECLS}_F \text{)} \) as follows:

Definition 7. An ET rule \(r \) with respect to a target mapping \(M \) is a partial mapping from \(\text{pow(} \text{ECLS}_F \text{)} \) to \(\text{pow(} \text{ECLS}_F \text{)} \) such that for any \(Cs \in \text{dom}(r) \), \(M(Cs) = M(r(Cs)) \).

We can construct an ET rule on \(\text{STATE} \) from an ET rule with respect to a target mapping.

Theorem 4. Assume that \(M \) is a target mapping and \(r \) is an ET rule with respect to \(M \). Suppose that \(\bar{r} \) is a partial mapping from \(\text{STATE} \) to \(\text{STATE} \) such that
- \(\text{dom}(r) = \{ x \mid \langle x, y \rangle \in \text{dom}(\bar{r}) \} \), and
- \(\bar{r}(S) = (\bar{r}(Cs), \varphi) \) if \(S = \langle Cs, \varphi \rangle \in \text{dom}(\bar{r}) \).

Then \(\bar{r} \) is an ET rule on \(\text{STATE} \).

3.5 A Correct Solution Method based on ET Rules

A MI problem \(\langle Cs, \varphi \rangle \), where \(Cs \subseteq \text{ECLS}_F \) and \(\varphi \) is an exit mapping, can be solved as follows:
1. Let A be an answer mapping.
2. Prepare a set R of ET rules on STATE.
3. Take S_0 such that $S_0 = (Cs, \varphi)$ to start computation from S_0.
4. Construct an ET sequence $\{S_0, \ldots, S_n\}$ by applying ET rules in R, i.e., for each $i \in \{0, 1, \ldots, n-1\}$, S_{i+1} is obtained from S_i by selecting and applying $r_i \in R$ such that $S_i \in \text{dom}(r_i)$ and $r_i(S_i) = S_{i+1}$.
5. Assume that $S_n = (Cs_n, \varphi_n)$. If the computation reaches the domain of A, i.e., $(Cs_n, \varphi_n) \in \text{dom}(A)$, then compute the answer by using the answer mapping A, i.e., output $A(Cs_n, \varphi_n)$.

Given a set Cs of clauses and an exit mapping φ, the answer to the MI problem (Cs, φ), i.e., $\text{ans}_{\text{MI}}(Cs, \varphi) = \varphi(\bigcap \text{Models}(Cs))$, can be directly obtained by the computation shown in the leftmost path in Fig. 2. Instead of taking this computation path, the above solution takes a different one, i.e., the lowest path (from Cs to Cs') followed by the rightmost path (through the answer mapping A) in Fig. 2.

The selection of r_i in R at Step 4 is nondeterministic and there may be many possible ET sequences for each MI problem. Every output computed by using any arbitrary ET sequence is correct.

Theorem 5. When an ET sequence starting from $S_0 = (Cs, \varphi)$ reaches S_n in $\text{dom}(A)$, the above procedure gives the correct answer to (Cs, φ).

4 UNFOLDING ON ECLS_F

4.1 Occurrence Relations

For definite-clause unfolding, a body atom in a target clause is specified for unification with each head atom in a set of definite clauses. An atom occurrence is usually used for such specification, which is generalized into an occurrence relation defined below.

Given $Cs \subseteq \text{ECLS}_F$, a subset occ of $Cs \times A_n$ is said to be an occurrence relation on Cs iff for any $C \in Cs$, if $(C, b) \in occ$, then $b \in \text{rhs}(C)$.

Assume that occ is a given occurrence relation on Cs. Let $\text{dom}(occ) = \{C \mid (C, b) \in occ\}$ and $\text{ran}(occ) = \{b \mid (C, b) \in occ\}$. Let $\text{gran}(occ)$ be defined as the set

$$\{b\theta \mid ((C, b) \in occ) \& (\emptyset \text{ is a substitution for usual variables}) \& (b\theta \text{ is ground})\}.$$

For any clause C, let $\text{occ}(C) = \{b \mid (C, b) \in occ\}$.

Example 2. Assume that Cs consists of the following clauses:

- $C_1: p_6, p_4 \leftarrow$
- $C_2: p_5, p_4 \leftarrow$
- $C_3: p_4, p_1 \leftarrow$
- $C_4: \leftarrow p_1, p_2$
- $C_5: \leftarrow p_3, p_6$
- $C_6: \leftarrow p_4$
- $C_7: p_2 \leftarrow p_5, p_3$

Let $occ = \{(C_4, p_2)\}$. Then occ is an occurrence relation on Cs, with $\text{dom}(occ) = \{C_4\}$.

4.2 Unfolding Operation on ECLS_F

An unfolding operation for a clause set Cs by using an arbitrary set D of definite clauses is defined below. For unfolding to preserve answers to MI problems, some additional conditions on Cs, D, and a specified occurrence relation are required. They will be given in Section 5 (Theorem 6).

Assume that

- $Cs \subseteq \text{ECLS}_F$,
- D is a set of definite clauses in DCL, and
- occ is an occurrence relation on Cs.

By unfolding Cs using D at occ, Cs is transformed into $\text{UNF}(Cs, D, occ)$, which is defined by

$$\text{UNF}(Cs, D, occ) = (Cs \ominus \text{dom}(occ)) \cup \text{Reso}(\text{dom}(occ), D, occ),$$
where $\text{Reso}(\text{dom(occ)}, D, \text{occ})$ is the set
\[
\bigcup \{\text{resolvent}(C, C', b) \mid (C \in \text{dom(occ)}) \& (C' \in D) \& (b \in \text{occ}(C))\},
\]
and for any $C \in \text{dom(occ)}$, any $C' \in D$, and any $b \in \text{occ}(C)$, resolvent(C, C', b) is defined as follows, assuming that ρ is a renaming substitution for usual variables such that C and $C'\rho$ have no usual variable in common:

1. If b and head$(C\rho)$ are not unifiable, then
 \[
 \text{resolvent}(C, C', b) = \emptyset.
 \]
2. If they are unifiable, then
 \[
 \text{resolvent}(C, C', b) = \{C''\},
 \]
 where C'' is the clause obtained from C and $C'\rho$ as follows, assuming that θ is the most general unifier of b and head$(C\rho)$:

 (a) $\text{lhs}(C'') = \text{lhs}(C\theta)$
 (b) $\text{rhs}(C'') = (\text{rhs}(C\theta) - \{b\theta\}) \cup \text{body}(C'\rho\theta)$

5 CORRECTNESS THEOREM

5.1 Correctness of Unfolding

We provide in Theorem 6 a sufficient condition for unfolding to preserve the answer to a MI problem. Given $C_s \subseteq \text{ECLS}_F$, let $\text{gleft}(C_s)$ denote the set of all ground instances of user-defined atoms in the left-hand sides of extended clauses in C_s.

Theorem 6. Assume that:

1. $C_s \subseteq \text{ECLS}_F$.
2. $D \subseteq C_s \cap \text{DCL}$ such that
 \[
 \text{gleft}(D) \cap \text{gleft}(C_s - D) = \emptyset.
 \]
3. occ is an occurrence relation on C_s such that
 \[
 \text{dom(occ)} \subseteq C_s - D.
 \]
4. gran(occ) \cap gleft(C_s - D) = \emptyset.
5. ϕ is an exit mapping.

Then $\text{ans}_\text{MI}(C_s, \phi) = \text{ans}_\text{MI}(\text{UNF}(C_s, D, \text{occ}), \phi)$.

Given a set C_s of extended clauses, one way to apply unfolding is as follows:

1. Select a clause C in C_s.
2. Select an atom b in the right-hand side of C.
3. Assuming that p is the predicate of the selected atom b, determine the set D consisting of all clauses in C_s that contain p-atoms in their left-hand sides.

4. If $C \notin D$ and D consists only of definite clauses, then unfold C_s with respect to b using D into C_s', i.e., make $C_s' = \text{UNF}(C_s, D, \text{occ})$, where $\text{occ} = \{(C, b)\}$.

According to Theorem 6, this unfolding transformation is equivalent transformation.

Example 3. Consider the clause set C_s and the clauses $C_1 - C_7$ in Example 2. Unfolding can be applied successively to this clause set as follows:

- By unfolding C_1 with respect to p_2 in C_4 using $D = \{C_7\}$, we obtain $C_{s1} = (C_s - \{C_4\}) \cup \{C_4'\}$, where $C_4' = (p_1, p_5, p_3)$.
- By unfolding C_{s1} with respect to p_1 in C_4' using $D' = \{C_5\}$, we obtain $C_{s2} = (C_{s1} - \{C_4'\}) \cup \{C_4''\}$, where $C_4'' = (p_1, p_5, p_3)$.
- By unfolding C_{s2} with respect to p_1 in C_4'' using $D'' = \{C_5\}$, we obtain $C_{s3} = (C_{s2} - \{C_5\}) \cup \{C_5\}$, where $C_5 = (p_2, p_5, p_6)$.

The resulting set C_{s3} contains the following clauses:

- $C_1: p_6, p_4 \leftarrow C_2: p_5, p_4 \leftarrow C_3: p_4, p_1 \leftarrow C_4': p_1, p_5, p_6 \leftarrow C_5: p_3 \leftarrow p_6 \leftarrow C_6: p_4 \leftarrow C_7: p_2 \leftarrow p_5, p_6 \leftarrow$

No further application of unfolding is possible to the clause set C_{s3}.

5.2 Target Mapping MM

The answer preservation of a given MI problem by unfolding comes from the preservation of a target mapping, called MM, which is given as follows: Given a set C_s of extended clauses, $\text{MM}(C_s)$ is the set of all the least models of $D(\sigma, \text{sel}, C_s)$ such that σ is a possible function-variable instantiation and sel is a possible head-atom selection function, where $D(\sigma, \text{sel}, C_s)$ is the set of all ground definite clauses obtained by

1. applying the function-variable instantiation σ to clauses in C_s,
2. instantiating the resulting clauses by using all possible usual-variable instantiations,
3. simplification of the instantiated clauses, and
4. applying the head-atom selection function sel to the resulting simplified clauses.

The precise definition of MM can be found in (Akama and Nantajeewarawat, 2016).
To illustrate, suppose that Cs consists of the following three clauses:

$$
taxcut(x) \leftarrow hc(x, y), hc(x, z), (y \neq z)
$$

$$
hc(Peter, Paul) \leftarrow
$$

$$
hc(Peter, x) \leftarrow func(f, x)
$$

Then $\mathbb{MM}(Cs)$ is the union of

$$
\{\{hc(Peter, Paul), hc(Peter, t), taxcut(Peter)\}
$$

and $\{\{hc(Peter, Paul)\}\}$.

6 CONCLUSIONS

The usual clause space has been extensively employed to compute the answers to proof problems and QA problems on first-order logic. However, it has not been successfully used for larger classes of proof problems and QA problems. A fundamental reason is the incompleteness of its representation power of existential quantification.

Considering the representation power of built-in constraint atoms and existential quantification, we take the ECLS$_F$ space. The ECLS$_F$ space is sufficient for representing all proof problems on FOL$_c$ and all QA problems on FOL$_c$. MI problems on FOL$_c$ constitute a large class of logical problems that can integrate all proof problems on FOL$_c$ and all QA problems on FOL$_c$.

Equivalent transformation is a general principle for solving MI problems on ECLS$_F$, where many equivalent transformation rules (ET rules) are used. Many solution algorithms and procedures will be developed by inventing new ET rules. In the usual space, unfolding has been one of the most important and most often used ET rules. It is natural to try to extend unfolding rules used in the definite-clause space into unfolding on the ECLS$_F$ space.

The basic differences between the two spaces are as follows: A clause in the ECLS$_F$ space may contain (i) more than one atom in its left-hand side and (ii) function variables in its right-hand side. We proposed an unfolding operation that can be applied in the ECLS$_F$ space, which avoids the influence of non-definite clauses in a given clause set Cs. A set D of definite clauses in Cs is selected and used for unfolding at specified target atoms. The predicates appearing in the heads of definite clauses in the selected set D are required not to appear in the left-hand sides of clauses outside D.

In this paper, we also have reported a correctness theorem for unfolding transformation on the ECLS$_F$ space. The proof is given in (Akama and Nantajeewarawat, 2016) and is based on preservation of the target mapping \mathbb{MM}. The preservation of \mathbb{MM} implies, with an unchanged exit mapping, the preservation of the answer to a given MI problem.

ACKNOWLEDGEMENTS

This research was partially supported by JSPS KAKENHI Grant Numbers 25280078 and 26540110.

REFERENCES

