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Abstract: Conventional theories cannot solve many logical problems due to the limitations of the underlying clause
space. In conventional clauses, all variables are universally quantified and no existential quantification is
allowed. Conventional clauses are therefore not sufficiently expressive for representing first-order formulas.
To extend clauses with the expressive power of existential quantification, variables of a new type, called
function variables, have been introduced, resulting in a new space of extended clauses, called B@® S

new space is necessary to overcome the limitations of the conventional clause space. To solve problems
on ECLS, many equivalent transformation rules are used. We formally defined unfolding transformation on
ECLSs, which is applicable not only to definite clauses but also to multi-head clauses. The proposed unfolding
transformation preserves the answers to model-intersection problems and is useful for solving many logical
problems such as proof problems and query-answering problems on first-order logic with built-in constraint
atoms.

1 INTRODUCTION The logical structure theory (Akama and Nantajee-
warawat, 2006; Akama and Nantajeewarawat, 2011a)
Conventional clauses are not sufficiently expres- has already shown the generality and usefulness of
sive for equivalently representing first-order formulas this semantics.

since all variables in a clause are universally quanti-  MI problems on ECL$E constitute a very large
fied and no existential quantification is allowed. In- class of logical problems, which is of great impor-
stead of the usual clause space, we use an extendethnce. Let FOL denote the set of all first-order for-
clause space, called the EGLSpace, in which  mulas with built-in constraint atoms. As depicted by
a clause may contain three kinds of atoms: user- Fig. 1, all proof problems and all query-answering
defined atoms, built-in constraint atoms, afuethc (QA) problems on FOL are mapped, preserving their
atoms. Variables of a new type, call&dhction vari- answers, into MI problems on ECESAkama and
ables appear in the first argument positionsfofc Nantajeewarawat, 2015). By solving Ml problems on
atoms, and they are existentially quantified at the top ECLS:, we can solve proof problems and QA prob-
level of a clause set under consideration. lems on FOL.

A model-intersection probleniMI problem) on A proof problem is a “yes/no” problem; it is con-
ECLS is a pair (Cs ¢), whereCs is a set of ex-  cerned with checking whether or not one given logi-
tended clauses in ECESind¢ is a mapping, called  cal formula entails another given logical formula. A
an exit mapping used for constructing the output QA problemis an “all-answers finding” problem, i.e.,
answer from the intersection of all models 6k finding all ground instances of a given query atom
More formally, the answer to a Ml probledCs ¢)

is $(NModelgCs)), whereModelgCs) is the set of - o
. . . TOO! 1 e,
all models ofCsand(\ModelgCs) is the intersection problems e
of all such models. on FOLe [ F robims
Note that we can take the intersection of all ele- ~  —— | vl .
ments ofModelgCs) since each interpretation (hence s Iyl Q
. . . I FOL i problems
each model) is, in our semantics, a set of ground on Foe N

user-defined atoms, which is similar to a Herbrand

interpretation (Chang and Lee, 1973; Fitting, 1996). Figure 1: Embedding logical problems into MI problems.
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that are logical consequences of a given formula. The
usual clause space taken by conventional logic pro-

gramming is too small to consider all proof problems
on FOL; and all QA problems on FQL By con-
trast, the ECL$S has enough knowledge representa-

Unfolding Existentially Quantified Sets of Extended Clauses

length(X,Y) iff (not((X=1]) or (Y =0))
and(not(length(X,Y1)) or
not(Y :=Y1+1) or
length([A[X],Y))),

where(X =[]), (Y =0), and(Y := Y1+ 1) are built-

tion power for dealing with all these problems. This
is the fundamental reason why we should take the
ECLS- space in place of the usual clause space.

A general schema for solving MI problems
on ECLS by equivalent transformation (ET) has
been proposed (Akama and Nantajeewarawat, 2015),
where problems are solved by repeated problem sim-
plification using ET rules. The proposed solution
schema for MI problems comprises the following This is different from the semantics of user-defined
steps: (i) formalize a given problem as a Ml problem atoms. The truth or falsity of a ground user-defined
or map it into a MI problem, (ii) prepare ET rules, atom is determined by an interpretation. A ground
(ii) construct an ET sequence, and (iv) compute the user-defined atorg is true with respect to an inter-
answer. pretationl iff gis an element of.

This paper proposes unfolding transformation on A first-order formula may determine several mod-
the ECLS space, and proves its correctness. Unfold- e|s, and the truth or falsity of a ground user-defined
ing transformation (also simply called unfolding) has atom depends on a model under consideration, i.e.,
been one of the most important equivalent transfor- g ground user-defined atom may be contained in one
mation for definite clauses. In contrast to a definite model but not in another model. The truth or falsity of
clause, a clause in ECESnay contain more than one  a ground built-in atom is predetermined uniquely. The
user-defined atom in its left-hand side and also func- objective of representation by first-order formulas is
tion variables in its right-hand side. Unfolding in the to determine a set of models, where built-in atoms are

ECLS: space therefore requires a new definition and yseful and indispensable as shown in kegth ex-
a new correctness proof. ample above.

The rest of the paper is organized as follows: Sec-
tion 2 introduces the extended space with function 29
variables and the semantics of extended clauses. Sec-"
tion 3 formalizes MI problems and provides a solu-
tion method for them based on equivalent transforma-
tion (ET). Section 4 defines occurrence relations and Let CLs be the set of all clauses consisting only of
unfolding transformation. Section 5 shows a correct- user-defined atoms, andL§; the set of all clauses
ness theorem for unfolding. Section 6 provides con- consisting of user-defined atoms and built-in atoms.
clusions. The proofs of all results presented in this Corresponding to these, let FOL be the set of all first-
paper can be found in (Akama and Nantajeewarawat, order formulas consisting only of user-defined atoms,
2016). and FOl the set of all first-order formulas consisting

The notation that follows holds thereafter. Given of user-defined atoms and built-in atoms.
a setA, powA) denotes the power set & Given Itis well-known that there is a mapping SKO such
two setsA and B, Map(A,B) denotes the set of all  that each first-order formulain FOL is transformed by
mappings fromA to B, and for any partial mapping  SKO into a set of clauses inL@ preserving satisfia-
f from Ato B, don(f) denotes the domain df, i.e.,  bijlity. This enables resolution-based theorem prov-
dom(f) ={al (a€ A) & (f(a) is defined}. ing, and motivates us to consider SKO andsQGs a
foundation for logical problem solving.

However, we need to stress that SKO andsC
have serious limitations:

in atoms. The meanings of built-in atoms are defined
by specifying the set of all true ground atoms. For
example:

e (s=t)istrueiffsandt are the same ground terms.

e (s:=t—1)istrue iff sandt are numbers anslis
equal tot — 1.

Incompleteness of the Usual Clause
Space

2 AN EXTENDED CLAUSE SPACE

e SKO does not preserve the logical meanings of

2.1 Built-in Atoms formulas in FOL and those in FQL

Builtin atoms are essential for representation of e Existential quantification cannot be represented

knowledge using first-order formulas. For instance,
the predicatéengthmay be defined as follows:

by clauses in Cs nor those in Csc.

e SKO does not preserve satisfiability for FOL
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Thus A.s and A.s¢ are not appropriate for entirely
solving all proof problems, QA problems, and Mi

ann-ary function variable, and thigare usual terms.
Itis aground funeatom if f is a function constant and

problems on FOL and FQL thet; are ground usual terms.

These difficulties are overcome by meaning pre- There are two types of variables: usual variables
serving Skolemization (MPS) and an extended clause and function variables. A function variable is instan-
space, called ECLS In particular: tiated into a function constant or a function variable,

« MPS preserves the logical meanings of formulas Put not into a usual term. Lé#Var be the set of all
in FOL and those in FOL function variables andCon the set of all function
: . . constants. A substitution for function variables is a
° EX|stent|_aI quantification can be represented by mapping fromFVarto FVarUFCon Eachn-ary func-
clauses in ECLS tion constant is associated with a mapping frgfhto
e All proof problems and all QA problems on FOL G, whereg; denotes the set of all ground usual terms.

and those on FQJl.can be transformed into Ml

problems on ECLS 2.5 Extended Clauses

2.3 Insufficiency of Conventional Logic

Programming

An extended clause & a formula of the form
ai,...,am< bl,...,bn,fl,...,fp,

Most of logic programming research uses subspaceswhere each o#y,...,am,bs,...,bn is a user-defined
of CLs, i.e., conventional logic programs are sets of atom or a built-in constraint atom, arfig....f, are
normal clauses and provide no representation powerfuncatoms. All usual variables occurring @ are
of existential quantification. So they can never pro- implicitly universally quantified and their scope is
vide a general framework of solving logical problems. restricted to the extended clau€eitself. The sets
Even if a logic programming language (e.g., Pro- {a;,...,an} and{bs,...,bn,f1,...,f} are called the
log) is Turing complete, it does not mean that every- |eft-hand sideand theright-hand side respectively,
thing can be done using such a language. A pro- of the extended clausg, and are denoted bizs(C)
gramming language is said to be Turing complete if andrhs(C), respectively. LetiserLh¢C) denote the
it can be used to simulate any computable function. number of user-defined atoms in the left-hand side of
Our problem in this paper, however, is not to simulate C. WhenuserLh$C) = 0, C is called anegative ex-
procedures, but to invent procedures for giving cor- tended clauseWhenuserLhgC) = 1, C is called an
rect solutions to Ml problems. Such invention is not extended definite claus&henuserLh¢C) > 1,C is
an easy task, but once a procedure is invented, a simcalled amulti-head extended clause
ulation of it is rather an easy task. Turing complete-  When no confusion is caused, an extended clause,
ness means not so large advantages; most practica negative extended clause, an extended definite
programming languages are Turing complete. clause, and a multi-head extended clause are also
called aclause a negative clausea definite clausg
and amulti-head clausgrespectively.
Let DcL denote the set of all extended definite
clauses with no constraint atom in their left-hand

We consider an extended formula space that containsSides. Given a definite clause < DcL, the user-
three kinds of atoms, i.e., user-defined atoms, built- defined atom inhs(C) is called theheadof C, de-
in constraint atoms, anfiincatoms. Auser-defined ~ noted byheadC), and the seths(C) is called the
atomtakes the formp(ty,...,t,), wherepis a user-  bodyof C, denoted byoody(C). GivenD C DcL, let

defined predicate and theare usual terms. Auilt-in headD) = {headC) |C € D}.

constraint atomalso simply called @onstraint atom
or abuilt-in atom takes the forne(ty, . . . ,t,), wherec

is a predefined constraint predicate andtilaee usual
terms. Let4, be the set of all user-defined atong,

the set of all ground user-defined atordg, the set

2.4 User-defined Atoms, Constraint
Atoms, and func-Atoms

2.6 An Extended Clause Space

The set of all extended clauses is denoted by ECLS
Theextended clause spauethis paper is the power-

of all constraint atoms, and; the set of all ground
constraint atoms.

A func-atom (Akama and Nantajeewarawat,
2011b) is an expression of the fofomq f,ty,. .. ty,
tht1), Wheref is either am-ary function constant or
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set of ECLS.

Let Cshe a set of extended clauses. Implicit ex-
istential quantifications of function variables and im-
plicit clause conjunction are assumed@s. Func-
tion variables irCsare all existentially quantified and



their scope covers all clauses s With occur-
rences of function variables, clausesGs are con-

nected through shared function variables. After in-

stantiating all function variables occurring @s into

Unfolding Existentially Quantified Sets of Extended Clauses

3 SOLVING MI PROBLEMS BY
EQUIVALENT
TRANSFORMATION (ET)

function constants, clauses in the instantiated set are

totally separated.

2.7 Interpretations and Models

An interpretationis a subset ofG,. A ground user-
defined atonyg is true under an interpretatidniff g

3.1 Ml Problems on ECLS:

A model-intersection problefifior short,MI problem)
on ECL is a pair(Cs ¢), whereCsC ECLS: and
¢ is a mapping fronpow(Gy) to some seW. The
mapping¢ is called anexit mapping The answer to

belongs tal. Unlike ground user-defined atoms, the this problem, denoted bgnsy (Cs ¢), is defined by

truth values of ground constraint atoms are predeter-

mined independently of interpretations. Let O

ansu (Cs¢) = ¢((|ModelgCs)),

denote the set of all true ground constraint atoms, yyhere\ModelCs) is the intersection of all models

i.e., a ground constraint atognis true iff g € TCON.
A groundfuncatomfundf,ti,... ty,thr1) is true iff
f(t17 s atn) = tn+1-

A ground clauseC = (ag,...,am < bu,...,bn,
f1,...,fp) € ECLS, where{ay,...,am,by,...,bn} C
GuU G¢ andfy,...,fp are grounduncatoms, is true
under an interpretatian(in other words| satisfies §
iff at least one of the following conditions is satisfied:

1. There exists € {1,...,m} such thata € | U
TCoN.

2. There existsi € {1,...,n} such thatb; ¢ | U

TCoON.

3. There exists€ {1,..., p} such thaf; is false.

GivenCsC ECLS: and a substitution for function
variableso € Map(FVar,FVarU FCon), let Cso =
{Co | C € Cs}, i.e., Cx is the clause set obtained
from Csby instantiating all function variables appear-
ing in it usingo.

An interpretation is amodelof a clause se€sC
ECL: iff there exists a substitutioo for function
variables that satisfies the following conditions:

1. All function variables occurring iCs are instan-
tiated byo into function constants.

2. For any claus€ < Csand any substitutio for
usual variables, ifC08 is a ground clause, then
Caobis true undet.

Let Modelsbe a mapping that associates with each

clause set the set of all of its models, iMdgdelgCs)
is the set of all models dfsfor anyCsC ECLS:.

Note that the standard semantics is taken in this
paper, i.e., all models of a formula are considered in-
stead of specific ones, such as those considered in th

minimal model semantics (Clark, 1978; Lloyd, 1987)

(i.e., the semantics underlying definite logic program-
ming) and those considered in the stable model se-

mantics (Gelfond and Lifschitz, 1988; Gelfond and

Lifschitz, 1991) (i.e., the semantics underlying an-

swer set programming).

of Cs Note that wherModelgCs) is the empty set,
(ModelgCs) = G.

Example 1. Assume thaCsconsists of the following
four clauses:
pat(oe) «
prob(io), pat(po) +
prob(io) « pat(po)
prob(oe) < pat(po)
Consider a Ml problem{Cs ¢), where for anyG C
Gu, $(G) = {x| prob(x) € G}. Obviously,
e M; = {pat(po), prob(io), prob(oe), pat(oe)} is a
model ofCs and
e My = {prob(io), pat(oe)} is also a model o€s
Moreover, for anyM C Gy, M is a model ofCs iff
there existdlg C G, such that
1. M=MgUM;orM = MgUMsy, and
2. pat(po) ¢ Mo.
So (N ModelgCs) = {prob(io), pat(oe)}. Therefore
ansv (Cs ¢) = {io}. 0

3.2 Target Mappings

Given a MI problem(Cs ¢), sinceansu (Cs¢) =
®(NModelgCs)), the answer to this Ml problem is
determined uniquely bilodel§Cs) and$. As a re-
sult, we can equivalently consider a new MI problem

with the same answer by switching frddsto another

clause se€s if ModelgCs) = ModelgCs), i.e., Ml

é)roblems can be transformed into simpler forms by

equivalent transformation (ET) preserving the map-
ping Models

In order to use more partial mappings for simpli-
fication of MI problems, we extend our consideration
from the specific mappinllodelsto a class of partial
mappings, called GSrM AP, defined below.
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Definition 1. GSETMAP is the set of all partial map-
pings frompow(ECLS:) to pow(pow(Gy)). O

As defined in Section 2.ModelgCs) is the set
of all models ofCs for any CsC ECLS-. Since a
model is a subset afj,, Modelsis regarded as a total

mapping frompowECLS:) to pow(pow(Gy)). Since

a total mapping is also a partial mapping, the map-

ping Modelsis a partial mapping fronpow(ECLS:)
to pow(pow(Gy)), i.e., itis an element of GSrMAP.

A partial mappingM in GSETMAP is of par-
ticular interest ifM(Cs) = (MModelgCs) for any
Cse dom(M). Such a partial mapping is calledar-
get mapping

Definition 2. A partial mappingM € GSETMAPIis a
target mappingff for any Cse domM), NM(Cs) =
M ModelgCs). O

It is obvious that:

Theorem 1. The mapping Models is a target map-
ping. O

The next theorem provides a sufficient condition
for a mapping in GETMAP to be a target mapping.

Theorem 2. Let M € GSETMAP. M is a target map-

ping if the following conditions are satisfied:

1. M(Cs) C ModelgCs) for any Cse domM).

2. For any Csc domM) and any me ModelgCs),
there exists me M(Cs) such that hC m. O

3.3 Answer Mappings

e domM) = {x]| (x,y) € dom(A)}, and
o for any(Cs ¢) € domA),

A(Cs 9) = ¢([IM(Cs)).

Then A is an answer mapping. O

3.4 ET Steps and ET Rules

Next, a schema for solving Ml problems based on ET
preserving answers is formulated.

Let STATE be the set of all Ml problems. Elements
of STATE are calledstates

Definition 4. Let (S S) € STATE x STATE. (S,S) is
anET stepiff if S=(Cs¢) andS = (Cs,¢’), then
ansv (Cs¢) = ansgy (Cs, ¢'). O

Definition 5. A sequence[Sy,Si,..., S| of ele-
ments of SATE is an ET sequencdf for any i €
{0,1,...,n—1},(S,S+1) is an ET step. O

The role of ET computation constructing an ET
sequencés, Sy, ..., Sy is to start withSy and to reach
S, from which the answer to the given problem can be
easily computed.

The concept of ET rule on1®3TE is defined by:

Definition 6. An ET rule r on STATE is a patrtial
mapping from SATE to STATE such that for any
Sedom(r), (Sr(9)) is an ET step. O

We also define ET rules opow(ECLS:) as fol-
lows:

Definition 7. An ET rule r with respect to a target
mappingM is a partial mapping fromowECLS:) to

A set of problems that can be solved at low cost is pow(ECLS:) such that for angZse dom(r), M(Cs) =
useful to provide a desirable final destination for ET M(r(Cs)). O

computation. It can also be specified as a partial map-
ping that is preserved by ET. Such a specification is

useful to invent and to justify a new ET rule. This

motivates the concept of answer mapping, which is

formalized below.

Definition 3. Let W be a set. A partial mapping
from

poWECLS:) x Map(pow(Gy),W)

to W is an answer mappingff for any (Cs¢) €
dom(A), ansu (Cs ¢) = A(Cs ¢). .

If M is a target mapping, thev can be used for
constructing answer mappings.

Theorem 3. Let M be a target mapping. Suppose that
A is a partial mapping such that
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We can construct an ET rule orm&E from an
ET rule with respect to a target mapping.

Theorem 4. Assume that M is a target mapping and
ris an ET rule with respect to M. Suppose thas a
partial mapping fromSTATE to STATE such that

e dom(r) = {x| (x,y) € dom(r)}, and
o 7(S) = (r(Cs),9) if S= (Cs¢) € dont(7).

Thenris an ET rule onSTATE. O

3.5 A Correct Solution Method based
on ET Rules

A MI problem (Cs ¢), whereCsC ECLS- and¢ is
an exit mapping, can be solved as follows:



Answer

®

Model intersection

S
Models

Answer

Target mappings

Cso = Cs1 = - = Csy,
Y

b= Equivalent ="
g=o transformation P
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4 UNFOLDING ON ECLSE

4.1 Occurrence Relations

For definite-clause unfolding, a body atom in a target
clause is specified for unification with each head atom
in a set of definite clauses. An atom occurrence is usu-
ally used for such specification, which is generalized
into an occurrence relation defined below.

GivenCsC ECLS:, a subsebccof Csx 4, is said
to be anoccurrence relatioron Csiff for any C € Cs,
if (C,b) € occ thenb € rhs(C).

Assume thatocc is a given occurrence relation
on Cs Let domocc) = {C | (C,b) € occ} and
ran(occ) = {b | (C,b) € occ}. Letgran(occ) be de-

Figure 2: ET computation paths constructed by a combina- fined as the set
tion of target mappings and answer mappings.

1.

LetA be an answer mapping.

2. Prepare a s&® of ET rules on SATE.
3. TakeS such thatsy = (Cs ¢) to start computa-

tion from &.

. Constructan ET sequeni&, ..., S, by applying

ET rulesinR, i.e., for each € {0,1,...,n— 1},
S.1is obtained fron§ by selecting and applying
ri € Rsuch thal§ € dontr;) andr;(S) = S1.

. Assume thag, = (Cs,,¢n). If the computation

reaches the domain éf i.e., (Cs,, ¢n) € domA),
then compute the answer by using the answer

mappingA, i.e., outputA(Cs,, n).
Given a setCs of clauses and an exit map-

ping ¢, the answer to the MI problenCs ¢), i.e.,

{bB| ({C,b) € occ) &
(0 is a substitution for usual variable&
(b6 is ground}.

For any claus€, letocqC) = {b| (C,b) € occ}.

Example 2. Assume tha€Csconsists of the following
clauses:

Ci: Pe, Pa <

Cot Ps, pa <

Ca: pa, P14

Cal < p1, P2

Cs: p3 < Ps

Ce: < Pa

Cri p2 < ps, P3
Letocc= {(C4, p2)}. Thenoccis an occurrence rela-
tion onCs with dom(occ) = {C4}. O

ansy (Cs ¢) = ¢("NModelgCs)), can be directly ob-
tained by the computation shown in the leftmost path
in Fig. 2. Instead of taking this computation path, the 4.2 Unfolding Operation on ECLS:
above solution takes a different one, i.e., the lowest
path (fromCsto Cs) followed by the rightmost path
(through the answer mappirg in Fig. 2. an arbitrary sebD of definite clauses is defined below.

The selection of; in Rat Step 4 is nondeterminis-  For unfolding to preserve answers to Ml problems,
tic and there may be many possible ET sequences forsome additional conditions abs D, and a specified
each MI problem. Every output computed by using occurrence relation are required. They will be given
any arbitrary ET sequence is correct. in Section 5 (Theorem 6).

Assume that

e CsCECLS,
e D is a set of definite clauses indD, and

An unfolding operation for a clause sés by using

Theorem 5. When an ET sequence starting frog=S
(Cs ¢) reaches §in domA), the above procedure
gives the correct answer t&€s ¢). O

e OCCis an occurrence relation @@s
By unfolding Cs using D at occ Csis transformed
into UNF(Cs D, occ), which is defined by

UNF(Cs D,occ) = (Cs—dom(oco))
U Res@dom(occ), D, occ),
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whereResddonocc), D, occ) is the set

U{resolventC,C',b) | (C € domocc)) & (C' €D) &
(b€ ocqC))},

and for anyC € dom(ocg), any C’' € D, and any
b € ocqC), resolventC,C',b) is defined as follows,
assuming thap is a renaming substitution for usual
variables such that andC’p have no usual variable
in common:

1. If bandheadC'p) are not unifiable, then
resolventC,C',b) = &.
2. If they are unifiable, then
resolven(C,C’,b) = {C"},

whereC” is the clause obtained fro@ andC'p
as follows, assuming thd& is the most general
unifier ofb andheadC'p):

(a) Ihs(C") = Ihs(CH)
(b) rhs(C") = (rhs(C8) — {b6}) UbodyC'pb)
5 CORRECTNESS THEOREM

5.1 Correctness of Unfolding

We provide in Theorem 6 a sufficient condition for

unfolding to preserve the answer to a Ml problem.

Given CsC ECLS, let gleft(Cs) denote the set of

all ground instances of user-defined atoms in the left-

hand sides of extended clause<ia

Theorem 6. Assume that:
1. CsC ECLS.
2. DC CsnDcL such that

gleftD) NgleftCs—D) = @.

3. occ is an occurrence relation on Cs such that

domocc) C Cs—D.

4. gran(occ) Nglef(Cs—D) = 2.

5. ¢ is an exit mapping.

Then ang; (Cs ¢) = anga (UNF(Cs D,occ),¢). O
Given a sefCs of extended clauses, one way to

apply unfolding is as follows:

1. Selectaclausgin Cs

2. Select an atorh in the right-hand side of.

3. Assuming thap is the predicate of the selected
atom b, determine the seD consisting of all
clauses inCs that containp-atoms in their left-
hand sides.
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4. If C ¢ D andD consists only of definite clauses,
then unfoldCswith respect td usingD into C<,
i.e., makeCs = UNF(Cs D, occ), whereocc =

{(C,b)}.

According to Theorem 6, this unfolding transforma-
tion is equivalent transformation.

Example 3. Consider the clause se&fs and the
clausesC;—C; in Example 2. Unfolding can be ap-
plied successively to this clause set as follows:

e By unfolding Cs with respect top, in C4 using
D = {C7}, we obtainCs, = (Cs— {Cs}) U{C,},
whereC), = (< p1, Ps, P3).

¢ By unfolding Cs; with respect topz in C} using
D’ = {Cs}, we obtainCs, = (Cs; — {C}}) U{C} },
whereCy = (« py, s, Pe)-

e By unfolding Cs, with respect tops in C; using
D' ={Cs}, we obtainCs = (Cs — {C7}) U{C}},
whereC; = (pz < Ps, Pe).

The resulting se€s; contains the following clauses:

C1: Pe, Pa<

C2! Ps, pa <

Cs: pg,p1

CZ: < P1,Ps, Pe6

Cs: ps< ps

Cs: < ps4

Ci: P2+ Ps,Pe
No further application of unfolding is possible to the
clause se€ss. O

5.2 Target Mapping MM

The answer preservation of a given Ml problem by
unfolding comes from the preservation of a target
mapping, calledMM, which is given as follows:
Given a sefCs of extended clause3/M(Cs) is the
set of all the least models @(o,sel Cs) such that

o is a possible function-variable instantiation agel

is a possible head-atom selection function, where
D(o,sel Cs) is the set of all ground definite clauses
obtained by

1. applying the function-variable instantiatianto
clausesirCs

2. instantiating the resulting clauses by using all pos-
sible usual-variable instantiations,

w

. simplification of the instantiated clauses, and

4. applying the head-atom selection functiee to
the resulting simplified clauses.

The precise definition d¥IM can be found in (Akama
and Nantajeewarawat, 2016).
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To illustrate, suppose th&s consists of the fol-  target mappingMM. The preservation oM im-
lowing three clauses: plies, with an unchanged exit mapping, the preserva-

taxcut(x) « he(x,y), hc(x, 2), (y # 2) tion of the answer to a given Ml problem.

hc(PeterPaul) +
hc(Peterx) « fungf, x)
ThenMM(Cs) is the union of ACKNOWLEDGEMENTS
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