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Abstract: In this paper a meta-heuristic for improving the performance of an evolutionary optimization algorithm is 
proposed. An evolutionary optimization algorithm is applied to the process of solving an inverse 
mathematical modelling problem for dynamical systems. The considered problem is related to the complex 
extremum seeking problem. The objective function and a method of determining a solution perform a class 
of optimization problems that require specific improvements of optimization algorithms. An investigation of 
algorithm efficiency revealed the importance of designing and implementing an operator that prevents 
population stagnation. The proposed meta-heuristic estimates the risk of the algorithm being stacked in a 
local optimum neighbourhood and it estimates whether the algorithm is close to stagnation areas. The meta-
heuristic controls the algorithm and restarts the search if necessary. The current study focuses on increasing 
the algorithm efficiency by tuning the meta-heuristic settings. The examination shows that implementing the 
proposed operator sufficiently improves the algorithm performance. 

1 INTRODUCTION 

Many mathematical modelling problems, 
classification problems and decision-making 
problems are reducible to black-box optimization 
problems. Powerful tools for solving these problems 
are evolution-based and nature-inspired optimization 
algorithms, which are stochastic search heuristics. 
This scientific field is developing and meets a lot of 
applications, (Eiben et al., 2015). To successfully 
solve these kinds of problems, a number of different 
problem-oriented modifications of algorithms are 
required. The number of new problems grows and 
their features change.  

Due to the no free lunch theorem (Wolpert et al., 
1997), the most efficient way to improve algorithm 
performance when solving this class of problems is 
to investigate the distinct class of optimization 
problems, analyze its features and then design 
algorithm modifications on the basis of the mined 
knowledge. However, some of problem classes may 
have similar features, and thus can form another 
class of problems, a superset of them. For this reason 
it is important to develop a meta-heuristic, a set of 

operators to control and/or to modify the extremum 
seeking algorithms for the whole superset, even if 
the algorithms sufficiently differ in terms of features 
and operators.  

Most of the current optimization problems are 
multimodal and complex. For some of the problems 
the probability of reaching the global extremum area 
is small. Algorithms tend to reach neighborhoods of 
local extremum points and to stack in these areas 
and the global optimum cannot be found in a finite 
number of iterations. 

The failure of algorithm parameter tuning to 
facilitate the discernment of global optima may be 
due to the presence of large basins of attraction. So 
on the one hand, the algorithm must find an accurate 
solution, but on the other, there is a necessity to 
explore the search space. There one meets a 
contradiction. To resolve it, we propose a meta-
heuristic that monitors the properties of the solution 
seeking process and restarts it if some conditions are 
met. 

The first implementation is the restart operator 
that reacts if a stagnation of populations is detected. 
The idea of using such a restart of an evolution-
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based algorithm was described in studies (Dao et al., 
2014), (Fukunaga, 1988) and (Beligiannis et al., 
2004). In this paper we consider another criterion for 
deciding when to apply the restart; we estimate the 
speed at which the best solution fitness value 
changes and if it is less than a certain parameter, the 
algorithm restarts. In the study (Loshchilov et al., 
2012) the population properties and algorithm 
settings take on new values at each restart. In the 
current paper, the values of the settings are kept the 
same. 

The second implementation was made in order to 
detect whether the current population is close to the 
point, where it was decided that a restart would be 
made. For this reason, a dataset is required. The 
dataset saves the histories of all restarts that have 
been performed. If the distance between a current 
solution and any other solution from the dataset is 
less than a certain parameter, the operator will stop 
the search and cause a restart.  

In our previous studies a dynamical system 
identification problem was considered, an inverse 
mathematical modelling problem with the solution 
being searched for in a symbolic form. We describe 
single input and single output systems and suppose 
that the input control function is known. We also 
suppose that the observations are the distorted 
measurements of the system output.  

The identification of LDE parameters requires a 
certain order of equation and an initial value. The 
automatic and simultaneous estimation of linear 
differential equation coefficients, initial value and 
order lead to the implementation of problem-
oriented algorithm modifications. The proposed 
approach is based on the reduction of the 
identification problem to an extremum problem on a 
real value vector field. The objective function of the 
reduced problem is complex and multimodal (as 
previous studies prove) and can be evaluated only 
numerically. To solve this problem, a specific 
evolution-based optimization tool was developed; its 
origin is the evolutionary strategies optimization 
algorithm. The proposed algorithm is modified and 
designed for solving the described problem; its 
performance is sufficiently higher than the 
performance of standard evolution-based algorithms. 

Population search algorithms had already been 
applied to parameter identification problem solving 
and experimental results show its reliability. A 
genetic algorithm is applied to the parameter 
identification problem for ordinary differential 
equations (Sersic et al., 1999), but in that study the 
structure of the system is already known. Another 
study where the genetic algorithm is used to estimate 

the coefficients of second order LDE is (Parmar et 
al., 2007). In that study the order reduction problem 
was considered. A similar problem is considered in 
(Narwal et al., 2016) but the cuckoo optimization 
algorithm is used. Another nature-inspired 
optimization algorithm, partial swarm optimization, 
was applied to nonlinear dynamical system 
linearization, (Naiborhu et al., 2013). 

The results of previous studies (Ryzhikov and 
Semenkin, 2013) allow us to conclude that the 
proposed modified hybrid evolutionary strategies 
optimization algorithm is a reliable and efficient tool 
for solving optimization problems of the considered 
class in comparison with the evolutionary strategies 
algorithm with particular modifications and tuned 
parameters. In any event, the algorithm tends to be 
stacked in local optimum area.  

In this study the proposed algorithm is 
supplemented with a meta-heuristic. The 
performance of the algorithm with different meta-
heuristic settings was examined on a set of 
identification problems and its performance is 
compared to the initial algorithm performance. 

2 IDENTIFIACTION PROBLEM 
AND MODIFIED HYBRID 
EVOLUTIONARY ALGORITHM 

A linear dynamic system can be determined with its 
parameters: coefficients and order. Let the object to 
be identified be described with a linear differential 
equation of some unknown order k . So the system 
output ( )x t  is a solution of the Cauchy problem: 

( ) ( 1)
1 0 ( )k k

k ka x a x a x b u t
        , 

0(0)x x . 
(1) 

The aim of the inverse modelling problem 
solving is to make a mathematical model that fits the 
observation data. In this case it is some differential 
equation (1), the solution of which is a function that 
fits the data well. The function is a solution of the 
Cauchy problem, which requires the initial value 0x . 

It means that an initial value estimation is also 
required to search for the model in the form of an LDE. 

In the case of distorted observations and/or a 
small sample size it is a difficult problem to estimate 
the coordinates of the initial value vector. In general, 
there could be significant errors in the estimation of 
initial value derivatives. Thus, it is important to 
develop an approach to estimating the initial value 
coordinates and LDE parameters simultaneously. 
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Let a set  , , , 1,i i iy u t i s , be a sample, where 

iy R  is the dynamic system output measurement 

at the time point it , ( )i iu u t  is a control action and 

s  is the size of the sample. In the current 
investigation it is supposed that the control function 

( )u t  is known. It is assumed that the output data 

, 1,iy i s  is distorted by limited additive noise 

: ( ) 0, ( )E D      : 

( ) , 1,i i iy x t i s    , (2) 

where the ( )x t  function is a solution of the Cauchy 

problem (1). In the current work, the random value 
  is distributed uniformly and  ,l lU n n � , 

where 0ln   is a parameter for the noise variance 

control. 
Without a loss in generality and if it is supposed 

that the system is controllable, one may assume that 
the system is described with the following 
differential equation:  

( ) ( 1)
1 0 ( )k k

k ka x a x a x u t
         . (3) 

If the differential equation order m  is known, 
and we seek the solution of the identification 
problem as the LDE, it means that we need to 
estimate the following parameters: coefficients 

  1
1 0ˆ ˆ ˆ ˆ, , ,

T m
m ma a a a R    and initial value 

vector ˆ(0) mx R . 

Since there is no information about the system 
order, let m  be the order of the LDE model, which 
is assumed to be limited, m M N  . This 
limitation M  is supposed to take a value that is not 
less than the real system order.  

Now the LDE is fully determined and the model 
output is a solution of the initial value problem: 

( ) ( 1)
1 0ˆ ˆ ˆ ˆ ˆ ˆ ( )m m

mx a x a x a u t       , 

0ˆ(0) mx x . 
(4) 

We propose performing the estimation of all the 
required parameters with two vectors: the equation 
coefficients 1ˆ Ma R   and the initial value 

coordinates 0ˆ Mx R . To estimate the order of the 

LDE it was supposed to use a transformation 
   1 : ,MT a R O M N   

   : ,O M n n M n N   , 

 1 0 â a
T a M n


  , 

(5) 

where 0 â a
n


 is defined by the following expression:  

0 ˆ
0

ˆarg max 0
n

na
n N i

n a
 

   
 
 , (6) 

which determines the order of the differential 
equation. 

Let A  be some vector space dim ( )R AR , so using 
vectors â , 0x̂  and transformation  

  dim ( )
2 , : ,R A nT a A n A N R     

 2 , : , 1,dim ( )i i RT a A n v v a i A n     , 
(7) 

one can define the parameters in the notation (3). 
Let 

0ˆ ˆ, (0)
ˆ( )

a a x x
x t

 
 be a solution of the Cauchy 

problem (4) with parameters:  1m T a , 

2ˆ ( , )a T a m  and 2 0ˆ(0) ( , )x T x m .  

The conceptual formulation of the inverse 
mathematical modelling problem involves receiving 
the model from the data. In other words we need to 
find a solution of the extremum problem: 

*
1 ˆ( )optm T a ,  *

* *ˆ ˆ ,opt

m
a P a m  and 

   * *
0ˆ ˆ0 ,optx P x m , where 

1
0

0 0
,

ˆ ˆ, arg min ( , ),
M M

opt opt

a R x R

a x I a x
 

  

0
0 ˆ ˆ, (0)

1

ˆ( , ) ( )
s

i i a a x x
i

I a x y x t
 



  . 
(8) 

Thus, the simultaneous estimation of all the 
parameters leads to the extremum problem solving 
of 1M MR R  . 

The extremum problem (8) is complex; it can 
be evaluated only numerically, is multimodal and as 
will be shown below, has a lot of local optimum 
points in its basins of attraction. As we need to find 
the real-value vectors, it is preferable to use an 
optimization technique that is designed for this 
purpose. The evolution strategy optimization 
algorithm was selected, whose principles are 
described in (Schwefel, 1995). It is shown in many 
different works that it is a reliable, flexible and 
powerful stochastic optimization tool. 

For increasing the efficiency of the 
optimization algorithm, the proposed approach to 
solving the identification problem was analysed, and 
so the evolutionary strategies algorithm was 
modified.  

Every alternative of problem (8) is an individual 
and is characterized by the value of its fitness. The 
fitness function of alternative 2 1MR     is a 

mapping  

    1
( ) 1 argf I I


    , (9) 
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where    ˆ ˆarg , 0I a x   is a transformation of 

the individual’s vector coordinates to the arguments 
of the functional (8). 

In the current study the evolutionary strategy 
optimization algorithm was implemented with the 
same features and settings as those presented in the 
study (Ryzhikov et al., 2016). 

Let the optimization problem dimension be 

 2 1dim M
p Rn R   . The crossover operator is 

determined by one of the expressions: 
1

1 1

p pn n
j

r j s j
j j

i w i w



 

 
     

 
  , (10) 

    
1

_____

1

, 1,
pn

q
c s q j pj j

j

P i i w w j n





 
     

 
 , (11) 

where ci  is an offspring, si  is one of the parents, pn

is the quantity of parents, w  is the weight 
coefficient.  

Here we describe some standard and proposed 
methods of weight determination. For the case (10): 

  1

j pw n


 ,  j
j sw f i , (min ,1)j cw U� , 

(min , ( ))j
j c sw U f i� ; and for the case (11): 

  1

j pw n


 , (min , ( ))j
j c sw U f i� . In the given 

expressions the variable minc  is a crossover 

parameter that prevents dividing by 0. 
The first essential improvement of the 

evolutionary strategies algorithm is the 
hybridization, which merges the evolution 
optimization with a local search strategy based on 
the stochastic extremum seeking algorithm of the 0th 
order. In our study the main algorithm was coupled 
with the proposed coordinate-wise extremum 
seeking technique. The described searching operator 
acts after standard operators in every generation. 
The aim of its implementation is to improve the 
alternatives after the random search. It allows the 
populations to be directed and the accuracy of every 
distinct alternative to be improved. The suggested 
local optimization algorithm is controlled by 4 
parameters: 1

LN  - the number of individuals to be 

optimized, 2
LN  - the number of genes to be 

improved, 3
LN  - the number of steps for every gene, 

and  max0,L Lh U h�  - the optimization step value. 

However, not all the genes can be improved. If the 
alternative represents a model with the order m , 
than its M m  genes, which correspond the initial 

values coordinates, should be excluded. 
The second modification is the suppression of 

the mutation influence. It is a very important point, 
because the way of transforming the objective vector 
into a differential equation makes the problem very 
sensitive to small changes in the alternative 
variables. Thus, it was suggested that the probability 
for every gene to be mutated was added, so that it 
would be possible to decrease the mutation by 
decreasing the value of the setting mp . The variable 

 1 ...
pnr r r  is a random vector, its coordinates 

are randomly distributed for every offspring, 

   0 1 , 1j m j mP r p P r p     . Now the 

mutation operator can be described as follows, 

1, pj n , 1,2m p pj n n    

      0, ,
p

m c j cj j j n
i i r N i


    (12) 

          0,11
m m m

N
m j c j cj j j

i r i r i e      , (13) 

or 

     0,1 ,
m m

m c jj j
i i r N      (14) 

where   , 1,m pj
i j n  are objective parameters, 

 
_____

, 1,
p

m j n
i j N


  are strategic parameters,   is a 

learning coefficient,  2,N E   is a normally 

distributed random value with an expected value E  
and a variance 2 . 

The third modification is also supressing the 
influence of the random search on the order 
estimation. The vector determines the LDE order; 
therefore, some of its coordinates are equal to zero. 
However, we still need an operator to increase its 
accuracy, but we do not want this operator to 
influence on the order estimation. This leads to a 
contradiction. To solve it, a rounding operator was 
implemented. One more algorithm parameter sets 
the threshold level 0 1lt   , so the rounding 

operator works as follows 

     ,
, 1,

0,

m m lj j
m сj

i if i t
i j N

otherwise

  


, (15) 

where 1cN M   the number of objective 

parameters that transform into ODE coefficients. 
All the designed implementations sufficiently 

increased the efficiency of the algorithm and 
improved its performance. By implementing the 
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modifications one by one, it can be seen that the 
efficiency of the algorithm is increasing with every 
implementation with the same computational 
resources. All the modifications were designed to 
lessen the complexity coming from the alternative-
to-model transformation and the simultaneous 
estimation of LDE parameters. 

3 RESTART OPERATOR 

The next thing required is to avoid the stagnation of 
the algorithm, which is why a criterion to estimate 
whether stagnation has happened is needed. Firstly, 
understanding of algorithm behaviour requires some 
observations of the algorithm characteristics.  

In this study we propose monitoring the fitness 
function value of the best solution found by the 
algorithms. This makes it possible to control when 
the optimization process is stopped if there is no 
improvement of accuracy. If the algorithm does not 
improve the best solution ever found and this value 
does not change for some number of iterations, one 
can conclude that there is a stagnation of the 
populations. Average fitness statistics do not allow 
an estimation to be made of whether the solution is 
changing or not. 

Let    , , ,i
t best tL j n f i j j n    be the set of 

fitness function values j
bestf  of the best solutions 

ever found by the algorithm until the current 
generation j , tn  is the number of generations this 

set holds. It is easy to see that 
1 2

1 2 1 2, : j j
t best bestj j n j j f f      and in another 

notation 
1 2j jL L . Now we put forward a criterion 

for restarting based on these statistics: 

       1 max , min ,r
t tС j L j n L j n  , 

 1 1
r rС j c , 

(16) 

where tn  is the set size and 11 0rc   is a threshold 

and both are controlling parameters. 

Now let pnk
bestx R  be the best solution for which 

the algorithm was restarted according to criterion 
(16) and k  is the number of restarts made. The set 

 , 1,i
bestH x i k   consists of all these solutions. So 

if during the iteration process the algorithm restarts 
according to condition (16), then 1,k k   

bestH H x  . On the basis of the set H we put 

forward another criterion for restarting: 

 2 1
minr

best ii k
С x H

 
  , 2 2

r rС c . (17) 

So with these heuristics we prevent both the 
stagnation of the populations – (16), and 
convergence to a stagnation area – (17). 

To provide the maximum gain in efficiency with 
the implementation of the meta-heuristic, it is 
necessary to estimate the influence of settings on the 
algorithm characteristics. 

Here we describe all the characteristics that are 
useful for the described identification problem. The 
first characteristic is the criterion (8), which we will 
denote as 1C , the value of the solution found by the 

algorithm. However, as the previous work shows, 
this is not the only reliable characteristic, since there 
is other knowledge that can be mined comparing the 
solution with the real dynamical system. The 
following metric can be evaluated: 

1

2 1 1
1

ˆ ˆ( ) ( ) ( ) ( )
2

sN
s

i i i i
i

h
C x t x t x t x t



 


     , (18) 

where sh  is the step size and s
s

s

t
N

h
  is the number 

of steps. The value of this criterion shows the 
closeness of the model output to the real output 
trajectory. It is useful in estimating the quality of the 
solution for a noised sample. 

The next characteristic that interests us is the 
probability of identifying the real order. We can 
estimate this probability with the following criterion: 

3 success runsC N N , (19) 

where successN  is the quantity of solutions with the 

correct order of the differential equation and launchesN  

is the quantity of algorithm runs. 
If the order is identified correctly, the distance 

between the model parameters and the real system 
parameters can be calculated as 

4 0 0ˆ ˆm
mC a a x x    , (20) 

here we suggest using the Euclidian norm. 
To make an adequate estimation of the 

algorithm, more than only criteria (8), (18) and (20) 
is required. We suggested adding two more criteria, 
having considered of all the options. If the sample 
size is small and measurements are distorted, the 
criteria described above indicate the complexity of 
the problem only, because the solution could fit the 
observations more than a real system output 
trajectory. 

Let  0,sC I a x  be a criterion (8) value for real 
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dynamical system parameters. We put forward 
criterion 

    1

5 1 0ˆ ˆ( , ) s runsC N C a x C N
   , (21) 

 1 0ˆ ˆ( , ) sN C a x C  is the number of event 

1 0ˆ ˆ( , ) sC a x C  that has occurred. Furthermore, if the 

event occurs, the value that would show how much 
better the model is can be calculated: 

6 1 0ˆ ˆ( , )sC C C a x  . (22) 

By varying the meta-heuristic settings and 
running the algorithm 25 times for every distinct 
identification problem, we can estimate the most 
efficient settings.  

4 PERFORMANCE 
INVESTIGATION  

Let us briefly discuss the sample forming process. 
The dynamic system output is the Cauchy problem 
solution on  0, T , as it corresponded to (1). Then 

the solution is discretised and represented as a set 

with sN  elements. Let  int ,s
i sI r N i s     be a 

set of randomly chosen different integers, so 
accordingly, the expression (2) is, 

   20,s
i i sy x I T N N     and s

i i st I T N  , 

where 1,i s .  
To examine the algorithm with meta-heuristics 

and its different settings, three different 
identification problems were considered. The list of 
differential equations that simulated the dynamic 
process is given in Table 1. The sample size is 100. 
For this experiment the variance of the noise is equal 
to 0, so the experimental data allows us to see the 
algorithm performance in a basic form.  

Table 1: Identification problems. 

Identification problems 

1 2 ( )x x x u t     ,  0 2 0 , 12.5
T

x T   

2 
2 ( )x x x x u t       , 

 0 2 0 0 , 12.5
T

x T   

3 
( 4) 4 3 ( )x x x x x u t         , 

 0 2 0 0 0 , 12.5
T

x T   

Due to the results of previous works it was 
decided to use the following settings in the current 
investigation: 100 individuals for 100 populations, 
tournament selection, 3 parents for random 

crossover, mutation scheme (12) and (14), the 
mutation probability 2m pp n , 1 40LN   

individuals for the local stochastic improvement, 

2 50LN   genes and max
3 1, 0.5L

LN h  , the threshold 

for rounding 0.4lt  . The strategic parameters of 

the initial population were uniformly generated 
 0,1U , and every objective parameter is equal to 0. 

The order limitation value took 10.  
The parameters of the restart operator took 

values from the following sets:  5, 7, 9,11,15tn  , 

 1 0.005, 0.01, 0.05, 0.1rc  ,  2 0.05, 0.1, 0.2, 0.5rc  , 

and in this investigation we checked all the possible 
combinations of parameter values. We compared 
algorithms using the average values of criteria (8), 
(18)-(20). The algorithm with minimum error (8) 
and (18) is the one with the settings 1 0.005rc  , 

2 0.05rc  , 9tn  , and the criterion average value 

equal to 0.0037. The algorithm with the maximum 
average number of instances of estimating the 
probability of identifying the correct order is the one 
with the settings 1 0.05rc  , 2 0.1,rc   15tn  , the 

average criterion (19) value is 0.9066. And this 
algorithm complies with the minimum average value 
of criterion (20), which is equal to 0.0609. 

Let us show how the examination results 
correlate with the performance estimation of the 
hybrid modified evolutionary strategies algorithm 
without the meta-heuristic. For this purpose we put 
on a chart the average criterion (8) value for the 
algorithm without the meta-heuristic, the average 
criterion value for the algorithm with the best meta-
heuristic settings and the same for the worst, which 
is marked as HMES, HMES+best and HMES+worst, 
respectively. We put the same statistics on the chart 
for criteria (18)-(20). The first two charts are given 
in Figure 1 and the second in Figure 2.  

 

Figure 1: The average error of the observation data 
fitting(left) and the average error of the model output with 
the real system trajectory(right).  
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Figure 2: The average probability of receiving a model 
with the right order values(left) and the average error of 
the real parameter estimation(right). 

Now we estimate and compare the algorithm 
performances for solving the identification problems 
with different sample sizes and noise variances. The 
restart operator settings were taken as follows: 

1 0.005rc  , 2 0.05rc  , 9tn  . 

For identification problems 1-3, given in Table 
1, the sample size takes: 200, 150, 80 and 40; the 
noise parameter ln  takes: 0.05, 0.1, 0.2, 0.5 and 0.8, 

we examine the algorithm by running it on each of 
the considered combination.  

Comparing the performances of HMES and 
HMES+best gives us the following results: the 
average criterion (8) values are 0.0692 and 0.0632, 
respectively; the average criterion (18) values are 
0.4719 and 0.3732, respectively. The proposed 
algorithm finds a model that fits the observations 
more than the real object trajectory with average 
probability 0.8133, (21). This shows that the 
algorithm with the restart operator is more efficient 
on average. Moreover, in every distinct experiment 
its average fitness value was greater than the average 
fitness value of HMES. The average criterion (18) 
values are shown in Figure 3. The chart is divided 
into 4 parts with vertical lines and each part relates 
to one of the sample size: from the left – 200, to the 
right – 40. In every part the bars start with the 
problems with 0.05ln   and go to the right, up to 

0.8ln  . 

As can be seen, in some experiments, the 
proposed algorithm provided a worse result, but it 
found a better solution according to the main 
criterion (8). The criterion (18) values of the 
proposed algorithm are statistically linear to the 
noise level, so we can conclude that it is really more 
powerful in estimating a model that fits the observed 
data. 

The same estimation of algorithm performance 
was made for the algorithm with the restart operator 
settings:  1 0.05rc  , 2 0.1rc  , 15tn  .  The  average 

 

Figure 3: The average criterion (19) values for different 
sample sizes and noise variances: HMES (light grey) and 
the algorithm with meta-heuristic (black). 

values of its criteria are better than the same values 
of the HMES algorithm, but worse than the values of 
the previous algorithm: the average criterion (8) 
value is 0.0643, the criterion (18) value is 0.3822. 
This algorithm finds a better solution than the real 
system trajectory with a probability of 0.8433.  

On the basis of the examination performed we 
can conclude that the settings do not save the 
properties of the algorithm if it is applied to a 
problem with distorted data. For example, the 
probability of identifying the correct differential 
equation order with the second algorithm is 0.6313, 
and with the first – 0.6446; for different sample size 
and without the noise the second algorithm was the 
best according to this criterion.  

5 CONCLUSIONS  

The examination of the approach proposed in this 
paper shows that the designed meta-heuristic tends 
to improve algorithm performance. This occurs even 
though the basic algorithm is already problem-
oriented: it is hybridized, modified and more 
efficient than the standard evolution-based 
algorithms applied to this problem. The important 
fact is that the improvement in performance occurs 
in any case, whatever values from the given sets the 
parameters take. 

The aim of the meta-heuristic is to improve the 
algorithm efficiency in reaching a global optimum 
neighbourhood by monitoring the algorithm 
characteristics and collecting information about the 
previous behaviour of the algorithm. There are 
obviously many different possibilities of how to 
achieve this and this is the purpose of further 
studies. 

In this study we examined the algorithm with the 
most efficient restart operator parameters according 
to various criteria. For each criterion we received a 
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preferable size of the memory set and radiuses of the 
neighborhoods for detecting the stagnation and for 
detecting if the solution is going towards one that 
has been already found. 

Further work is related to examining the 
influence of the restart settings on the algorithm 
performance in the case of different sample sizes 
and noise variances in order to discover more robust 
settings. 
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