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Abstract: The investigation of the diagnostic possibilities for the arterial hypertension is presented. The 41 features of 

the statistical, geometric, spectral and nonlinear methods during functional loads were considered for two 

groups: healthy volunteers and patients suffering from the arterial hypertension of the II-III degree. 

Application of the linear and quadratic discriminant analysis showed particular features that have high 

classification efficiency.  

1 INTRODUCTION 

Nowadays, vascular disorders of the brain are in the 

spotlight due to alarming epidemiological state of the 

insult morbidity in the Russian Federation, disastrous 

consequences of different cerebrovascular 

pathologies for physical and mental health of the 

nation. 

Mortality from the cerebrovascular diseases in the 

Russian Federation is among the highest in the world 

and has an increasing trend. The number of the insults 

in the Russian Federation is higher than 400000. Only 

10% of the insult cases appear to be relatively mild 

and can be cured during the first weeks of the 

diseases. In other cases, sick people who survive, 

retain, at some degree, pronounced neurological 

defect that often leads to sustained disability and loss 

of the ability to work. Up to 15 % of the sick people 

after the insult are chained to bed to the end of their 

lives.  

Moreover, in the Russian Federation there are no 

less than 1,5 mln people suffering from the chronic 

cerebrovascular diseases with vascular dementia as 

the end result. Among the variety of the 

cerebrovascular diseases, there is significant share of 

the chronic forms of the vascular disorders of the 

brain, like hypertonic and atherosclerotic 

encephalopathy.  

A number of factors contribute for development 

of the chronic forms of the brain blood flow disorders: 

high prevalence of the arterial hypertension, improper 

treatment of it for people with diagnosed disease, 

significant prevalence of the cerebrovascular risk 

factors (smoking, stress, excessive consumption of 

alcohol, dyslipidemia), high frequency of the acute 

forms of the brain flow disorders (Suslina and 

Varakin, 2015). 

Therefore, problem of the cerebrovascular disease 

in the Russian Federation can be without a doubt 

labeled as extreme. Specialists of the different 

disciplines should unite their efforts to solve it. 

Aftermath of the arterial hypertension mainly 

manifest in the cardiovascular, cerebrovascular and 

renovascular systems. Complications after the arterial 

hypertension include common cerebrovascular 

disorders: insult, transient ischemic attacks, 

dementia, hypertonic encephalopathy (Wilkinson and 

Waring, 2005). 

Study of the heart rate variability (HRV) signals 

(or R-R intervals) is one of the popular methods for 

functional diagnostics of the human. Accumulated 

experience of the HRV signals analysis by means of 

the most common methods was generalized in 

methodological recommendations of the Europeen 

craniological and North-American electrophysical 

societies(Malik, 1996), and in works of the Russian 

experts (Baevskiy, 2001). These recommendations 

are meant for the short-term records of the heart rate. 

The results of these recommendations can be applied 

to improve diagnostic efficiency. Such data can be 
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recorded not only in stationary medical institutions, 

but also in case of outpatient and remote monitoring.  

Various factors, like neurohumoral mechanisms 

of the higher autonomic centers, influence on the 

HRV signals. These factors cause nonlinear nature of 

the heart rate changes. Methods of the non-linear 

dynamics are promising tools to describe internal 

structure of the R-R intervals time series. 

In general, R-R intervals time series manifest 

features of the determined chaos. This makes 

methods applied for theory of chaotic systems 

suitable for HRV analysis (Lin and Sharif, 2012). 

Among the variety of non-linear dynamics 

approaches commonly applied for the biomedical 

signal processing the most perspective are methods 

for estimation of the scale invariance, like fractal and 

multifractal analysis (Lewis et al., 2012).  

Thus, application of the multifractal analysis for 

evaluation of the HRV signals allows one to obtain 

new knowledge about patient state and effectiveness 

of the treatment process. For the diagnostic means 

multifractal approach can be considered both, 

separately and in combination with more common 

(traditional) methods of the data analysis. 

In works of many authors the Discriminant 

analysis is used as the classifying method: in tasks of 

automatic sleep staging (Ebrahimi et al., 2013), 

mental load estimation (Cinaz et al., 2013), 

arrhythmia detection (Sivanantham and Shenbaga 

Devi, 2014), real-life stress detection (Melillo et al., 

2011) and for automatic assessment of heart failure 

severity (Melillo et al., 2014).  

To our knowledge, our study is the first to attempt 

to apply Discriminant analysis for evaluation of the 

various HRV features descriptiveness for diagnostics 

of arterial hypertension. The goal of this works is to 

analyze possibilities and informativeness of the 

different classes of methods for evaluation of the 

short-term heart rate variability signals in task of the 

arterial hypertension diagnostic during functional 

loads. 

2 MATERIALS AND METHODS 

2.1 Recorded Data 

The study was conducted on two groups: 21 relatively 

healthy volunteers and 60 patients suffering from the 

arterial hypertension of the II–III degree before 

treatment. The clinical records were performed in 

Sverdlovsk Clinical Hospital of Mental Diseases for 

Military Veterans (Yekaterinburg, Russian 

Federation). For the R-R interval signals registration 

corresponding channel of the electroencephalograph-

analyzer “Encephalan-131-03” was used. The records 

of the signals were obtained in two functional states: 

functional peace (to be referred as state F) and passive 

orthostatic load (to be referred as state O). Both states 

were recorded for approximately 300 seconds. The 

rotating table Lojer performed the spatial position 

change of the patient during state O. 

2.2 Heart Rate Variability Features 

In this work, we investigated diagnostic possibilities 

of the arterial hypertension by the different methods 

of the short-term HRV signals analysis. Prior to the 

processing the original time series were cleaned from 

the artifacts. By the artifacts in this study, we 

considered values of the R-R intervals that differed 

from the mean by more than three values of standard 

deviation. NN is the abbreviation for the “normal to 

normal” time series, i.e. without artifacts. 

For spectral and multifractal analyses NN time 

series were interpolated using cubic spline 

interpolation with the 10 Hz sampling frequency. All 

calculations were computed using the in-house 

software in the Matlab. 

2.2.1 Statistical Features 

Statistical methods are used for the direct quantitative 

evaluation of the HRV time series. Main quantitative 

features are: 

 M, the mean value of the R-R intervals: 

𝑀 =
1

𝑁
∑ 𝑁𝑁i

𝑁
i=1 , (1) 

where N is the number of elements in the NN, NNi is 

the i-th element in time series; 

 SDNN, the standard deviation of the R-R 

intervals 

𝑆𝐷𝑁𝑁 = √
1

𝑁−1
∑ (𝑁𝑁i − 𝑀)2𝑁

i=1 ; (2) 

 RMSSD is the square root of the mean of the 

squares of the differences between successive 

elements in NN: 

𝑅𝑀𝑆𝐷𝐷 = [
1

𝑁
∑ (𝑁𝑁i+1 −𝑁−1

i=1  𝑁𝑁i)
2]0,5; (3) 

 NN5O,the number of pairs of successive 

elements in NN that differ by more than 50 ms; 

 CV, the coefficient of variation, defined as ratio 

of standard deviation SDNN to the mean M, 

expressed in percent: 

𝐶𝑉 =
𝑆𝐷𝑁𝑁

𝑀
∙ 100 %. (4) 
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2.2.2 Geometric Features 

Geometric methods analyze distribution of the R-R 

intervals as a random numbers. The common features 

of these methods are: 

 М0, the mode, the most frequent value in the R-

R interval. In case of the normal distribution is 

close to the mean M; 

 АМ0, the amplitude of the mode, is a number of 

the R-R intervals that correspond to the mode 

value. AM0 shows the stabilizing effect of the 

heart rate management, mainly caused by the 

sympathetic activity; 

 VR, the variation range, is the difference 

between the lowest R-R interval and the highest 

R-R interval in the time series. VR shows 

variability of the R-R interval values and 

reflects activity of the parasympathetic 

department of the autonomic nervous system 

(ANS). 

The following indexes are derived from common 

geometric features: 

 SI, the Stress Index that reflects centralization 

degree of the heart rate and mostly characterize 

the activity of the sympathetic department of 

the ANS  

𝑆𝐼 =
АМ0

2М0∙𝑉𝑅
; (5) 

 IAB, the Index of the Autonomic Balance, 

depends on the relation between activities of 

the sympathetic and parasympathetic 

department of the ANS: 

𝐼𝐴𝐵 =
АМ0

𝑉𝑅
; (6) 

 ARI, the Autonomic Rhythm Index, which 

shows parasympathetic shifts of the autonomic 

balance: smaller values of the ARI correspond 

to the shift of the autonomic balance to the 

parasympathetic activity:  

𝐴𝑅𝐼 =
1

М0∙𝑉𝑅
; (7) 

 IARP, the Index of Adequate Regulation 

Processes, that reflects accordance of the 

autonomic function changes of the sinus node 

as a reaction of the sympathetic regulatory 

effects on the heart 

𝐼𝐴𝑅𝑃 =
АМ0

М0
. (8) 

2.2.3 Spectral Features 

Spectral analysis is used to quantify periodic 

processes in the heart rate by the means of the Fourier 

transform (Fr). The main spectral components of the 

HRV signal are High Frequency – HF (0.4 – 0.15 Hz), 

Low Frequency – LF (0.15 – 0.04 Hz), Very Low 

Frequency – VLF (0.04 – 0.003 Hz), and Ultra Low 

Frequency – ULF (lower than 0.003 Hz) (Malik, 

1996, Baevskiy, 2001). For 300 seconds short-term 

time series ULF spectral component is not analyzed. 

HF spectral component characterize activity of the 

parasympathetic department of the ANS and activity 

of the autonomic regulation loop. LF spectral 

component mainly characterize activity of the 

sympathetic vascular tone regulation center. VLF 

spectral component is defined by the suprasegmental 

regulation of the heart rate, as the amplitude of the 

VLF waves is related to the psycho-emotional strain 

and functional state of the cortex(Baevskiy, 2001). 

The quantitative features of spectral analyzes are  

 Spectral power of the HF, LF, VLF 

components  

 Total power of the spectrum – TP; 

 Normalized values of the spectral components 

by the total power - HFn, LFn and VLFn;  

 The LF/HF ratio, also known as the autonomic 

balance exponent; 

 IC, the Index of centralization 

𝐼C =
HF+LF

VLF
. (9) 

2.2.4 Wavelet Transform Features 

For nonstationary time series one can also use the 

wavelet transform (wt), that can simultaneously study 

time-frequency patterns. It is possible to acquire same 

spectral features by means of the wavelet transform: 

 Spectral power of the HF, LF, VLF 

components  

 Normalized values of the spectral components 

by the total power - HFn, LFn and VLFn;  

 The LF/HF ratio. 

Moreover, one can study informational 

characteristics of the wavelet transform by the 

analyze of the 𝐹[
LFwt

HFwt
(𝑡)] function, where LFwt(𝑡) 

and HFwt(𝑡) are time series of the LF and HF spectral 

components acquired by means of the wavelet 

transform.  

As the features of 𝐹[
LFwt

HFwt
(𝑡)] is possible to use 

number of the dysfunctions Nd, maximal value of the 

dysfunction (LF/HF)max, and intensity of the 

dysfunction (LF/HF)int. By the dysfunction, we 

consider values of 𝐹[
𝐿𝐹wt

𝐻𝐹wt
(𝑡)] that suppress decision 

threshold △. According to our previous studies △=10 

(Egorova et al., 2014). For wavelet transform 
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computation in this work, we used wavelet Coiflet of 

the fifth order. 

2.2.5 Nonlinear Features 

As the nonlinear method we adopted the multifractal 

detrended fluctuation analysis (MFDFA) (Stanley et 

al., 1999). Algorithm and application features of the 

MFDFA method to estimation of short-term TS are 

described in details in (Ihlen, 2012). 

The main steps of the method include: 

 the detrending procedure with second degree 

polynomial on non-overlapping segments, 

length of the segments corresponds to the 

studied time scale boundaries; 

 determination of the fluctuation functions for q 

in range q=[-5,5] 

𝐹x(𝑞, 𝑠) = {
1

Ns
∑ [

1

𝑠
∑ [𝑁𝑁(𝑘) −𝑠

𝑘=1
Ns
v=1

𝑁𝑁v(𝑘)]2]q/2}1/q, 
(10) 

where NN is the local trend in the segment , Ns is 

the number of segments, s is the scale; 

 estimation of the slope exponent Hx in log-log 

plot of the fluctuation function against scale s 

for each q 

𝐹x(q,s) ≈ 𝑠𝐻x(𝑞); (11) 

 calculation of the scaling exponent (q) 

𝜏(𝑞) = 𝑞 ∙ 𝐻x(𝑞) − 1; (12) 

 the Legandre transform application for the 

probability distribution of the spectrum 

estimation 

D(𝛼) = 𝑞 ∙ 𝛼 − 𝜏 (13) 

Fig. 1 represents the main features of the 

multifractal spectrum estimated by the MFDFA 

method. Here, H0 is the height of the spectrum, 

represents the most probable fluctuations in the 

investigated time scale boundary of the signal; H2 is 

the generalized Hurst exponent (also known as 

correlation degree); min represents behavior of the 

smallest fluctuations in the spectrum; max represents 

behavior of the greatest fluctuations in the spectrum; 

W = max - min, is the width of multifractal spectrum 

that shows the variability of fluctuations in the 

spectrum. Multifractal characteristics are quantitative 

measures of the self-similarity and may characterize 

functional changes in the regulatory processes of the 

organism. 

In this study, we investigated time scale 

boundaries that correspond to the LF and VLF 
 

 

Figure 1: The characteristic features of the multifractal 

analysis. 

frequency bands: (6-25) sec and (25-300) sec 

respectively. Previously it was shown that 

multifractal analysis of the HF component is not 

informative because of the noising, that was noted in 

our earlier works and by other authors (Makowiec et 

al., 2012). 

2.3 Classification 

As the classification method, we adopted linear and 

quadratic discriminant analysis (DA) (Krzanowski, 

2000). Linear DA aims to find such linear 

combination of the features that can be used for 

adequate separation between two classes. In turn, 

quadratic DA aims to find quadratic combination of 

the features for separation. In case of the current 

study, two classes are healthy volunteers and patients 

with the arterial hypertension.  

Evaluation of the classifiers efficiency was 

computed with typical measures for binary 

classification performance. Let us make following 

abbreviations:  

 P, the number of patients with arterial 

hypertension;  

 N, the number of healthy volunteers;  

 TP – True Positive, the number of correctly 

classified patients with arterial hypertension;  

 TN – True Negative, the number of correctly 

labelled healthy volunteers;  

 FP – False Positive, the number of people 

incorrectly classified as patients with arterial 

hypertension;  

 FN – False Negative, the number of people 

incorrectly classified as healthy volunteers. 

Then, in accordance with the abbreviations, 

binary classification measures are: 

 Total classification accuracy (ACC) 

𝐴𝐶𝐶 =
𝑇𝑁+𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
; (14) 
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 Sensitivity (SEN) 

𝑆𝐸𝑁 =
𝑇𝑃

𝑃
; (15) 

 Specificity (SPE) 

𝑆𝑃𝐸 =
TN

N
; (16) 

 Positive Predictive Value (PPV) 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
; (17) 

 Negative Predictive Value (NPV) 

𝑁𝑃𝑉 =
𝑇𝑁

𝐹𝑁+𝑇𝑁
. (18) 

For the performance measures evaluation 

estimation we adopted 3-fold cross-validation 

scheme (Jain et al., 2000). This technique imply 

developing 3 classifiers according to following steps: 

 division of the original dataset randomly into 3 

subsamples (i.e. 20 patients for a group with 

arterial hypertension and 7 volunteers for 

healthy group); 

 successive exception of one subsample (testing 

subset); 

 development of a classifier with the remaining 

2 subsamples (training subset); 

 testing of classifier with the excluded 

subsample; 

 computation of the binary classification 

measures; 

 averaging of the performance measures over 3 

classifiers. 

Division of the original dataset into 3 subsamples 

allowed to obtain person-independent testing. 

3 RESULTS AND DISCUSSIONS 

The classifier efficiency was tested for 41 features in 

two-dimensional space “state F – state O”. Tables 1 

and 2 presents mean values and standard deviations 

of the tested features, for group of healthy volunteers 

and for group of patients with the arterial 

hypertension respectively.  

Data in tables 1 and 2 shows that such statistical 

and geometric features as M, SDNN, CV, RMSSSD, 

M0, VR, has no significant difference between state F 

and state O for group of healthy volunteers.  On the 

other hand, same features changes significantly for 

group of patients with arterial hypertension. 

Moreover, mean values of the autonomic balance 

features (Nd, LF/HF(wt), (LF/HF)int, LF/HF(Fr), 

(LF/HF)max) are much greater compared to those of  
 

Table 1: Mean values and standard deviation of tested 

features for state F and state O for group of healthy 

volunteers. 

Feature State F State O 

М 955±88 940±89 

SDNN 88±40 82±28 

CV 9,2±4,1 8,8±2,8 

RMSSD 55±20 56±21 

NN50 42±5 48±9 

M0 949±100 935±111 

VR 208±61 214±64 

AM0 37±7 41±9 

SI 127±71 129±65 

IAB 240±132 235±108 

ARI 6,2±2,3 5,9±2,0 

IARP 40±9 45±12 

HF(Fr) 576±322 625±408 

LF(Fr) 766±685 779±658 

VLF(Fr) 480±259 491±225 

TP(Fr) 1821±1090 1895±1099 

HFn(Fr) 35±13 35±11 

LFn(Fr) 31±11 32±12 

VLFn(Fr) 34±16 33±13 

LF/HF(Fr) 1,28±0,88 1,33±0,90 

IC 3,44±2,25 3,21±2,04 

HF(wt) 585±310 616±432 

LF(wt) 835±707 731±636 

VLF(wt) 542±294 451±191 

HFn(wt) 38±13 38±11 

LFn(wt) 28±10 29±10 

VLFn(wt) 34±16 34±14 

LF/HF(wt) 1,03±0,66 1,00±0,53 

(LF/HF)max 60±38 68±49 

(LF/HF)int 5553±6018 4859±5093 

Nd 215±197 189±158 

max LF 0,65±0,29 0,65±0,24 

min LF 0,09±0,12 0,05±0,13 

W LF 0,56±0,24 0,61±0,25 

H2 LF 0,19±0,10 0,17±0,11 

H0 LF 0,33±0,11 0,30±0,10 

max VLF 0,24±0,13 0,24±0,13 

min VLF -0,04±0,11 -0,06±0,10 

W VLF 0,28±0,19 0,30±0,19 

H2 VLF 0,03±0,08 0,01±0,06 

H0 VLF 0,12±0,07 0,13±0,09 

healthy volunteers, especially in state O. This can be 

interpreted as the shift of the autonomic balance to the 

sympathetic department of the ANS in case of arterial 

hypertension (Baevskiy, 2001).  

Finally, one can note increase of the the 

Multifractal exponents H0 and H2 for group of people 
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Table 2: Mean values and standard deviation of tested 

features for state F and state O for group of patients with 

arterial hypertension. 

Feature State F State O 

М 892±111 766±111 

SDNN 49±27 54±24 

CV 5,3±2,6 7,0±2,8 

RMSSD 39±28 19±12 

NN50 42±6 49±20 

M0 883±106 756±113 

VR 163±80 160±61 

AM0 48±12 55±14 

SI 285±160 415±318 

IAB 461±244 545±358 

ARI 10,3±4,5 12,3±6,9 

IARP 57±17 79±30 

HF(Fr) 375±467 143±171 

LF(Fr) 474±528 455±438 

VLF(Fr) 482±428 586±356 

TP(Fr) 1331±1384 1184±899 

HFn(Fr) 22±12 9±6 

LFn(Fr) 33±8 31±10 

VLFn(Fr) 44±14 60±11 

LF/HF(Fr) 2,38±1,53 5,55±3,47 

IC 1,67±1,02 0,79±0,41 

HF(wt) 206±858 47±183 

LF(wt) 238±1037 103±419 

VLF(wt) 348±718 161±543 

HFn(wt) 23±12 9±7 

LFn(wt) 31±8 28±10 

VLFn(wt) 46±15 63±12 

LF/HF(wt) 2,19±1,54 5,66±3,67 

(LF/HF)max 132±73 251±134 

(LF/HF)int 14675±12107 26929±19043 

Nd 469±321 628±383 

max LF 0,66±0,20 0,85±0,21 

min LF 0,21±0,15 0,37±0,37 

W LF 0,47±0,22 0,56±0,26 

H2 LF 0,30±0,15 0,52±0,26 

H0 LF 0,40±0,16 0,64±0,23 

max VLF 0,25±0,08 0,60±0,27 

min VLF 0,04±0,05 0,08±0,09 

W VLF 0,21±0,09 0,51±0,24 

H2 VLF 0,09±0,05 0,19±0,09 

H0 VLF 0,14±0,05 0,36±0,18 

with arterial hypertension. It is worthy to mention that 

for patients in state O for the time scale boundary that 

correspond to the LF frequency band there is 

qualitative change of the multifractal behavior: on 

average estimates become persistent (Makowiec et 

al., 2012).  

Tables 3 and 4 presents binary classification 

measures of the features, that has ACC higher than 75, 

for linear and quadratic DA respectively.  

Table 3: Efficiency of the classification for the linear 

DA,%. 

Feature SEN SPE ACC PPV NPV 

М 92 85 90 95 78 

HFn(wt) 93 79 90 94 79 

M0 92 80 89 93 77 

HFn(Fr) 93 74 89 92 78 

VLFn(Fr) 92 74 87 92 75 

HF(Fr) 97 55 86 87 87 

VLFn(wt) 90 74 86 92 70 

H0 LF 88 75 85 92 70 

H2 VLF 90 69 85 90 77 

RMSSD 95 55 85 87 81 

H2 LF 87 65 81 88 63 

SDNN 95 39 81 83 75 

H0 VLF 92 45 80 84 62 

LF/HF(Fr) 93 38 80 84 40 

LF/HF(wt) 93 38 80 85 55 

AM0 90 50 80 84 66 

max VLF 93 34 79 81 75 

IARP 88 50 79 85 69 

IC 100 14 79 78 33 

min VLF 97 24 79 80 44 

W VLF 100 14 79 78 67 

HF(wt) 95 30 79 80 80 

VR 93 31 77 80 67 

(LF/HF)int 92 33 77 84 19 

Nd 87 50 77 85 53 

CV 95 25 77 79 75 

(LF/HF)max 93 24 76 80 19 

TP (Fr) 95 20 76 78 75 

SI 98 5 75 76 33 

ARI 95 14 75 77 20 

VLF(wt) 97 10 75 76 44 

LF(wt) 95 15 75 77 75 

Table 3 shows that highest 3-fold cross-validation 

estimate of the total classification accuracy was 

achieved by М, HFn(wt), M0, HFn(Fr), VLFn(Fr), HFn 

(Fr), VLFn(wt), H0 LF, H2 VLF and RMSSD. 

However, only features М, HFn(wt), M0 has high level 

of Specificity and Sensitivity at the same time. 

Overall, the highest classification efficiency is 

achieved by the feature M (SEN = 92,% SPE = 85,% 

ACC=90%). 
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Table 4: Efficiency of the classification for the quadratic 

DA, %. 

Feature SEN SPE ACC PPV NPV 

М 92 90 91 96 79 

HFn(wt) 93 79 90 94 79 

RMSSD 93 69 87 90 76 

M0 90 80 87 93 75 

VLFn(wt) 92 74 87 92 73 

Nd 87 85 86 95 69 

HFn(Fr) 90 74 86 92 70 

VLFn(Fr) 90 74 86 92 70 

IC 93 60 85 88 72 

H2 LF 93 55 84 86 79 

AM0 87 75 84 92 65 

LF/HF(wt) 82 90 84 96 62 

(LF/HF)int 82 90 84 96 62 

H0 LF 83 85 84 94 63 

max LF 85 79 84 93 66 

H2 LF 83 84 84 94 63 

HF(wt) 95 45 82 84 83 

HF(Fr) 90 55 81 86 64 

max VLF 95 35 80 81 75 

LF/HF(Fr) 77 90 80 96 56 

H0 VLF 82 74 80 91 59 

W VLF 97 19 77 79 27 

min VLF 78 74 77 91 55 

SDNN 87 51 77 84 67 

TP (Fr) 92 35 77 81 67 

IARP 77 75 76 90 55 

LF(wt) 97 15 76 77 44 

TP 93 25 76 79 63 

(LF/HF)max 70 90 75 96 51 

NN50 97 10 75 76 17 

LF,% 100 0 75 75 0 

VR 90 31 75 80 59 

Data in table 4 shows that application of the 

quadratic DA, in general, improves classification 

efficiency. At the same time classification efficiency 

of the features М, HFn(wt), M0 does not change much 

compared to the results of linear DA. 

One can notice that for both linear and quadratic 

DA, most features has low level of the Specificity. At 

the same time application of the quadratic DA allows 

to improve this index for the following features: Nd, 

LF/HF(wt), (LF/HF)int, LF/HF(Fr), (LF/HF)max, H0 

LF, H2 LF. In this case total accuracy and sensitivity 

do not change much. 

Wavelet and Fourier transform spectral features 

has almost comparable results, with wavelet 

transform features having slightly higher 

classification efficiency for most of features. 

Figure 2 presents classification rule for the M 

feature, which has the highest level of total accuracy. 

There and below circles are healthy people, squares 

are people with arterial hypertension; solid line is the 

classification rule. 

 

Figure 2: Classification rule of the linear DA for the feature 

M. 

Figure 3 presents classification rule for the feature 

LF/HF(wt), which has of the highest level of 

specificity. 

 

Figure 3: Classification rule of the quadratic DA for the 

feature LF/HF(wt). 

4 CONCLUSIONS 

In this article, the diagnostic possibilities of the 

features of the statistical, geometric, spectral and 

nonlinear methods were investigated as the indicators 

of the arterial hypertension during functional studies. 

The results of current study suggests particular 

features that could be effective for diagnostics of the 

arterial hypertension. 

The highest estimates of the classification 

efficiency was obtained for the following features: 

Application of the Discriminant Analysis for Diagnostics of the Arterial Hypertension - Analysis of Short-Term Heart Rate Variability
Signals
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mean value of the R-R intervals, mode of the R-R 

intervals and normalized spectral power in HF 

frequency band, for both linear and quadratic 

discriminant analysis. However, most features have 

low specificity rate. In addition, it was noted, that for 

quadratic discriminant analysis features of wavelet 

transform LF to HF ratio and multifractal exponents 

in LF frequency band has highest rate of specificity, 

while having relatively high rates of sensitivity and 

accuracy. 

Nevertheless, it is of great interest for further 

research on a larger sample size to increase specificity 

of the classification. One of the subject for our future 

investigation, which is currently underway, is to 

evaluate robustness of the classifier based on either 

linear or quadratic combination of features set.  
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