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Abstract: Several neighborhood strategies for QPSO algorithms are proposed and analyzed in order to improve the 
performances of the original methods. The proposed strategies are applied to some of the most well known 
QPSO algorithms such as the QPSO with random mean, the QPSO with Gaussian attractor and of course the 
basic QPSO. To prevent the premature convergence and to avoid being trapped in local minima the 
neighborhoods are dynamically changed during the optimization process. For testing the efficiency of the 
neighborhood techniques two benchmark optimization problems from the electromagnetic field computation 
have been chosen, Loney’s solenoid and TEAM22. 

1 INTRODUCTION 

The PSO (Particle Swarm Optimization) algorithms 
are part of stochastic optimization methods which 
use a population of candidate solutions that evolve 
over time. Comparable in terms of performance with 
the genetic algorithms, these algorithms are problem 
independent and are suitable for solving difficult 
optimization problems where the analytical 
expression of the objective function is not known. 

First proposed by Kennedy and (Kennedy, 
Eberhart, 1995), the original PSO (classic) has its 
root in biology and is inspired by social behavior 
within fish schools or bird flocks. Each particle in 
the swarm (population) is characterized by its 
current position and velocity. The position 
encapsulates the potential solution of the 
optimization problem, while the velocity influences 
how that position will be changed at the next 
iteration. 

The main issues of the classical PSO are the high 
probability to get stuck in a local minimum and the 
large number of iterations required to find the global 
solution. Over time, to improve the performance of 
the PSO algorithm several solutions have been 
proposed in the literature (Ciuprina et al., 2002), but 
the most efficient options currently available are 
based on SPSO (Standard PSO) (Bratton, Kennedy, 
2007) (Clerc, 2012) and QPSO (Quantum-behaved 

PSO) (Sun et al., 2004). 
The SPSO and QPSO algorithms have been 

successfully used to solve a variety of problems, 
such as (Li et al., 2007) (Zhang, Zuo, 2013), but also 
to solve electromagnetic optimization problems 
(Mikki, Kishk, 2006) (Coelho, 2007) (Coelho, 
Alotto, 2008). In (Mikki, Kishk, 2006)  authors 
solve the LAA problem (Linear Antenna Array) 
proposing a method for the optimal control of the 
QPSO algorithm parameters. In (Coelho, 2007) and 
(Coelho, Alotto, 2008) the author makes a 
comparison between the PSO and QPSO algorithms 
for the TEAM22 problem and the Loney's solenoid 
problem. Even if the solutions mentioned in 
(Coelho, Alotto, 2008) do not mention/verify the 
quench condition, the conclusions of both articles 
highlight the superiority of the QPSO algorithms 
over the PSO. 

Although the latest QPSO versions proposed by 
Sun&others (Xi et al., 2008) (Sun et al., 2011) (Sun 
et al., 2012) are better than the SPSO algorithm 
when optimizing CEC benchmark functions, in case 
of statistical studies conducted on electromagnetic 
optimization problems the SPSO algorithm is more 
stable (Duca et al., 2014) (Duca et al., 2014, 2). In 
some cases the performance offered by the QPSO 
based algorithms provide better solutions (smaller 
values of the objective function) but statistically the 
QPSO based methods are outperformed by the SPSO 
algorithm, which provides a smaller mean and a 
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smaller standard deviation. 
To improve the QPSO algorithms performances 

when solving electromagnetic problems this paper 
proposes and studies several neighborhood 
strategies. 

Starting from the idea used in SPSO, in the 
current paper different neighborhood strategies are 
applied to enhance the performances of the best 
QPSO algorithms available at present time, QPSO-
WM (weighted mean) (Xi et al., 2008), QPSO-GA 
(Gaussian attractor) (Sun et al., 2011), QPSO-RO 
(ranking operator) (Sun et al., 2012), QPSO-RM 
(random mean) (Sun et al., 2012), and basic (Sun et 
al., 2004). To avoid the premature convergence and 
local minima the neighborhoods are dynamically 
changed during the optimization process. The 
influence of the change frequency over the 
performances is analyzed for each neighborhood 
scheme and each QPSO algorithm. The tests are 
carried for two benchmark electromagnetic 
optimization problems, Loney’s solenoid and 
TEAM22. 

2 QPSO ALGORITHMS 

Unlike PSO and SPSO algorithms, where the 
particle trajectories are according to Newton's 
mechanic laws, QPSO is a quantum system 
proposed by Sun & others (Sun et al., 2004). In 
QPSO the behavior of each particle is described by a 
wave function Ψ (Schrödinger's equation) |Ψ|2 being 
the probability density function for the particle 
position. On the other hand, while in the PSO 
algorithm the particles converge to the solution 
through the global best position, in QPSO the 
particles exert a greater influence on each other 
through an average of the personal best positions, so 
the probability to get stuck in a local minimum is 
smaller. 

The coordinate j for a particle i at the step (t + 1) 
is given by: 
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where p is called attractor, u and α are random 
generated numbers uniformly distributed in the 
interval [0, 1) (for each component of a particle), 
and β is a contraction–expansion factor linearly 
decreased at each iteration with values between 1 

and 0.5. The particles in a QPSO algorithm exert 
great influence on each other through a mean best 
(m) calculated using the formula: 















M

i
niPB

M

i
iPB

n

tx
M

tx
M

tmtmtmtm

1
,

1
1,

21

)(
1

),(
1

)](),(),([)(




, (3)

where M is the swarm size (the number of particles) 
and n is the number of coordinates for the position 
of a particle. 

During time, to enhance the performances of the 
QPSO several variants have been proposed. The 
most effective QPSO based algorithms available 
today are: QPSO with weighted mean (QPSO-WM), 
QPSO with Gaussian attractor (QPSO-GA), QPSO 
with ranking operator (QPSO-RO), and QPSO with 
random mean (QPSO-RM). 

In QPSO-WM (Xi et al., 2008), at each iteration, 
the particles are sorted according to their fitness 
values. Each particles is assigned a weight (α) 
related to its ranking position (better solution means 
larger weight), to enforce an elitism behavior. The 
mean is calculated as a weighted sum as follows: 
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For improving the convergence, diversify the 
swarm, and escaping the local minima, in (Sun et al., 
2011) the authors propose a new QPSO-GA 
algorithm which changes the attractor (p) from the 
position formula to a Gaussian probability 
distribution. The new attractor (np) is evaluated with 
the formula: 
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where N is a function with Gaussian distribution. In 
the beginning the particles are scattered in a wider 
space, and the standard deviation is larger, while in 
the late stage of the search the particles converge 
toward the mean, and the standard deviation 
decreases toward zero. 

In (Sun et al., 2012), the authors demonstrate 
using the probabilistic metric spaces theory that 
QPSO can converge to a global optimum, and 
propose two new improvements QPSO-RM and 
QPSO-RO. The QPSO-RM algorithm replaces the 
mean best position with a personal best position of a 
random selected particle. This change diversifies the 
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swarm and enhances the ability of the global search. 
Unlike the previous algorithms, where the 

particles move toward global best, in the QPSO-RO 
each particle is guided by its personal best and the 
personal best of a random selected particle. The 
selected particle is chosen from the particles with a 
better fitness value, and its selection is based on a 
ranking operator. The formula for the attractor 
becomes: 

)()1(

)()(

,,

,,,

tx

txtp

jqPBji

jiPBjiji








, (7)

where q is the random selected particle with a better 
fitness value. 

3 QPSO NEIGHBORHOOD 
STRATEGIES 

Three different neighborhood strategies are proposed 
and analyzed for combining with the QPSO 
algorithms, one with unidirectional links and two 
with bidirectional links between particles. 

For the first strategy, which is inspired from 
Clerc’s SPSO (Clerc, 2012), the particles of the 
swarm are connected, each connection representing 
a unidirectional link between two particles. A 
unidirectional link has an informed and an informing 
particle, the informed particle knowing the position 
and the personal best of the second particle. Thus, 
each informed particle has a set of informing 
particles called neighborhood (Figure 1). This 
strategy will be referred as INF (from 
informed/informing). 

 

 
Figure 1: INF neighborhood strategy for a swarm with 6 
particles and 3 informants. 

 

Figure 2: Subswarm neighborhood strategy for a swarm 
with 6 particles and 2 subswarms. 

When adapted to our QPSO algorithms, the INF 
strategy will compute for each particle the mean 
only using particle’s neighborhood, and the attractor 
using the local best a from the same neighborhood. 
In the case of QPSO-RO/RM the random chosen 
particles for mean and attractor components will 
only be from the neighborhood. 

If for a given number of iterations the current 
structure of the INF swarm does not improve the 
global best the structure is regenerated randomly. 
The pseudocode for this strategy is the following: 
;generate links between particles 
noImprovmentSteps=0 
foreach iteration 
 foreach particle i 
  ;calculate localbest for Ni 
  ;calculate medium for Ni 
  ;calculate attractor for Ni 
  ;calculate new position 
  ;evaluate 
 foreach particle i 
  ;update position 

;update personal best 
 ;calculate global best 
 if (global best was improved) 
  noImprovmentSteps=0 
 else 
  noImprovmentSteps ++ 
  if (noImprovmentSteps==MAX) 
   ;generate new links 

noImprovmentSteps=0 
For the second and third strategies the swarm is 

divided into subswarms. The subswarms are disjoint 
meaning there are no connections between particles 
belonging to different subswarms. Inside a 
subswarm the particles are fully connected, one 
particle has as neighbors all the other particles 
(Figure 2). 

Just as for the first strategy, the subswarms are 
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dynamically changed during the optimization 
process if the global best is not improved for several 
iterations. The particles are assigned to subswarms 
randomly, each subswarm having a fixed number of 
particles. 

The second strategy will compute the attractor of 
each particle using the local best of the belonging 
subswarm (or particles inside it, in case of QPSO-
RO), while the third strategy will use the global best. 
For both strategies the mean will be evaluated 
(generated in case of QPSO-RM) only using 
particles inside the corresponding subswarm. The 
second strategy will be reffered as SS-LB while the 
third strategy will be reffered as SS-GB (from 
subswarm with local/global best). 

The pseudocode for the second strategy (similar 
for third strategy) is the following: 
;generate subswarms 
noImprovmentSteps=0 
foreach iteration 
 foreach subswarm SSj 
  ;calculate localbest 
  ;calculate medium 
  foreach particle i in SSj 
   ;calculate attractor 
   ;calculate new position 
   ;evaluate 

foreach particle i 
  ;update position 

;update personal best 
 ;calculate global best 
 if (global best was improved) 
  noImprovmentSteps=0 
 else 
  noImprovmentSteps ++ 
  if (noImprovmentSteps==MAX) 
   ;generate subswarms 

noImprovmentSteps=0 

4 ELECTROMAGNETIC 
PROBLEMS 

The QPSO based algorithms have been tested on 
two electromagnetic benchmark problems defined 
by the COMPUMAG community. 

4.1 The TEAM22 Problem 

Two coaxial coils carry current with opposite 
directions (Figure 3), operate under superconducting 
conditions and offer the opportunity to store a 
significant amount of energy in their magnetic 
fields, while keeping within certain limits the stray 
field (Ioan et al., 1999). An optimal design should 
couple the energy to be stored by the system with a 

minimum stray field into one objective function. 
 

 

Figure 3: TEAM22 problem configuration. 

The objective function has as parameters, the 
radii (R), the heights (h) , the thicknesses (d) and the 
current densities (J). Besides domain restrictions, the 
problem must take into account that the solenoids do 
not overlap each other, and the superconducting 
material should not violate the quench condition that 
links together the value of the current density and 
the maximum value of magnetic flux density. 

The evaluation method of the objective function 
is based on the Biot-Savart-Laplace formula in 
which the elliptic integrals are computed by using 
the King algorithm and numerical integration as in 
(TEAM22, 2015). 

4.2 The Loney’s Solenoid 

The Loney's solenoid benchmark problem, 
formulated in (Di Barba et al., 1995) consists of a 
main coil and two identical correction coils, having 
fixed dimensions (Figure 4). 
 

 
Figure 4: Loney’s solenoid problem configuration. 
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A constant current flows through the coils such 
that their current density is the same. The aim is to 
produce a constant magnetic flux density in the 
middle of the main coil. The parameters to be 
optimized are the length of the correction coils (s) 
and the axial distance between them (l). 

The objective function is of minmax type, i.e. 
minimize the maximum difference between the 
values of the magnetic flux density along a straight 
segment in the middle of the main solenoid, i.e. 
minimize (Bmax - Bmin)/B0, where B0 is the magnetic 
field density in the middle of the main coil. The 
maximum and minimum values are sought along the 
segment [-z0,z0]. Tests done by the authors of this 
benchmark revealed that the problem is non convex 
and ill conditioned (Di Barba, Savini, 1995). The 
electromagnetic field problem is easily solved, in a 
magnetostatic regime, by discretizing the coils in 
elementary coils without thickness and by applying 
well known analytical formulas for the field along 
the solenoid axis.  

5 RESULTS 

To solve the electromagnetic optimization problems 
four QPSO based algorithms have been considered 
QPSO-WM, QPSO-Gauss, QPSO-RM and QPSO-
RO. After a preliminary study, QPSO-Gauss and 
QPSO-RM, together with the basic QPSO, have 
been chosen for further testing. Each of the three 
mentioned QPSO algorithms have been adapted and 
combined with each of the described neighborhood 
strategies, INF, SS-LB and SS-GB. Further more, 
for each combination have been analyzed the 
influence over the performances of the structure 
change frequency. 

Tables 1 and 2 (see Appendix section) present 
the solution fitness values for 30 independent tests 
(runs), each run having different random values for 
the initial population. For each test the swarm size 
was 32, and the stop criteria was the maximum 
number of iterations equivalent to 2560 objective 
function evaluations. Mean-best is the average of the 
best solutions (minimum values) obtained at each of 
the 30 runs, while Min-best (Max-best) is the 
minimum (maximum) of the minimum values 
obtained at each run. The number of informants for 
INF strategy was 3, and the number of subswarms 
for SS-LB(GB) was 4. Two different frequencies 
were tested, a low frequency (LF) of 10 iterations, 
and a high frequency (HF) which meant change at 
each iteration if the global best was not improved. 
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Figure 5: QPSO mean for Loney. 
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Figure 6: QPSO-RM mean for Loney. 
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Figure 7: QPSO-Gauss mean for Loney. 
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Figure 8: QPSO mean for TEAM22. 
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Figure 9: QPSO-RM mean for TEAM22. 
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Figure 10: QPSO-Gauss mean for TEAM22. 

For the Loney’s solenoid benchmark, the classic 
algorithms performances are always improved when 
the algorithms are enhanced with neighborhood 
strategies. The most stable combinations (smallest 
mean-best, and standard deviation) are QPSO-RM 
with SS-LB-LF, and QPSO-Gauss with INF-HF. 
The overall best solution, which is among the best 
found in the literature (by our knowledge), was 
obtained with QPSO-RM with SS-LB-LF. In terms 
of frequency, while for the SS-LB strategy the low 
frequency is better, for SS-GB and INF strategies the 
high frequency provides better results. 

For the TEAM22 benchmark the algorithms with 
neighborhood strategies provide most of the time 
better mean and standard deviation values, but the 
improvement for the best solution is not as 
significant as in the case of Loney’s solenoid. 
Surprisingly, the best solution is obtained with the 
classic version of the basic QPSO, which offers a 
solution close to the well known best from the 
literature (1.8 E-3) (TEAM22, 2015). The most 
stable combinations are QPSO-Gauss with SS-GB-
HF (LF), QPSO-RM with SS-LB-LF(HF), and 
QPSO with SS-GB-LF. Regarding the frequency 
change of particles connections, the small 
frequencies are suitable for obtaining better mean 
values while high frequencies lead to better standard 
deviations. 

The improvements obtained with the algorithms 
enhanced with neighborhood strategies can also be 
seen from mean-best evolution during the 
optimization process. Besides the fact that statistical 
mean values are smaller, the neighborhood enhanced 
algorithms are more stable having a smoother 
evolution while the classic algorithms evolve (with 
some exceptions) in slopes. 

6 CONCLUSIONS 

The present paper studied the efficiency of 
neighborhood strategies when applied to QPSO 
based algorithms to solve benchmarks 
electromagnetic problems.  

Three different neighborhood have been 
proposed and analyzed, one with unidirectional and 
two with bidirectional particle connections. In the 
first strategy, inspired from Clerc’s SPSO, each link 
has an informant and an informed particle, thus each 
particle has its own neighborhood containing the 
informants. The other two strategies divide the 
swarm into disjoint subswarms and use to calculate 
the attractors the local best of the subswarm or the 
global best. For all the strategies the connections are 
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dynamically changed, reset and randomly 
regenerated, if the solution is not improved for 
several iterations. 

These strategies have been applied to the best 
QPSO algorithms available, such as QPSO-RM, 
QPSO-Gauss or basic QPSO, and were tested on two 
problems from electromagnetism, namely TEAM22 
and Loney’s solenoid. 

In case of Loney’s solenoid benchmark the 
QPSO algorithms enhanced with neighborhood 
strategies significantly improve the results for each 
of the combinations. The enhanced QPSO 
algorithms provide much small mean and standard 
deviation values. In the same time the overall best 
solution obtained with a QPSO-RM with SS-LB is 
one of the best solutions available in the literature. 

In case of TEAM 22 problem the enhanced 
QPSO algorithms performed better in terms of 
stability providing smaller mean and standard 
deviation values. However, the best solution is given 
surprisingly by the basic QPSO. 

For both testing problems the frequency of 
structure (connections) change has also been studied. 
A low frequency was more suitable for the SS-LB 
strategy. For the other two strategies a higher 
frequency leads most of the times to better results, 
but the optimal frequency also depends on the QPSO 
algorithm. 
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APPENDIX 

Table 1: Objective function values and standard deviation for Loney’s solenoid. 

Algorithm 
Min-best 
OF value 

Max - best 
OF value 

Mean - best 
OF value 

Standard 
deviation 

QPSO 

classic 9.73E-09 1.13E-06 7.72E-08 2.03E-07 
SS–LB–LF 4.09E-09 1.78E-07 3.04E-08 3.47E-08 
SS–LB–HF 9.89E-09 2.05E-07 3.87E-08 3.63E-08 
SS–GB–LF 1.02E-08 5.99E-07 6.47E-08 1.19E-07 
SS–GB–HF 3.87E-09 2.38E-06 1.21E-07 4.30E-07 

INF–LF 9.29E-09 3.33E-07 4.07E-08 5.99E-08 
INF–HF 8.64E-09 1.71E-07 3.33E-08 3.47E-08 

QPSO 
RM 

classic 6.02E-09 4.04E-07 3.99E-08 7.33E-08 
SS–LB–LF 1.05E-10 1.80E-08 1.07E-08 5.33E-09 
SS–LB–HF 2.89E-09 8.23E-08 2.42E-08 1.52E-08 
SS–GB–LF 1.17E-10 4.13E-07 3.84E-08 9.68E-08 
SS–GB–HF 3.93E-09 2.55E-07 2.64E-08 4.85E-08 

INF–LF 1.32E-08 3.78E-07 6.77E-08 8.62E-08 
INF–HF 7.41E-09 2.21E-07 4.37E-08 5.15E-08 

QPSO 
Gauss 

classic 8.03E-09 2.17E-07 3.01E-08 4.08E-08 
SS–LB–LF 4.33E-09 5.28E-08 1.93E-08 1.04E-08 
SS–LB–HF 1.88E-09 7.95E-08 2.18E-08 1.40E-08 
SS–GB–LF 7.09E-09 4.29E-07 4.03E-08 7.91E-08 
SS–GB–HF 1.23E-08 1.39E-07 3.43E-08 3.17E-08 

INF–LF 1.02E-08 8.76E-08 2.44E-08 1.73E-08 
INF–HF 1.25E-08 3.47E-08 1.92E-08 5.34E-09 

Table 2: Objective function values and standard deviation for TEAM 22. 

Algorithm 
Min - best 
OF value 

Max - best 
OF value 

Mean - best 
OF value 

Standard 
deviation 

QPSO 

classic 2.23E-03 2.76E-02 8.68E-03 6.46E-03 
SS–LB–LF 4.69E-03 3.17E-02 8.78E-03 5.84E-03 
SS–LB–HF 4.48E-03 1.65E-02 7.71E-03 3.15E-03 
SS–GB–LF 3.85E-03 1.06E-02 6.76E-03 1.93E-03 
SS–GB–HF 3.65E-03 2.71E-02 7.46E-03 5.08E-03 

INF–LF 5.21e-03 3.38e-01 3.46e-02 7.82e-02 
INF–HF 4.12e-03 3.56e-02 1.17e-02 8.71e-03 

QPSO 
RM 

classic 3.09E-03 2.17E-02 7.31E-03 4.85E-03 
SS–LB–LF 3.50E-03 1.40E-02 5.33E-03 2.55E-03 
SS–LB–HF 4.53E-03 9.31E-03 6.11E-03 1.26E-03 
SS–GB–LF 2.78E-03 1.77E-02 6.37E-03 4.01E-03 
SS–GB–HF 3.64E-03 1.01E-02 6.16E-03 1.80E-03 

INF–LF 3.21e-03 9.48e-03 5.93e-03 1.81e-03 
INF–HF 3.65e-03 1.02e-01 1.24e-02 2.15e-02 

QPSO 
Gauss 

classic 2.66E-03 9.54E-03 5.53E-03 1.54E-03 
SS–LB–LF 2.58E-03 8.95E-03 4.27E-03 1.56E-03 
SS–LB–HF 4.10E-03 9.25E-03 6.35E-03 1.54E-03 
SS–GB–LF 4.54E-03 1.17E-02 6.76E-03 2.18E-03 
SS–GB–HF 4.61E-03 7.65E-03 5.95E-03 8.79E-04 

INF–LF 4.40e-03 9.86e-03 6.71e-03 1.73e-03 
INF–HF 4.08e-03 1.69e-02 7.16e-03 3.08e-03 
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