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Abstract: In recent years many real-world optimization problems have had to deal with growing dimensionality. 
Optimization problems with many hundreds or thousands of variables are called large-scale global 
optimization (LSGO) problems. Many well-known real-world LSGO problems are not separable and are 
complex for detailed analysis, thus they are viewed as the black-box optimization problems. The most 
advanced algorithms for LSGO are based on cooperative coevolution schemes using the problem 
decomposition. These algorithms are mainly proposed for the real-valued search space and cannot be applied 
for problems with discrete or mixed variables. In this paper a novel technique is proposed, that uses a binary 
genetic algorithm as the core technique. The estimation of distribution algorithm (EDA) is used for collecting 
statistical data based on the past search experience to provide the problem decomposition by fixing genes in 
chromosomes. Such an EDA-based decomposition technique has the benefits of the random grouping methods 
and the dynamic learning methods. The EDA-based decomposition GA using the island model is also 
discussed. The results of numerical experiments for benchmark problems from the CEC competition are 
presented and discussed. The experiments show that the approach demonstrates efficiency comparable to 
other advanced techniques. 

1 INTRODUCTION 

Evolutionary algorithms (EAs) have proved their 
efficiency at solving many complex real-world 
optimization problems. However, their performance 
usually decreases when the dimensionality of the 
search space increases. This effect is called the “curse 
of dimensionality”. Optimization problems with 
many hundreds or thousands of objective variables 
are called large-scale global optimization (LSGO) 
problems. 

There exist some classes of optimization 
problems that are not hard for either classical 
mathematical approaches or more advanced search 
techniques (for example, linear programming). At the 
same time, real-world optimization problems are 
usually complex and not well-studied, so they are 
viewed as black-box optimization problems even the 
objective has analytical representation (mathematical 
formula). Black-box LSGO problems have become a 
great challenge even for EAs as we have no 
information about the search space to include it into a 
certain algorithm. Another challenge is 
nonseparability that excludes a straightforward 

variable-based decomposition.  Nevertheless, some 
assumption can be done, and there exist many 
efficient LSGO techniques for the continuous search 
space (Mahdavi et al., 2015). 

Many real-world optimization problems encode 
different complex structures and contain variables of 
many different types, which cannot be represented 
only by real values. In this case binary genetic 
algorithms (GAs) can be used. As we can see from 
papers, there is a lack of LSGO approaches using the 
GA as the core technique. 

In this paper a novel LSGO technique using a GA 
with a decomposition based on the estimation of 
distribution algorithm (EDA) is proposed. The binary 
EDA is used to present a statistic of the past search 
experience of the GA and to predict the values of 
problem subcomponents that are being fixed to 
decrease the problem dimensionality. 

The rest of the paper is organized as follows. 
Section 2 describes related work. Section 3 describes 
the proposed approach. In Section 4 the results of 
numerical experiments are discussed. In the 
Conclusion the results and further research are 
discussed. 
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2 RELATED WORK 

There exist a great variety of different LSGO 
techniques that can be combined in two main groups: 
non-decomposition methods and cooperative 
coevolution (CC) algorithms. The first group of 
methods are mostly based on improving standard 
evolutionary and genetic operations. But the best 
results and the majority of approaches are presented 
by the second group. The CC methods decompose 
LSGO problems into low dimensional sub-problems 
by grouping the problem subcomponents. CC 
consists of three general steps: problem 
decomposition, subcomponent optimization and 
subcomponent coadaptation (merging solutions of all 
subcomponents to construct the complete solution). 
The problem decomposition is a critical step. There 
are many subcomponent grouping methods, 
including: static grouping (Potter and De Jong, 2000), 
random dynamic grouping (Yang et al., 2008) and 
learning dynamic grouping (Liu and Tang, 2013; 
Omidvar et al., 2014). A good survey on LSGO and 
methods is proposed in (Mahdavi et al., 2015). As we 
can observe in papers, almost all studies are focused 
on continuous LSGO, and there is a lack of 
techniques for binary (or other discrete) 
representations. 

The EDA is a stochastic optimization technique 
that explores a space of potential solutions by 
building and sampling explicit probabilistic models. 
The estimated distribution can be used for improving 
standard search techniques. There exist some hybrid 
EDA-EA approaches for LSGO (Dong et al., 2013; 
Wang and Li, 2008). These hybrid EDA-EA 
techniques are also designed for continuous LSGO. 

The most widely known competition on LSGO 
has been held within the IEEE Congress on 
Evolutionary Computation (CEC) since 2008. As we 
can see from the last competition, the majority of 
proposed methods are based on the random dynamic 
grouping and continuous search techniques. 

3 PROPOSED APPROACH 

3.1 EDA-based Decomposition 

The main idea of the LSGO problem decomposition 
methods is based on the divide-and-conquer approach 
which decomposes the problem into single-variable 
or multiple-variable low dimensional problems. In 
this case, only part of the variables are used in the 
search process; the rest are fixed and their values are 

defined using some strategy (for example, values 
from the best-found solution are used). 

The finding of an appropriate decomposition is 
part of the general search process. It is obvious and 
has been presented in many studies that the best 
performance is achieved with separable LSGO 
problems. In the case of non-separable problems, the 
performance strongly depends on the decomposition 
strategy. 

In this work, we will formulate the following 
requirements for the proposed decomposition 
method: 
 The grouping should be dynamic to realize the 

“exploration and exploitation” strategy.  
 The grouping should be random to avoid the 

greedy search and the local convergence.  
 The grouping should be based on the past 

search experience of the whole population (to 
provide the global search options).  

 The grouping should be adaptively scalable to 
provide efficient decomposition at every stage 
of the search process. 

As is known, GAs do not collect a statistic of the 
past generations in an explicit form, but it is contained 
in the genes of individuals in the population. One of 
the ways to present the statistic is to evaluate the 
distribution of binary values as in the binary EDA. 
The following probability vector can be used (1): ܲ(ݐ) = ൫ଵ(ݐ), ,(ݐ)ଶ … , (ݐ),൯(ݐ) = ݔ)ܲ = 1) = 1ܰ ݔே

ୀଵ , ݅ = 1, ݊ (1)

where t is the number of the current generation,  is 
the probability of a one-value for the i-th position in 
chromosomes of individuals in the last population, ݔ 
is the value of the i-th gene of the j-th individual, n is 
the chromosome length, and N is the size of the 
population. 

The distribution calculated at the t-th generation 
describes the generalized statistic collected by the GA 
in the population. We can also analyse the dynamic 
of the statistic over a series of generations. In (Sopov 
and Sopov, 2011) a convergence property of the 
probability vector components is discussed. 
Experiments have shown that for a GA that converges 
to the global optima, the probability vector values 
converge to one if the corresponding position of the 
optimal solution contains a one, and converge to zero 
otherwise.  

We will use this convergence property to define 
the values for fixed genes at the grouping stage. If the 
i-th position in a chromosome at the t-th generation is  
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Figure 1: The dynamic of the probability vector component (the vertical axis is the value of the probability vector  
component, the horizontal axis is generation number). 

fixed, its value is defined by the corresponding value 
of the probability vector (2): 

(ݐ)ݔ == ቐ 0, ݂݅ (ݐ) < (0.5 − ϵ(0.5(ݐ)	݂݅			,݀݊ݎ	(ߜ − δ, 0.5 + ,1(ߜ ݂݅ (ݐ) > (0.5 + (ߜ  (2)

where ߜ is a threshold (a confidence level), ߜ ∈(0, 0.5). 
We will explain the proposed approach using 

Figure 1. The diagram visualizes an arbitrary 
component of the probability vector for an arbitrary 
run of a GA on the Rastrigin function. For the chosen 
gene the corresponding value of the optimal solution 
is equal to zero. As we can see from Figure 1, the GA 
starts with random initialization, thus the value of the 
probability vector is equal to 0.5. At the first 
generations the GA actively explores the search space 
and number of 1’s and 0’s genes are almost equal, 
thus the value of the probability vector is still about 
0.5. After that, the GA locates a promising region in 
the search space and increases the number of 0’s in 
this position, thus the value of the probability vector 
decreases towards zero. 

The confidence level ߜ is a parameter that defines 
a threshold for the probability value around 0.5, when 
we cannot make a decision about the gene value. 

Although a decision about fixed variables is made 
by stand-alone components, the estimated 
distribution contains information about the problem 
solving in general. Thus the method is not focused 
only on separable LSGO problems. 

Next we need to define the number of variables 
that will be fixed. There exist many strategies. For 
example, the splitting-in-half method divides an n-

dimensional problem into two n/2 subcomponents. In 
general, we will define the number of fixed variables 
as a percentage of the chromosome length and will 
denote it as ߙ. The value of ߙ can be constant or can 
change during the run of the algorithm. The variables 
and corresponding components of the probability 
vector are fixed for some predefined number of 
generations, which is called an adaptation period 
(denoted as ݐௗ௧). The list of fixed components is 
randomly defined. 

In this paper, the straight-forward approach is 
used, ߙ and ݐௗ௧ are predefined and constant. 

The main advantage of such EDA-based 
decomposition is that we do not lose the previously 
collected statistic as we fix components of the 
probability vector. The GA solves the problem of 
reduced dimensionality and updates the probability 
only for active components. After each adaptation 
period we will randomly fix other components, and 
the previously fixed components will continue 
updating their saved values. 

3.2 The GA with EDA-based 
Decomposition for LSGO 

We will describe the proposed LSGO algorithm in 
detail. 

First, we need to encode the initial problem into a 
binary representation. The standard binary or Grey 
code can be used. A chromosome length n is defined. 
Next, specific parameters of the EDA-based 
decomposition and the chosen GA, maximum number 
of fitness evaluations (MaxFE) or maximum number 
of generations (MaxGEN) are defined. The maximum 
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number of generations can be substituted with any 
other stop condition (for example, time-based 
condition). 

Finally, the following algorithm is used: 

Input: n, N, ݐ ,ߜ ,ߙௗ௧, MaxFE, the 
GA operators’ parameters. 

 
Initialization: 
Randomly generate a population of N 

individuals of the length n. 
Calculate P(0) using formula (1). 
 
Main loop.  
Until MaxFE is reached: 
1. Problem decomposition stage: Start 

new adaptation period. Fix random ߙ 
components in chromosomes and in the 
probability vector. 

2. Subcomponent optimization stage: 
Run the GA for ݐௗ௧ generations: 

    a. Fitness evaluation.  Set 
values in fixed positions of chromosomes 
according to P(t) using formula (2). 

    b. Perform selection, crossover 
and mutation operations. 

    c. Create next generation, update 
the probability vector P(t) for active 
components. 

 
Output: the best-found solution. 

3.3 Parallel Modification with  
Self-Configuration 

Many proposed LSGO approaches with the 
subcomponent grouping are based on cooperative 
coevolution. In this case, many populations are used, 
which evolve different groups of subcomponents. The 
cooperation is used on the fitness evaluation step to 
define the values of components that were fixed 
during the algorithm run. Usually, components of the 
best individuals from other populations are used. 

We will introduce many parallel populations 
using the following scheme. At the main loop, the 
total population of size N is divided into K 
populations of size M, where ܰ = ܭ ∙  For each .ܯ
population the problem decomposition and the 
subcomponent optimization steps are independently 
performed. Thus each population can be viewed as an 
island with its own decomposition strategy. When the 
adaptation period is over, all individuals from all 
populations are collected back into the total 
population and the summary statistic is updated. This 
step can be viewed as the cooperation. 

As is known, the island model GA can outperform 
the standard single-population GA for many complex 

optimization problems (Gonga et al., 2015). We can 
also decrease the computational time by 
implementing the GA with a parallel multi-core or 
multi-processor computer. 

We will use the following approach for self-
configuration of the GA parameters. First, we define 
a list of different genetic operators: selection types, 
crossover types and values of mutation intensity. 
Next, we set probabilities for each operator to be 
chosen. All probabilities are initialized with equal 
values. During the GA run, we define a combination 
of genetic operators, which is used for producing 
offspring according to the given probabilities 
distribution. Finally, after each generation we 
redistribute the probabilities in order to increase 
probabilities of operators that have produced 
offspring with better fitness values. More detailed 
information about the approach can be found in 
(Semenkin and Semenkina, 2012). 

Also we will provide additional interaction of 
subpopulation in the island model using concept 
proposed in (Sopov, 2015). We will increase the size 
of island with the best performance over some 
predefined number of generations (adaptation 
period). The migration operation will copy the current 
best-found solution to each island to equate the start 
positions of all population for the next adaptation 
period. 

4 EXPERIMENTAL RESULTS 

To estimate the proposed approach performance, we 
have used 15 large-scale benchmark problems from 
the CEC’2013 Special Session and Competition on 
Large-Scale Global Optimization (Li et al., 2013a). 
These problems represent a wider range of real-world 
large-scale optimization problems and provide 
convenience and flexibility for comparing various 
evolutionary algorithms specifically designed for 
large-scale global optimization. There are 3 fully-
separable problems (denoted as f1-f3), 8 partially 
separable problems (f4-f7 with a separable 
subcomponent and f8-f11 with no separable 
subcomponents), 3 problems with overlapping 
subcomponents (f12-f14), and 1 non-separable 
problem (f15). 

The experiment settings are: 
 Dimensions for all problem are D=1000; 
 The standard binary encoding is used with 

accuracies: 0.1=ߝ for f1, f4, f7, f8 and f11-15, 0.05=ߝ for f3, f6 and f10, and 0.01=ߝ for f2, f5 
and f9; 
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Table 1: Experimental results for the f1 problem and the EDA-based decomposition with the single-population GA. 

 75 75 75 50 50 50 25 25 25 ߙ 
 0.25 0.15 0.05 0.25 0.15 0.05 0.25 0.15 0.05 ߜ 

1.2e5 Best 2.08E+07 1.98E+07 1.72E+07 1.89E+07 1.50E+07 1.59E+07 1.98E+07 1.53E+07 1.76E+07
 Mean 6.13E+07 5.97E+07 6.81E+07 8.95E+07 4.98E+08 7.32E+07 8.30E+07 8.72E+07 7.23E+07
 StDev 3.31E+07 2.90E+07 2.70E+07 3.74E+07 2.98E+07 3.51E+07 3.66E+07 3.93E+07 3.34E+07

6.0e5 Best 1.99E+03 2.11E+03 1.71E+03 2.55E+04 8.23E+03 1.50E+03 1.23E+04 9.20E+03 9.00E+03
 Mean 2.71E+04 2.53E+04 2.22E+04 3.47E+04 2.19E+04 1.99E+04 3.88E+04 2.51E+04 3.02E+04
 StDev 9.47E+03 9.36E+03 7.90E+03 1.85E+04 1.68E+03 7.08E+03 1.85E+04 1.20E+04 1.69E+04

3.0e6 Best 9.32E-05 8.02E-05 7.63E-05 4.50E-05 4.59E-05 7.11E-05 6.73E-05 5.19E-05 6.34E-05 
 Mean 4.00E-04 4.23E-04 4.51E-04 5.01E-04 5.68E-04 4.98E-04 4.02E-04 3.80E-04 3.56E-04 
 StDev 2.24E-04 2.09E-04 2.19E-04 2.08E-04 4.29E-04 2.11E-04 1.95E-04 1.65E-04 1.82E-04 

Table 2: Experimental results for the f1 problem and the EDA-based decomposition with the island GA. 

 75 75 75 50 50 50 25 25 25 ߙ 
 0.25 0.15 0.05 0.25 0.15 0.05 0.25 0.15 0.05 ߜ 

1.2e5 Best 1.76E+07 1.79E+07 1.73E+07 1.62E+07 1.56E+07 1.63E+07 1.62E+07 1.42E+07 1.45E+07
 Mean 4.90E+07 4.95E+07 5.61E+07 5.72E+07 5.34E+07 5.39E+07 6.16E+07 5.50E+07 5.23E+07
 StDev 3.04E+07 3.01E+07 2.23E+07 3.15E+07 2.98E+07 2.12E+07 2.41E+07 2.98E+07 2.44E+07

6.0e5 Best 8.68E+03 8.61E+03 8.41E+03 7.72E+03 7.58E+03 7.65E+03 8.50E+03 7.00E+03 6.89E+03
 Mean 1.85E+04 1.79E+04 2.07E+04 2.17E+04 2.15E+04 1.77E+04 1.81E+04 2.21E+04 1.99E+04
 StDev 8.60E+03 9.33E+03 1.07E+04 1.28E+04 1.68E+03 8.12E+03 1.18E+04 9.19E+03 1.68E+03

3.0e6 Best 5.78E-05 5.92E-05 5.46E-05 5.09E-05 5.00E-05 4.91E-05 5.47E-05 4.59E-05 4.95E-05 
 Mean 6.13E-04 5.45E-04 5.17E-04 5.51E-04 5.06E-04 5.40E-04 5.98E-04 5.68E-04 5.44E-04 
 StDev 2.47E-04 2.37E-04 2.19E-04 2.24E-04 4.29E-04 2.21E-04 2.40E-04 4.29E-04 2.22E-04 

 

 For each problem the best, mean, and standard 
deviation of the 25 independent runs are 
evaluated; 

 Maximum number of fitness evaluations is 
MaxFE=3.0e+6; 

 The performance estimation is performed for 
the number of fitness evaluations equal to 
1.2e+5, 6.0e+5 and 3.0e+6. 

The EDA-based decomposition GA settings are: 
 Population sizes are N=1000 for the single-

population version, N=500 for the island 
version with 3 islands, and N=400 for 5 islands; 

 The adaptation period is ݐௗ௧=100; 
 The probability threshold is 0.15 ,0.05=ߜ and 

0.25; 
 Numbers of fixed components are 25%=ߙ, 

50% and 75% of the chromosome length. 

All algorithms have been implemented in Visual 
Studio C++ using the OpenMP for parallel computing 
with multi-core PC. Free C++ source codes of the 
benchmark problems are taken from 
(http://goanna.cs.rmit.edu.au/~xiaodong/cec13-lsgo/ 
competition/lsgo_2013_benchmarks.zip, 2013). 

We have carried out the above-mentioned 
experiments and have established the following. In 
the case of single population, the best performance on 

average is achieved with 50% fixed components and 0.15=ߜ. In the case of the island model, the best 
results are obtained by the 5 island model with 75% 
fixed components and 0.15=ߜ. Almost for every 
considered value of parameters, the island model 
outperforms the single population version of the 
algorithm. 

Let’s discuss it in detail. We have estimated the 
algorithm performance for each benchmark problem 
varying the percentage of fixed components (ߙ) and 
the confidence level value (ߜ). The results for the f1 
problem are presented in Table 1 and 2. Table 1 
contains the results obtained with the single-
population algorithm, and. Table 2 contains results 
obtained with the 5 island GA. As we can see from 
Tables, the island model version outperforms the 
single-population version almost for all combinations 
of parameters. 

We have visualized the best-found value 
depending on the ߙ and the ߜ parameters for each of 
3 numbers of fitness evaluations. The best-found 
value has been normalized to [0, 1] interval and 
averaged over all benchmark problems. The 
dependences are presented in Figures 2 and 3. As we 
can see from Figures, the best performance on 
average is obtained with high percentage of fixed 
components. In the case of single population, the best  
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Figure 2: Performance of the single-population algorithm via the ߙand the ߜparameters change for MaxFE={1.2e+5, 6.0e+5, 
3.0e+6}. 

 
Figure 3: The Performance of the 5 island algorithm via the ߙand the ߜparameters change for MaxFE={1.2e+5, 6.0e+5, 
3.0e+6}. 

components. In the case of single population, the best 
combination is (0.15=ߜ ,50%=ߙ) for the 
MaxFE=1.2e+5, but it shifts to (0.25=ߜ ,50%=ߙ) for 
the MaxFE=6.0e+5 and 3.0e+6. In the case of the 
island model, the best combinations are (0.25=ߜ ,75%=ߙ) for the MaxFE=1.2e+5 and (0.15=ߜ ,75%=ߙ) for the MaxFE=6.0e+5 and 3.0e+6. Our 
hypothesis is that the algorithm requires different 
parameters settings for different stages of the search 
process. In further work, an adaptive parameters 
tuning will be introduces and investigated. 

The experimental results for the best found 
settings are presented in Table 3. The summary 
results are compared with other techniques presented 
at the CEC’13 competition. The algorithms are 
DECC-G (differential evolution (DE) based 
cooperative coevolution (CC) with random dynamic 
grouping) (Yang et al., 2008), VMO-DE (variable 
mesh optimization using differential evolution) (Li et 
al., 2013b), CC-CMA-ES (Covariance Matrix 
Adaptation Evolution Strategy using Cooperative 
Coevolution) (Liu and Tang, 2013), MOS (Multiple 
Offspring Sampling (MOS) based hybrid algorithm) 
(LaTorre et al., 2013), and SACC (smoothing and 
auxiliary function based cooperative coevolution) 

(Wei et al., 2013). We have averaged the performance 
estimates of all algorithms over all problems and have 
ranked algorithms by the Best and the Mean values. 
The results are in Table 4. 

As we can see from Table 4, the proposed 
approach has taken 4th place by the Best criterion and 
5th place by the Mean value. We should note that all 
algorithms except the proposed are specially designed 
for continuous LSGO problems. The EDA-based 
decomposition GA does not use any knowledge about 
search space. Moreover, the chromosome length in 
the binary algorithm is greater than in the case of the 
continuous space. Nevertheless, the EDA-based 
decomposition GA outperforms the CC-CMA-ES by 
two measures and the DECC-G by the Best value on 
average. 

Our hypothesis is that the proposed approach will 
be a good tool for solving complex real-world LSGO 
problems, which usually contain not only continuous 
variables, but mixed-type variables and can represent 
arbitrary complex structures. Further investigations 
of the algorithm structure and parameters can 
probably improve its performance. In particular, the ߙ value can be adjusted adaptively during the 
algorithm run using information about the probability 
vector convergence. 
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Table 3: Experimental results for the EDA-based decomposition GA with 5 islands and �=75%. 

  f1 f2 f3 f4 f5 f6 f7 f8 
1.2e5 Best 1.42E+07 9.63E+03 1.08E+02 1.39E+11 6.11E+14 2.90E+05 7.05E+08 3.97E+15

 Mean 5.50E+07 1.06E+04 4.52E+01 9.15E+11 7.17E+14 7.78E+05 2.76E+09 2.71E+16
 StDev 2.98E+07 1.53E+03 1.44E+01 5.63E+11 7.45E+08 2.61E+05 1.44E+09 6.77E+15

6.0e5 Best 6.89E+03 9.11E+03 3.04E+00 1.95E+10 3.07E+14 5.21E+05 2.01E+08 2.09E+14
 Mean 1.99E+04 1.25E+04 1.30E+01 9.07E+10 5.03E+14 6.05E+05 9.41E+08 2.18E+15
 StDev 1.68E+03 1.18E+03 6.32E-01 6.03E+10 2.50E+07 2.60E+05 7.56E+08 1.52E+15

3.0e6 Best 4.59E-05 1.82E+03 2.94E-05 6.60E+09 7.59E+14 6.25E+04 7.65E+07 4.49E+13
 Mean 5.68E-04 3.34E+03 4.81E-01 2.32E+10 9.75E+14 4.75E+05 2.53E+08 3.64E+14
 StDev 4.29E-04 2.54E+02 2.28E-01 1.14E+10 2.18E+06 3.35E+05 8.35E+07 5.21E+14
  f9 f10 f11 f12 f13 f14 f15 Average 

1.2e5 Best 1.08E+09 8.87E+06 1.46E+11 3.87E+06 2.66E+10 1.88E+11 3.61E+07 3.05E+14
 Mean 1.80E+09 7.14E+07 3.47E+11 4.36E+08 2.98E+10 5.78E+11 2.69E+08 1.85E+15
 StDev 4.27E+08 1.57E+07 2.25E+11 7.89E+08 1.12E+10 3.67E+11 9.91E+07 4.52E+14

6.0e5 Best 6.42E+08 7.91E+06 1.34E+10 2.40E+03 6.28E+09 5.68E+10 1.80E+07 3.44E+13
 Mean 1.25E+09 1.38E+07 9.84E+10 6.66E+03 1.47E+10 1.03E+11 2.43E+07 1.79E+14
 StDev 5.21E+08 1.65E+07 1.18E+11 5.53E+03 4.83E+09 6.70E+10 8.68E+06 1.02E+14

3.0e6 Best 4.15E+08 6.18E+06 2.60E+10 7.72E+02 8.02E+09 1.42E+10 2.40E+07 5.36E+13
 Mean 8.06E+08 1.61E+07 7.01E+10 2.30E+03 1.27E+10 1.69E+11 3.05E+07 8.93E+13
 StDev 1.72E+08 7.89E+06 4.29E+10 2.41E+03 2.96E+09 4.81E+10 5.13E+06 3.47E+13

Table 4: LSGO approaches comparison. 

Algorithm SACC MOS VMO-DE DECC-G CC-CMA-ES EDA-GA 
Best 9.80E+12 2.17E+11 4.90E+13 5.80E+13 6.25E+13 5.36E+13 

Ranking  
by Best 

2 1 3 5 6 4 

Mean/ 
StDev 

8.0E+13/ 
5.08E+13 

5.33E+11/ 
2.04E+11 

5.32E+13/ 
4.81E+12 

7.7E+13/ 
1.02E+13 

8.58E+13/ 
2.39E+13 

8.93E+13/ 
3.47E+13 

Ranking  
by Mean 

4 1 2 3 6 5 

 

5 CONCLUSIONS 

In this paper a novel technique for LSGO that uses a 
binary GA with EDA-based decomposition is 
proposed. The EDA is used for collecting statistical 
data based on the past search experience to predict the 
convergence of subcomponents and to decrease the 
problem dimensionality by fixing some genes in 
chromosomes. We have compared a single population 
and the island model implementations of the 
algorithm. The best results have been obtained with 
the island model version. It yields state-of-the-art 
LSGO techniques, but the performance is 
comparable. The advantage of the proposed approach 
is that it can be applied to problems with arbitrary 
representations and it needs no a priori information 
about the search space. 

In further work, more detailed analysis of the 
EDA-based decomposition GA parameters will be 
provided. A self-configuration will be introduced into 
the algorithm. 
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