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Abstract: In This Paper, We Propose a New Secrecy Multiplication Scheme without Changing the Degree in Shamir’s 
(K, N) Secret Sharing Scheme. This Scheme Generates a Scalar Value Called Concealed Secret, Which 
Multiplies a Secret by a Random Number, and Distributes the Concealed Secret by using a Secret Sharing 
Scheme. When Secrecy Multiplying, We Temporarily Reconstruct the Concealed Secret, and Multiply It with 
a Share. Therefore, We Can Perform Secrecy Multiplication without Changing the Degree of Polynomials by 
Multiplying a Polynomial and Scalar Value. Our Scheme Can Extend to Secrecy Division by Dividing a Share 
with the Concealed Secret. in Addition, We Propose Secrecy Addition and Subtraction Schemes. We Evaluate 
the Security of Our Schemes, and Show a Possible Application That Cannot Realized using the Conventional 
Scheme.

1 INTRODUCTION 

Cloud computing (Mell, 2011) has brought about 
considerable changes in users’ data utilization. Users 
can save their data on a server in a network instead of 
a self-managed server, and can access it from 
anywhere via a network. However, this incurs some 
security risks, including server or network failure, in 
which the users cannot access their data stored on the 
cloud system. Furthermore, because attacks also are 
concentrated on the data storage location, the risk of 
information leakage increases. In particular, in 
situation where confidential business information is 
compromised, the leak can cause serious damage.  

To counteract those risks, data encryption is 
recommended. In addition, the saved encryption data 
is often assumed to be applicable to secrecy 
calculations without the recovery of the secret data in 
the cloud system. Therefore, some cloud systems 
consider applying the “secret sharing scheme” 
(Shamir, 1979), (Blakley, 1984) to solve the 
abovementioned problems. 

Shamir’s ሺ݇, ݊ሻ  secret sharing scheme (Shamir, 
1979) is a prototypical secret sharing scheme, that 
distributes n shares of a secret and recovers the secret 
from ݇ shares. This implies that no secret is revealed 

if ݇  shares are not revealed, and a secret can be 
restored even if ݊ െ ݇  shares are lost because of a 
server or network failure. In addition, the secrecy 
calculation based on the scheme is performed at high 
speed. Therefore, Shamir’s ሺ݇, ݊ሻ  secret sharing 
scheme is suitable for cloud computing systems. 

Secrecy calculation (Asharov, 2012), (Beaver, 
1991), (Ben-Sasson, 2011), (Ben-Or, 1988) is a 
technique for performing a computation while 
keeping the input data secret. It is well known that 
secrecy addition and subtraction can be easily 
realized using Shamir’s ሺ݇, ݊ሻ secret sharing scheme. 
However, in secrecy multiplication, the degree of 
polynomial would change from ݇ െ 1  to 2݇ െ 2 
because a multiplication of shares is a multiplication 
between polynomials with a degree of ݇ െ 1 . 
Therefore, the threshold value ݇ changes only when 
secrecy multiplication is performed. 

In this paper, we propose a new secrecy 
multiplication scheme without changing the degree of 
polynomials. The scheme generates a scalar value 
called concealed secret, which multiplies a secret by 
a random number, and distributes the concealed 
secret by using a secret sharing scheme. When 
multiplying, we temporarily reconstruct the 
concealed secret and multiply it with a share. Thus, 
we can perform secrecy multiplication without 
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changing the degree of a polynomial, because the 
multiplication of two polynomials is deformed during 
the multiplication of a polynomial and a scalar value. 
Our scheme can be extended secrecy division by 
dividing a share by the concealed secret. In addition, 
we propose the secrecy addition and subtraction 
schemes by considering the concealed secret, and 
evaluate the security of our schemes, and show the 
possible application that cannot be realized using our 
schemes. 

The remainder of this paper is organized as 
follows. In section 2I, we describe the conventional 
secrecy computation. In section 3, we propose new 
secrecy multiplication, division, addition and 
subtraction schemes.  In section 4, we evaluate the 
security of our schemes and discuss the possible 
application. Finally, we summarize the results in 
section 5. 

2 CONVENTIONAL SCHEME 

2.1 Shamir’s (K, N) Secret Sharing 
Scheme 

In this paper, ݏ is a secret to be distributed, ݊ is the 
number of players, and ݇ is the threshold to restore 
the secret. 

[Distribution] 
1. The dealer selects a prime number   that 

satisfies ࢙ ൏  and  ൏  .
2. The dealer chooses  elements of GF() and 

assigns them to each player as ࢞ሺ ൌ
, ,⋯ ,  .ሻ

3. The dealer generates equation	ࢃሺ࢞ሻ from secret 
࢙  and  െ   random numbers, that is, ࢇሺ ൌ
, ,⋯ ,  െ ሻ  selected from elements of 
GF(). 

ܹሺݔሻ ൌ ݏ  ܽଵݔ  ܽଶݔଶ ⋯ ܽିଵݔିଵ	ሺmod	ሻ 
4. The dealer calculates ࢃ ൌ ሺ	ሻ࢞ሺࢃ ൌ

, ,⋯ ,  ሻ and distributes them to each player
 .ࡼ

[Reconstruction] 
1. The shares that are used for reconstruction are 

assumed to be ࢃሺ ൌ , ,⋯ ,  .ሻ
The user who reconstructs the secret s obtains s 

by solving ݇ simultaneous equations by using the ݇ 
shares. 

2.2 Secrecy Computation 

Let ܽ	ܽ݊݀	ܾ  be two secrets that are shared using 
polynomials ݂ሺݔሻ	ܽ݊݀	݃ሺݔሻ , which are of degree 

݇ െ 1. Each player ܲ has ݂ሺݔሻ	ܽ݊݀	݃ሺݔሻ. Let ܿ (≠
0) be a scalar value.  The secrecy addition ܽ  ܾ and 
the secrecy multiplication ܿ ൈ ܽ are easy to perform 
because the degree of the polynomials that is obtained 
as a result remains unchanged. 

 

[Secrecy addition and subtraction] 
1. ܲ  computes ݄ሺݔሻ ൌ ݂ሺݔሻ  ݃ሺݔሻ , which is 

the share of ܽ  ܾ, and sends it to the user. 

2. The user who reconstructs the result of ܽ  ܾ 
solves ݇  simultaneous equations by using ݇ 
shares.  

Similarly, secrecy subtraction can be realized by 
changing “” to “െ”. 
 

[Secrecy multiplication] 
Secrecy multiplication using ݂ሺݔሻ	ܽ݊݀	݃ሺݔሻ is 

not as simple as addition because the multiplication 
of ݂ሺݔሻ  and ݃ሺݔሻ	 of degree ݇ െ 1  will result in 
݄ሺݔሻ of degree 2݇ െ 2. Therefore, a degree reduction 
and a randomization of ݄ሺݔሻ is required. 
 

The reduction step 
Let ݄ሺݔሻ ൌ ݄  ݄ݔ ⋯ ݄ଶିଶݔଶିଶ and ݏ ൌ

݄ሺݔሻ ൌ ݂ሺݔሻ݃ሺݔሻ. Each  ܲ has ݏ. Define the 
truncation of ݄ሺݔሻ to be ݇ሺݔሻ ൌ ݄  ݄ݔ ⋯
݄ିଵݔିଵ, and ݎ ൌ ݇ሺݔሻ. 

Let ܵ ൌ ሺݏ,⋯ , ܴ ିଵሻ andݏ ൌ ሺݎ,⋯ ,  ,ିଵሻݎ
then there is a constant ݊ ൈ ݊ matrix A such that 
ܴ ൌ  .ܣ･ܵ

Let H be an n-vector such that 
ܪ ൌ ሺ݄,⋯ , ݄ିଵ,⋯ , ݄ଶିଶ, 0,⋯ ,0ሻ 

and let K be an n-vector such that 
ܭ ൌ ሺ݄,⋯ , ݄ିଵ, 0,⋯ ,0ሻ. 

Let ܤ ൌ ሺܾ,ሻ be the ݊ ൈ ݊ (Vandermonde) 
matrix, where ܾ, ൌ ݔ

 for ݅, ݆ ൌ 0,⋯ , ݊ െ 1. 
Furthermore let the linear projection P ൌ
ሺݔ,⋯ , ିଵሻݔ ൌ ሺݔ,⋯ , ,ିଵݔ 0,⋯ ,0ሻ. Then, we 
have 

ܤ･ܪ ൌ ܵ 

ܲ･ܪ ൌ  ܭ

ܤ･ܭ ൌ ܴ 

ܵ･ሺିܤଵܲܤሻ ൌ ܴ 
 

The randomization step 
To randomize the coefficients of the polynomial, 

each ܲ  randomly selects a polynomial ݍሺݔሻ  of 
degree 2݇ െ 2  with a zero free coefficient and 
distributes its shares among the players. Thus, instead 
of using ݄ሺݔሻ in this reduction players can use  

ത݄ሺݔሻ ൌ ݄ሺݔሻ ݍሺݔሻ

ିଵ

ୀ
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Which satisfies ത݄ሺ0ሻ ൌ ݄ሺ0ሻ ; however, the other 
coefficients of ݔ, 1  ݅  ݇ െ 1  are completely 
random. 

3 PROPOSED SCHEME 

Our scheme can be applied to any homomorphic 
	ሺ݇, ݊ሻ  secret sharing scheme. Therefore, we used 
Shamir’s secret sharing scheme. In this section, we 
describe the distribution, reconstruction, and secrecy 
multiplication, division, addition, and subtraction. 
The variables ܽ and ܾ are secrets and are elements of 
GF(  ߙ .(  and ߚ  are random numbers and are 
selected from the elements of GF(ݍ). The variables  
and ݍ  are primes, and ݍ ≧ 2 . The secrets and 
random numbers are non-zero. Computations are 
performed on the field of GF(q). Our scheme assumes 
a semi-honest model, and all players follow our 
scheme. 

3.1 Notation 

 ሾܽሿതതതത : A share of ܽ for player ܲ  by using secret 
sharing scheme 
 ሾܽሿ  : A set of shares, such as 

൫ሾܽߙሿതതതതതത
, ሾߙሿపതതതതതത,⋯ , ሾߙିଵሿതതതതതതതത

൯, on ܽ for player ܲ. 
 ܴܵܪሺܽߙሻ ൌ ൫ሾܽߙሿതതതതതത

,⋯ , ሾܽߙሿതതതതതത
ିଵ൯  : Distributing 

ሿതതതതതതܽߙto the shares ൫ሾ ܽߙ
,⋯ , ሾܽߙሿതതതതതത

ିଵ൯. 
 ܴܥܧ൫ሾܽߙሿതതതതതത

,⋯ , ሾܽߙሿതതതതതത
ିଵ൯ ൌ ܽߙ  : Reconstructing 

ሿതതതതതതܽߙfrom the shares ൫ሾ ܽߙ
,⋯ , ሾܽߙሿതതതതതത

ିଵ൯. 

3.2 Distribution 

Input : ܽ 
Output : ሾܽሿ ≔ ൫ሾܽߙሿതതതതതത

, ሾߙሿపതതതതതത,⋯ , ሾߙିଵሿതതതതതതതത
൯	ሺ݅ ൌ

0,1,⋯ , ݊ െ 1ሻ 
1. The dealer picks ݇  random numbers 

⋯,ߙ	 ,  :as follows ߙ ିଵ and computesߙ

ߙ ൌෑߙ

ିଵ

ୀ

 

2. The dealer then computes ܽߙ  as a concealed 
secret and distributes ሺܽߙ, ⋯,ߙ , ሻ	ିଵߙ  to ݊ 
players by using the ሺ݇, ݊ሻ	 secret sharing 
scheme. 

ሻܽߙሺܴܪܵ ൌ ൫ሾܽߙሿതതതതതത
,⋯ , ሾܽߙሿതതതതതത

ିଵ൯ 
ሻߙሺܴܪܵ ൌ ൫ሾߙሿതതതതത

,⋯ , ሾߙሿതതതതത
ିଵ൯ 

⋮ 
ିଵሻߙሺܴܪܵ ൌ ൫ሾߙିଵሿതതതതതതതത

,⋯ , ሾߙିଵሿതതതതതതതത
ିଵ൯ 

3. Player ܲ  has 	ሾܽሿ ≔ ൫ሾܽߙሿതതതതതത
, ሾߙሿపതതതതതത,⋯ , ሾߙିଵሿതതതതതതതത

൯ 
as shares on secret ܽ. 

3.3 Reconstruction 

Input : ሾܽሿ ≔ ൫ሾܽߙሿതതതതതത
, ሾߙሿఫതതതതതതത,⋯ , ሾߙିଵሿതതതതതതതത

൯		ሺ݆ ൌ
0,1,⋯ , ݇ െ 1ሻ 
Output : ܽ 
1. A user who restores secret ܽ collects ሾܽሿ from 

݇ players. 

2. The user obtains secret ܽ  by reconstructing 
,ܽߙ ⋯,ߙ ,  ,ିଵ as followsߙ

ሿതതതതതതܽߙ൫ሾܥܧܴ
,⋯ , ሾܽߙሿതതതതതത

ିଵ൯ ൌ  ܽߙ
ሿതതതതതߙ൫ሾܥܧܴ

,⋯ , ሾߙሿതതതതത
ିଵ൯ ൌ  ߙ

⋮ 
ିଵሿതതതതതതതതߙ൫ሾܥܧܴ

,⋯ , ሾߙିଵሿതതതതതതതത
ିଵ൯ ൌ  ିଵߙ

ߙ ൌෑߙ

ିଵ

ୀ

 

ܽߙ ൈ ଵିߙ ൌ ܽ 

3.4 Secrecy Multiplication 

We assume that player ܲ 	ሺ݆ ൌ 0,1,⋯ , ݊ െ 1ሻ	 has 
ሾܽሿ and ሾܾሿ for secrets ܽ and ܾ, respectively. 

From ሾܿሿሺ݅ ൌ 0,1,⋯ , ݇ െ 1ሻ  of the output, we 
can restore ܿ ൌ ܾܽ through reconstruction shown in 
section 3.3. 

 
Input : ሾܽሿ, ሾܾሿ	ሺ݆ ൌ 0,1,⋯ , ݇ െ 1ሻ 
Output : ሾܿሿ ≔ ሾܾܽሿ	ሺ݅ ൌ 0,1,⋯ , ݊ െ 1ሻ 
1. ܲ collects 	ሾܽߙሿതതതതതത

 from ݇ players. 

2. ܲ	reconstructs ܽߙ and sends it to all players. 

ሿതതതതതതܽߙ൫ሾܥܧܴ
,⋯ , ሾܽߙሿതതതതതത

ିଵ൯ ൌ  ܽߙ
3. ܲ  computes ሾܾߚܽߙሿതതതതതതതതത

  by multiplying the share 
ሾܾߚሿതതതതതത

 by ܽߙ. 

4. ܲ  collects ൣߙఫ൧
തതതതത


,⋯ , ఫ൧ߙൣ

തതതതത
ିଵ

 and 

ఫ൧ߚൣ
തതതതത


,⋯ , ఫ൧ߚൣ

തതതതത
ିଵ

 from ݇  players and 

reconstructs ߙ and ߚ. 

5. ܲ computes ߙߚ and performs ܴܵܪሺߙߚሻ. 

6. ܲ  has ሾܿሿ ≔
൫ሾܾܽߚߙሿതതതതതതതതത

, ሾߙߚሿపതതതതതതതതത,⋯ , ሾߙିଵߚ୩ିଵሿതതതതതതതതതതതതതത
൯ , where  

ሾܾߚܽߙሿതതതതതതതതത
 is a randomized share. 

3.5 Secrecy Division 

Input : ሾܽሿ, ሾܾሿ	ሺ݆ ൌ 0,1,⋯ , ݇ െ 1ሻ 
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Output : ሾܿሿ ≔ ሾܾ/ܽሿ	ሺ݅ ൌ 0,1,⋯ , ݊ െ 1ሻ 
1. ܲ collects 	ሾܽߙሿതതതതതത

 from ݇ players. 

2. ܲ	reconstructs ܽߙ and sends it to all players. 

3. ܲ  computes ሾܽߙ/ܾߚሿതതതതതതതതതതത
  by dividing the share 

ሾܾߚሿതതതതതത
 by ܽߙ. 

4. ܲ  collects ൣߙఫ൧
തതതതത


,⋯ , ఫ൧ߙൣ

തതതതത
ିଵ

 and 

ఫ൧ߚൣ
തതതതത


,⋯ , ఫ൧ߚൣ

തതതതത
ିଵ

 from ݇  players and 

reconstructs ߙ and ߚ. 

5. ܲ computes ߚ/ߙ and performs ܴܵܪሺߚ/ߙሻ. 

6. ܲ  has ሾܿሿ ≔
൫ሾܽߙ/ܾߚሿതതതതതതതതതതത

, ሾߚ/ߙሿపതതതതതതതതതതത,⋯ , ሾߚିଵ/ߙିଵሿതതതതതതതതതതതതതതതത
൯  where  

ሾܽߙ/ܾߚሿതതതതതതതതതതത
 is a randomized share. 

3.6 Secrecy Addition and Subtraction 

It is possible to perform secrecy addition and 
subtraction by using the concealed secret, although it 
is not efficient compared to the conventional scheme. 
The computation of ሾܽ  ܾሿ  from ሾܽሿ  and ሾܾሿ  for 
secrets ܽ and ܾ is as follows. 

 

Input: ሾܽሿ, ሾܾሿ	ሺ݆ ൌ 0,1,⋯ , ݇ െ 1ሻ 
Output: ሾܿሿ ≔ ሾܽ  ܾሿ	ሺ݅ ൌ 0,1,⋯ , ݊ െ 1ሻ 

1. ܲ  collects ൣߙఫ൧
തതതതത


,⋯ , ఫ൧ߙൣ

തതതതത
ିଵ

 and 

ఫ൧ߚൣ
തതതതത


,⋯ , ఫ൧ߚൣ

തതതതത
ିଵ

, and reconstructs ߙ, ߚ . ܲ 

picks a random number ߛ ∈ ࢆ/ࢆ  and sends 
 . to ܲߛߚ	and	ߛ	ߙ

2. ܲ reconstructs ߛߙ	and	ߛߚ, and  sends them to 
all players. 

ߛߙ ൌෑߙߛ

ିଵ

ୀ

 

ߛߚ ൌෑߚߛ

ିଵ

ୀ

 

3. ܲ  computes the share of ߛߚߙሺܽ  ܾሻ  as 
follows: 

ሾߛߚߙሺܽ  ܾሻሿതതതതതതതതതതതതതതതതത
 ൌ ሿതതതതതതܾߚሾ･ߛߙ

  ሿതതതതതതܽߙሾ･ߛߚ
 

 

4. ܲ  computes ߙߚߛ  and performs 
 .ሻߛߚߙሺܴܪܵ

5. ܲ holds 
ሾܿሿ
≔ ൫ሾߛߚߙሺܽ  ܾሻሿതതതതതതതതതതതതതതതതത

, ሾߙߚߛሿపതതതതതതതതതതതത,⋯ , ሾߙିଵߚିଵߛିଵሿതതതതതതതതതതതതതതതതതതതത
൯ 

Similarly, the secrecy subtraction can be realized by 
changing “” to “െ”. 

4 SECURITY EVALUATION AND 
DISCUSSION 

4.1 Security Analysis of Secrecy 
Multiplication and Division 

In secrecy multiplication, all players know ܽߙ, but 
cannot know ܽ , because ߙ  is a random number.  
Namely, the expression below is realized, where 
 .ݔ ሻ shows the entropy ofݔሺܪ
 

ሺܽሻܪ ൌ  ሻܽߙ|ሺܽܪ
 

Even if ܲ  ሺ݆ ൌ 0,1,⋯ , ݇ െ 2ሻ  colludes, ߙ  and 
 .ߚ  andߙ are not revealed, although ܲ knows	ߚ

 

ሻߙሺܪ ൌ …,ߙ|ߙሺܪ ,  ିଶሻߙ
ሻߚሺܪ ൌ ,ߚ|ߚሺܪ … ,  ିଶሻߚ

 

Next, because ܽߙ is multiplied by the share  ሾܾߚሿതതതതതത
, 

݇ is not revealed even if ܾߚܽߙ െ 1 players collude. 
 
ሻܾߚܽߙሺܪ ൌ ,ܽߙ|ܾߚܽߙሺܪ ሾܾߚሿതതതതതത

, … , ሾܾߚሿതതതതതത
ିଶሻ 

 

In addition, ܾܽ  is not revealed, because ܽߚ  is not 

known.	
ሻߚሺܽܪ ൌ …,ߚߙ|ߚሺܽܪ ,  ୩ିଶሻߚିଶߙ

Let ܣ denote an arbitrary set of participants such 
that |ܣ| 	 	݇ െ 1. Then, we have 

ሻߙሺܪ ൌ  ሻܣܸ|ߙሺܪ
ሻߚሺܪ ൌ  ሻܤܸ|ߚሺܪ

ሻߚሺܽܪ ൌ  ሻܤܣܸ|ߚሺܽܪ

where ܸܣ denotes a set of shares on ܽ  that are 
given to each participant in ܤܸ ,ܣ denotes a set of 
shares on ܾ  given to each participant in ܣ, and ܸܤܣ 
denotes a set of shares on ܽ	and	ܾ  given to each 
participant in ܣ. 

Alternatively, let ܣ  denote an arbitrary set of 
participants such that |ܣ| 	 	݇. Then, it is clear that 
the reconstruction algorithm can recover the secret 
from the shares given to each participant in ܣ. 

In the reconstruction, although the user who 
restores the result ܾܽ knows ܽߚ and ܾܽܽߚ, he cannot 
know ܽ  or ܾ . Even if the user and ݇ െ 1  players 
collude, they cannot know ܽ or ܾ. 

Secrecy division has the same security. 

4.2 Security Analysis of Secrecy 
Addition and Subtraction 

In secrecy addition, all players know ߛߙ	and	ߛߚ. In 
the reconstruction, the user who restores ܽ  ܾ 
knows ߛߚߙ and ߛߚߙሺܽ  ܾሻ. Therefore, if a user and 
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a player collude, ߙ and ߚ are known. However, ܽߙ or 
݇ cannot be reconstructed, even if the user and ܾߚ െ
1 players collude. Therefore, they cannot know ܽ or 
ܾ. 

Secrecy subtraction has the same security. 

4.3 Combination of Secrecy Addition 
and Multiplication 

In our scheme, a simple combination of secrecy 
multiplication and addition features a problem. 
Input: ሾܽሿ, ሾܾሿ	ሺ݆ ൌ 0,1,⋯ , ݇ െ 1ሻ 
Output: ሾܿሿ ≔ ሾܾܽሿ, ሾ݀ሿ ≔ ሾܽ  ܾሿሺ݅ ൌ
0,1,⋯ , ݊ െ 1ሻ 
1. All players perform secrecy multiplication, as 

shown in section 3.4, and obtain  ሾܿሿ. 
2. All players perform secrecy addition, as shown 

in section 3.6, and obtain ሾ݀ሿ. 
Therefore, ܽߙ is known in secrecy multiplication, 

and ߙ  and ߚ  are known in secrecy addition. 
Therefore, ܽ and ܾ	are known. 

To solve this problem, we prepare one or more 
sets for a secret. ሾܽሿ

  represents a different set of 
shares for secret ܽ  by using different random 
numbers	ߙ

 selected independently (as in section 3.2). 
For example, when ߙ

ଵ	and 	ߙ
ଶ	ሺ݅ ൌ 0,⋯ , ݇ െ 1ሻ  are 

uniform random numbers, ሾܽሿ
ଵ  and ሾܽሿ

ଶ  are 
expressed as follows; 

ሾܽሿ
ଵ ൌ ൫ሾߙଵܽሿതതതതതതത

, ሾߙ
ଵሿതതതതതത
,⋯ , ሾߙିଵ

ଵ ሿതതതതതതതത
൯ 

ሾܽሿ
ଶ ൌ ൫ሾߙଶܽሿതതതതതതത

, ሾߙ
ଶሿതതതതതത
,⋯ , ሾߙିଵ

ଶ ሿതതതതതതതത
൯ 

ሺߙଵ ൌෑߙ
ଵ

ିଵ

ୀ

, ଶߙ ൌෑߙ
ଶ

ିଵ

ୀ

ሻ	 

By using ሾܽሿ
 , we can combine secrecy 

multiplication and addition as follows, (where  ሾܽሿ
  is 

deleted after its used). 
 

Input: ሾܽሿ
ଵ, ሾܽሿ

ଶ, ሾܾሿ
ଵ, ሾܾሿ

ଶ	ሺ݆ ൌ 0,1,⋯ , ݇ െ 1ሻ 
Output: ሾܿሿ ≔ ሾܾܽሿ, ሾ݀ሿ ≔ ሾܽ  ܾሿሺ݅ ൌ
0,1,⋯ , ݊ െ 1ሻ 
1. All players perform secrecy multiplication, as 

shown in section 3.4, by using ሾܽሿ
ଵ  and ሾܾሿ

ଵ , 
and obtain  ሾܿሿ. 

2. All players perform secrecy addition as shown 
in section 3.6, by using ሾܽሿ

ଶ	 and ሾܾሿ
ଶ , and 

obtain ሾ݀ሿ. 
3. All players delete ሾܽሿ

ଶ, ሾܾሿ
ଶ, ሾܽሿ

ଶ, and ሾܾሿ
ଶ. 

In this case, because the ߙ  of ܽߙ  in secrecy 
multiplication and the ߙ  in secrecy addition are 
different, ܽ is not revealed. 

In the case where ሾݖሿ
ଵ  calculated using 

ሾܽሿ
ଵ ,…, 	ሾݕሿ

ଵ  is used twice, such as in a square 
calculation, ሾݖሿ

ଶ  calculated from ሾܽሿ
ଶ ,…, 	ሾݕሿ

ଶ  is 
used as ሾݖሿ

ଵ ൈ ሾݖሿ
ଶ. 

Therefore, secrecy multiplication, division, 
addition, subtraction, and the combination of secrecy 
multiplication (division) and secrecy addition 
(subtraction) have information theoretical security. 

4.4 Possible Application 

As the conventional scheme requires 2݇ െ 1 ≦ ݊, the 
value of ݊ must be approximately twice that of ݇. In 
a cloud system, because ݊ is the number of servers 
that store the shares, the composition of the cloud 
system is restricted. For example, ሺ݇, ݊ሻ ൌ
ሺ2,2ሻሺ3,3ሻሺ3,4ሻ⋯cannot be selected. In contrast, our 
scheme can select ݇ and ݊ሺ≦ ݇ሻ without restriction. 

As one application, we consider the diagnostic 
data for patients such as their blood glucose level and 
the value of hemoglobin. Such values do not take 0. 
We consider the case where a medical company 
wants to maintain the average blood glucose level of 
certain number of patients in different hospitals, 
keeping the sum of blood glucose level and total 
number of patients secret. Let the number of hospitals 
be three. Further, let ܽ1 , ܾ1 , and ܿ1  be the blood 
glucose levels, and ܽ2, ܾ2, and ܿ2 be the number of 
patients in hospitals A, B, and C, respectively. In this 
case, the (3,3) secret sharing scheme is suitable. 
When the conventional scheme is used, hospital A 
distributes ሾܽ1ሿതതതതതത

 and ሾܽ2ሿതതതതതത
 , hospital B distributes 

ሾܾ1ሿതതതതതത
 and ሾܾ2ሿതതതതതത

, and hospital C distributes ሾܿ1ሿതതതതത
and 

ሾܿ2ሿതതതതത
 to the other two hospitals, where j = A, B, C. 

Each hospital calculates ሾܽ1  ܾ1  ܿ1ሿതതതതതതതതതതതതതതതതതതത
  and 

ሾܽ2  ܾ2  ܿ2ሿതതതതതതതതതതതതതതതതതതത
, respectively. To obtain the average, 

it is necessary to divide ሾܽ1  ܾ1  ܿ1ሿതതതതതതതതതതതതതതതതതതത
  by 

ሾܽ2  ܾ2  ܿ2ሿതതതതതതതതതതതതതതതതതതത
 . However, division of shares is 

difficult through the conventional scheme. If the three 
hospitals send the shares to the company, and the 
company can restore ܽ1  ܾ1  ܿ1  and ܽ2  ܾ2 
ܿ2 , it can obtain the average by dividing them. 
However, the company knows the sum of blood 
glucose level and the total number of patients of the 
three hospitals. Even if the shares of the 
multiplicative inverse of the total number are 
obtained, the conventional scheme cannot calculate 
the multiplication of shares because of (k,n)=(3,3). 

In contrast, our schemes can perform secrecy 
addition and division by using (3,3) secret sharing 
scheme. In this case, each hospital has ሾܽ1ሿ

ଵ, ሾܾ1ሿ
ଵ, 
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ሾܿ1ሿ
ଵ , ሾܽ2ሿ

ଵ , ሾܾ2ሿ
ଵ , and ሾܿ2ሿ

ଵ  (j = A, B, C), and 
calculates ሾܽ1  ܾ1  ܿ1ሿ

ଵ  and ሾܽ2  ܾ2  ܿ2ሿ
ଵ  by 

using secrecy addition as shown in section 3.6. The 
average is obtained using secrecy division as shown 
in section 3.5, or using secrecy multiplication with the 
shares of the multiplicative inverse as shown in 
section 3.4. If other secrecy calculations are needed, 
ሾܽ1ሿ

ଵ, ሾܾ1ሿ
ଵ, ሾܿ1ሿ

ଵ, ሾܽ2ሿ
ଵ, ሾܾ2ሿ

ଵ, and ሾܿ2ሿ
ଵ are never 

used, instead ሾܽ1ሿ
ଶ , ሾܾ1ሿ

ଶ , ሾܿ1ሿ
ଶ , ሾܽ2ሿ

ଶ , ሾܾ2ሿ
ଶ , and 

ሾܿ2ሿ
ଶ are generated and used. 

5 CONCLUSIONS 

We proposed a new secrecy multiplication scheme 
without changing the degree of the polynomials in a 
ሺ݇, ݊ሻ secret sharing scheme. In this scheme, we can 
set ݇ ൌ ݊ in secrecy multiplication. This scheme has 
information theoretical security, and can be extended 
to secrecy division, addition, and subtraction. Our 
new schemes realize some applications that were not 
possible by using the conventional scheme. 
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