
Secrecy Computation without Changing Polynomial Degree in
Shamir’s (K, N) Secret Sharing Scheme

Takeshi Shingu1, Keiichi Iwamura1 and Kitahiro Kaneda2
1Tokyo University of Science, Tokyo, Japan

2Institute of Document Analysis and Knowledge Science, Osaka Prefecture University, 1-1 Naka-ku, Sakai, Osaka, Japan

Keywords: Secrecy Computation, Secrecy Multiplication, Secrecy Division, Secrecy Addition, Secrecy Subtraction,
(K, N) Secret Sharing Scheme.

Abstract: In This Paper, We Propose a New Secrecy Multiplication Scheme without Changing the Degree in Shamir’s
(K, N) Secret Sharing Scheme. This Scheme Generates a Scalar Value Called Concealed Secret, Which
Multiplies a Secret by a Random Number, and Distributes the Concealed Secret by using a Secret Sharing
Scheme. When Secrecy Multiplying, We Temporarily Reconstruct the Concealed Secret, and Multiply It with
a Share. Therefore, We Can Perform Secrecy Multiplication without Changing the Degree of Polynomials by
Multiplying a Polynomial and Scalar Value. Our Scheme Can Extend to Secrecy Division by Dividing a Share
with the Concealed Secret. in Addition, We Propose Secrecy Addition and Subtraction Schemes. We Evaluate
the Security of Our Schemes, and Show a Possible Application That Cannot Realized using the Conventional
Scheme.

1 INTRODUCTION

Cloud computing (Mell, 2011) has brought about
considerable changes in users’ data utilization. Users
can save their data on a server in a network instead of
a self-managed server, and can access it from
anywhere via a network. However, this incurs some
security risks, including server or network failure, in
which the users cannot access their data stored on the
cloud system. Furthermore, because attacks also are
concentrated on the data storage location, the risk of
information leakage increases. In particular, in
situation where confidential business information is
compromised, the leak can cause serious damage.

To counteract those risks, data encryption is
recommended. In addition, the saved encryption data
is often assumed to be applicable to secrecy
calculations without the recovery of the secret data in
the cloud system. Therefore, some cloud systems
consider applying the “secret sharing scheme”
(Shamir, 1979), (Blakley, 1984) to solve the
abovementioned problems.

Shamir’s ሺ݇, ݊ሻ secret sharing scheme (Shamir,
1979) is a prototypical secret sharing scheme, that
distributes n shares of a secret and recovers the secret
from ݇ shares. This implies that no secret is revealed

if ݇ shares are not revealed, and a secret can be
restored even if ݊ െ ݇ shares are lost because of a
server or network failure. In addition, the secrecy
calculation based on the scheme is performed at high
speed. Therefore, Shamir’s ሺ݇, ݊ሻ secret sharing
scheme is suitable for cloud computing systems.

Secrecy calculation (Asharov, 2012), (Beaver,
1991), (Ben-Sasson, 2011), (Ben-Or, 1988) is a
technique for performing a computation while
keeping the input data secret. It is well known that
secrecy addition and subtraction can be easily
realized using Shamir’s ሺ݇, ݊ሻ secret sharing scheme.
However, in secrecy multiplication, the degree of
polynomial would change from ݇ െ 1 to 2݇ െ 2
because a multiplication of shares is a multiplication
between polynomials with a degree of ݇ െ 1 .
Therefore, the threshold value ݇ changes only when
secrecy multiplication is performed.

In this paper, we propose a new secrecy
multiplication scheme without changing the degree of
polynomials. The scheme generates a scalar value
called concealed secret, which multiplies a secret by
a random number, and distributes the concealed
secret by using a secret sharing scheme. When
multiplying, we temporarily reconstruct the
concealed secret and multiply it with a share. Thus,
we can perform secrecy multiplication without

Shingu, T., Iwaumura, K. and Kaneda, K.
Secrecy Computation without Changing Polynomial Degree in Shamir’s (K, N) Secret Sharing Scheme.
DOI: 10.5220/0005998800890094
In Proceedings of the 13th International Joint Conference on e-Business and Telecommunications (ICETE 2016) - Volume 1: DCNET, pages 89-94
ISBN: 978-989-758-196-0
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

89

changing the degree of a polynomial, because the
multiplication of two polynomials is deformed during
the multiplication of a polynomial and a scalar value.
Our scheme can be extended secrecy division by
dividing a share by the concealed secret. In addition,
we propose the secrecy addition and subtraction
schemes by considering the concealed secret, and
evaluate the security of our schemes, and show the
possible application that cannot be realized using our
schemes.

The remainder of this paper is organized as
follows. In section 2I, we describe the conventional
secrecy computation. In section 3, we propose new
secrecy multiplication, division, addition and
subtraction schemes. In section 4, we evaluate the
security of our schemes and discuss the possible
application. Finally, we summarize the results in
section 5.

2 CONVENTIONAL SCHEME

2.1 Shamir’s (K, N) Secret Sharing
Scheme

In this paper, ݏ is a secret to be distributed, ݊ is the
number of players, and ݇ is the threshold to restore
the secret.

[Distribution]
1. The dealer selects a prime number that

satisfies ࢙ ൏ and ൏ .
2. The dealer chooses elements of GF() and

assigns them to each player as ࢞ሺ ൌ
, ,⋯ , .ሻ

3. The dealer generates equation	ࢃሺ࢞ሻ from secret
࢙ and െ random numbers, that is, ࢇሺ ൌ
, ,⋯ , െ ሻ selected from elements of
GF().

ܹሺݔሻ ൌ ݏ ܽଵݔ ܽଶݔଶ ⋯ ܽିଵݔିଵ	ሺmod	ሻ
4. The dealer calculates ࢃ ൌ ሺ	ሻ࢞ሺࢃ ൌ

, ,⋯ , ሻ and distributes them to each player
 .ࡼ

[Reconstruction]
1. The shares that are used for reconstruction are

assumed to be ࢃሺ ൌ , ,⋯ , .ሻ
The user who reconstructs the secret s obtains s

by solving ݇ simultaneous equations by using the ݇
shares.

2.2 Secrecy Computation

Let ܽ	ܽ݊݀	ܾ be two secrets that are shared using
polynomials ݂ሺݔሻ	ܽ݊݀	݃ሺݔሻ , which are of degree

݇ െ 1. Each player ܲ has ݂ሺݔሻ	ܽ݊݀	݃ሺݔሻ. Let ܿ (≠
0) be a scalar value. The secrecy addition ܽ ܾ and
the secrecy multiplication ܿ ൈ ܽ are easy to perform
because the degree of the polynomials that is obtained
as a result remains unchanged.

[Secrecy addition and subtraction]
1. ܲ computes ݄ሺݔሻ ൌ ݂ሺݔሻ ݃ሺݔሻ , which is

the share of ܽ ܾ, and sends it to the user.

2. The user who reconstructs the result of ܽ ܾ
solves ݇ simultaneous equations by using ݇
shares.

Similarly, secrecy subtraction can be realized by
changing “” to “െ”.

[Secrecy multiplication]
Secrecy multiplication using ݂ሺݔሻ	ܽ݊݀	݃ሺݔሻ is

not as simple as addition because the multiplication
of ݂ሺݔሻ and ݃ሺݔሻ	 of degree ݇ െ 1 will result in
݄ሺݔሻ of degree 2݇ െ 2. Therefore, a degree reduction
and a randomization of ݄ሺݔሻ is required.

The reduction step
Let ݄ሺݔሻ ൌ ݄ ݄ݔ ⋯ ݄ଶିଶݔଶିଶ and ݏ ൌ

݄ሺݔሻ ൌ ݂ሺݔሻ݃ሺݔሻ. Each ܲ has ݏ. Define the
truncation of ݄ሺݔሻ to be ݇ሺݔሻ ൌ ݄ ݄ݔ ⋯
݄ିଵݔିଵ, and ݎ ൌ ݇ሺݔሻ.

Let ܵ ൌ ሺݏ,⋯ , ܴ ିଵሻ andݏ ൌ ሺݎ,⋯ , ,ିଵሻݎ
then there is a constant ݊ ൈ ݊ matrix A such that
ܴ ൌ .ܣ･ܵ

Let H be an n-vector such that
ܪ ൌ ሺ݄,⋯ , ݄ିଵ,⋯ , ݄ଶିଶ, 0,⋯ ,0ሻ

and let K be an n-vector such that
ܭ ൌ ሺ݄,⋯ , ݄ିଵ, 0,⋯ ,0ሻ.

Let ܤ ൌ ሺܾ,ሻ be the ݊ ൈ ݊ (Vandermonde)
matrix, where ܾ, ൌ ݔ

 for ݅, ݆ ൌ 0,⋯ , ݊ െ 1.
Furthermore let the linear projection P ൌ
ሺݔ,⋯ , ିଵሻݔ ൌ ሺݔ,⋯ , ,ିଵݔ 0,⋯ ,0ሻ. Then, we
have

ܤ･ܪ ൌ ܵ

ܲ･ܪ ൌ ܭ

ܤ･ܭ ൌ ܴ

ܵ･ሺିܤଵܲܤሻ ൌ ܴ

The randomization step
To randomize the coefficients of the polynomial,

each ܲ randomly selects a polynomial ݍሺݔሻ of
degree 2݇ െ 2 with a zero free coefficient and
distributes its shares among the players. Thus, instead
of using ݄ሺݔሻ in this reduction players can use

ത݄ሺݔሻ ൌ ݄ሺݔሻ ݍሺݔሻ

ିଵ

ୀ

DCNET 2016 - International Conference on Data Communication Networking

90

Which satisfies ത݄ሺ0ሻ ൌ ݄ሺ0ሻ ; however, the other
coefficients of ݔ, 1 ݅ ݇ െ 1 are completely
random.

3 PROPOSED SCHEME

Our scheme can be applied to any homomorphic
	ሺ݇, ݊ሻ secret sharing scheme. Therefore, we used
Shamir’s secret sharing scheme. In this section, we
describe the distribution, reconstruction, and secrecy
multiplication, division, addition, and subtraction.
The variables ܽ and ܾ are secrets and are elements of
GF(ߙ .(and ߚ are random numbers and are
selected from the elements of GF(ݍ). The variables
and ݍ are primes, and ݍ ≧ 2 . The secrets and
random numbers are non-zero. Computations are
performed on the field of GF(q). Our scheme assumes
a semi-honest model, and all players follow our
scheme.

3.1 Notation

 ሾܽሿതതതത : A share of ܽ for player ܲ by using secret
sharing scheme
 ሾܽሿ : A set of shares, such as

൫ሾܽߙሿതതതതതത
, ሾߙሿపതതതതതത,⋯ , ሾߙିଵሿതതതതതതതത

൯, on ܽ for player ܲ.
 ܴܵܪሺܽߙሻ ൌ ൫ሾܽߙሿതതതതതത

,⋯ , ሾܽߙሿതതതതതത
ିଵ൯ : Distributing

ሿതതതതതതܽߙto the shares ൫ሾ ܽߙ
,⋯ , ሾܽߙሿതതതതതത

ିଵ൯.
 ܴܥܧ൫ሾܽߙሿതതതതതത

,⋯ , ሾܽߙሿതതതതതത
ିଵ൯ ൌ ܽߙ : Reconstructing

ሿതതതതതതܽߙfrom the shares ൫ሾ ܽߙ
,⋯ , ሾܽߙሿതതതതതത

ିଵ൯.

3.2 Distribution

Input : ܽ
Output : ሾܽሿ ≔ ൫ሾܽߙሿതതതതതത

, ሾߙሿపതതതതതത,⋯ , ሾߙିଵሿതതതതതതതത
൯	ሺ݅ ൌ

0,1,⋯ , ݊ െ 1ሻ
1. The dealer picks ݇ random numbers

⋯,ߙ	 , :as follows ߙ ିଵ and computesߙ

ߙ ൌෑߙ

ିଵ

ୀ

2. The dealer then computes ܽߙ as a concealed
secret and distributes ሺܽߙ, ⋯,ߙ , ሻ	ିଵߙ to ݊
players by using the ሺ݇, ݊ሻ	 secret sharing
scheme.

ሻܽߙሺܴܪܵ ൌ ൫ሾܽߙሿതതതതതത
,⋯ , ሾܽߙሿതതതതതത

ିଵ൯
ሻߙሺܴܪܵ ൌ ൫ሾߙሿതതതതത

,⋯ , ሾߙሿതതതതത
ିଵ൯

⋮
ିଵሻߙሺܴܪܵ ൌ ൫ሾߙିଵሿതതതതതതതത

,⋯ , ሾߙିଵሿതതതതതതതത
ିଵ൯

3. Player ܲ has 	ሾܽሿ ≔ ൫ሾܽߙሿതതതതതത
, ሾߙሿపതതതതതത,⋯ , ሾߙିଵሿതതതതതതതത

൯
as shares on secret ܽ.

3.3 Reconstruction

Input : ሾܽሿ ≔ ൫ሾܽߙሿതതതതതത
, ሾߙሿఫതതതതതതത,⋯ , ሾߙିଵሿതതതതതതതത

൯		ሺ݆ ൌ
0,1,⋯ , ݇ െ 1ሻ
Output : ܽ
1. A user who restores secret ܽ collects ሾܽሿ from

݇ players.

2. The user obtains secret ܽ by reconstructing
,ܽߙ ⋯,ߙ , ,ିଵ as followsߙ

ሿതതതതതതܽߙ൫ሾܥܧܴ
,⋯ , ሾܽߙሿതതതതതത

ିଵ൯ ൌ ܽߙ
ሿതതതതതߙ൫ሾܥܧܴ

,⋯ , ሾߙሿതതതതത
ିଵ൯ ൌ ߙ

⋮
ିଵሿതതതതതതതതߙ൫ሾܥܧܴ

,⋯ , ሾߙିଵሿതതതതതതതത
ିଵ൯ ൌ ିଵߙ

ߙ ൌෑߙ

ିଵ

ୀ

ܽߙ ൈ ଵିߙ ൌ ܽ

3.4 Secrecy Multiplication

We assume that player ܲ 	ሺ݆ ൌ 0,1,⋯ , ݊ െ 1ሻ	 has
ሾܽሿ and ሾܾሿ for secrets ܽ and ܾ, respectively.

From ሾܿሿሺ݅ ൌ 0,1,⋯ , ݇ െ 1ሻ of the output, we
can restore ܿ ൌ ܾܽ through reconstruction shown in
section 3.3.

Input : ሾܽሿ, ሾܾሿ	ሺ݆ ൌ 0,1,⋯ , ݇ െ 1ሻ
Output : ሾܿሿ ≔ ሾܾܽሿ	ሺ݅ ൌ 0,1,⋯ , ݊ െ 1ሻ
1. ܲ collects 	ሾܽߙሿതതതതതത

 from ݇ players.

2. ܲ	reconstructs ܽߙ and sends it to all players.

ሿതതതതതതܽߙ൫ሾܥܧܴ
,⋯ , ሾܽߙሿതതതതതത

ିଵ൯ ൌ ܽߙ
3. ܲ computes ሾܾߚܽߙሿതതതതതതതതത

 by multiplying the share
ሾܾߚሿതതതതതത

 by ܽߙ.

4. ܲ collects ൣߙఫ൧
തതതതത

,⋯ , ఫ൧ߙൣ

തതതതത
ିଵ

 and

ఫ൧ߚൣ
തതതതത

,⋯ , ఫ൧ߚൣ

തതതതത
ିଵ

 from ݇ players and

reconstructs ߙ and ߚ.

5. ܲ computes ߙߚ and performs ܴܵܪሺߙߚሻ.

6. ܲ has ሾܿሿ ≔
൫ሾܾܽߚߙሿതതതതതതതതത

, ሾߙߚሿపതതതതതതതതത,⋯ , ሾߙିଵߚ୩ିଵሿതതതതതതതതതതതതതത
൯ , where

ሾܾߚܽߙሿതതതതതതതതത
 is a randomized share.

3.5 Secrecy Division

Input : ሾܽሿ, ሾܾሿ	ሺ݆ ൌ 0,1,⋯ , ݇ െ 1ሻ

Secrecy Computation without Changing Polynomial Degree in Shamir’s (K, N) Secret Sharing Scheme

91

Output : ሾܿሿ ≔ ሾܾ/ܽሿ	ሺ݅ ൌ 0,1,⋯ , ݊ െ 1ሻ
1. ܲ collects 	ሾܽߙሿതതതതതത

 from ݇ players.

2. ܲ	reconstructs ܽߙ and sends it to all players.

3. ܲ computes ሾܽߙ/ܾߚሿതതതതതതതതതതത
 by dividing the share

ሾܾߚሿതതതതതത
 by ܽߙ.

4. ܲ collects ൣߙఫ൧
തതതതത

,⋯ , ఫ൧ߙൣ

തതതതത
ିଵ

 and

ఫ൧ߚൣ
തതതതത

,⋯ , ఫ൧ߚൣ

തതതതത
ିଵ

 from ݇ players and

reconstructs ߙ and ߚ.

5. ܲ computes ߚ/ߙ and performs ܴܵܪሺߚ/ߙሻ.

6. ܲ has ሾܿሿ ≔
൫ሾܽߙ/ܾߚሿതതതതതതതതതതത

, ሾߚ/ߙሿపതതതതതതതതതതത,⋯ , ሾߚିଵ/ߙିଵሿതതതതതതതതതതതതതതതത
൯ where

ሾܽߙ/ܾߚሿതതതതതതതതതതത
 is a randomized share.

3.6 Secrecy Addition and Subtraction

It is possible to perform secrecy addition and
subtraction by using the concealed secret, although it
is not efficient compared to the conventional scheme.
The computation of ሾܽ ܾሿ from ሾܽሿ and ሾܾሿ for
secrets ܽ and ܾ is as follows.

Input: ሾܽሿ, ሾܾሿ	ሺ݆ ൌ 0,1,⋯ , ݇ െ 1ሻ
Output: ሾܿሿ ≔ ሾܽ ܾሿ	ሺ݅ ൌ 0,1,⋯ , ݊ െ 1ሻ

1. ܲ collects ൣߙఫ൧
തതതതത

,⋯ , ఫ൧ߙൣ

തതതതത
ିଵ

 and

ఫ൧ߚൣ
തതതതത

,⋯ , ఫ൧ߚൣ

തതതതത
ିଵ

, and reconstructs ߙ, ߚ . ܲ

picks a random number ߛ ∈ ࢆ/ࢆ and sends
 . to ܲߛߚ	and	ߛ	ߙ

2. ܲ reconstructs ߛߙ	and	ߛߚ, and sends them to
all players.

ߛߙ ൌෑߙߛ

ିଵ

ୀ

ߛߚ ൌෑߚߛ

ିଵ

ୀ

3. ܲ computes the share of ߛߚߙሺܽ ܾሻ as
follows:

ሾߛߚߙሺܽ ܾሻሿതതതതതതതതതതതതതതതതത
 ൌ ሿതതതതതതܾߚሾ･ߛߙ

 ሿതതതതതതܽߙሾ･ߛߚ

4. ܲ computes ߙߚߛ and performs
 .ሻߛߚߙሺܴܪܵ

5. ܲ holds
ሾܿሿ
≔ ൫ሾߛߚߙሺܽ ܾሻሿതതതതതതതതതതതതതതതതത

, ሾߙߚߛሿపതതതതതതതതതതതത,⋯ , ሾߙିଵߚିଵߛିଵሿതതതതതതതതതതതതതതതതതതതത
൯

Similarly, the secrecy subtraction can be realized by
changing “” to “െ”.

4 SECURITY EVALUATION AND
DISCUSSION

4.1 Security Analysis of Secrecy
Multiplication and Division

In secrecy multiplication, all players know ܽߙ, but
cannot know ܽ , because ߙ is a random number.
Namely, the expression below is realized, where
 .ݔ ሻ shows the entropy ofݔሺܪ

ሺܽሻܪ ൌ ሻܽߙ|ሺܽܪ

Even if ܲ ሺ݆ ൌ 0,1,⋯ , ݇ െ 2ሻ colludes, ߙ and
 .ߚ andߙ are not revealed, although ܲ knows	ߚ

ሻߙሺܪ ൌ …,ߙ|ߙሺܪ , ିଶሻߙ
ሻߚሺܪ ൌ ,ߚ|ߚሺܪ … , ିଶሻߚ

Next, because ܽߙ is multiplied by the share ሾܾߚሿതതതതതത
,

݇ is not revealed even if ܾߚܽߙ െ 1 players collude.

ሻܾߚܽߙሺܪ ൌ ,ܽߙ|ܾߚܽߙሺܪ ሾܾߚሿതതതതതത

, … , ሾܾߚሿതതതതതത
ିଶሻ

In addition, ܾܽ is not revealed, because ܽߚ is not

known.	
ሻߚሺܽܪ ൌ …,ߚߙ|ߚሺܽܪ , ୩ିଶሻߚିଶߙ

Let ܣ denote an arbitrary set of participants such
that |ܣ| 	 	݇ െ 1. Then, we have

ሻߙሺܪ ൌ ሻܣܸ|ߙሺܪ
ሻߚሺܪ ൌ ሻܤܸ|ߚሺܪ

ሻߚሺܽܪ ൌ ሻܤܣܸ|ߚሺܽܪ

where ܸܣ denotes a set of shares on ܽ that are
given to each participant in ܤܸ ,ܣ denotes a set of
shares on ܾ given to each participant in ܣ, and ܸܤܣ
denotes a set of shares on ܽ	and	ܾ given to each
participant in ܣ.

Alternatively, let ܣ denote an arbitrary set of
participants such that |ܣ| 	 	݇. Then, it is clear that
the reconstruction algorithm can recover the secret
from the shares given to each participant in ܣ.

In the reconstruction, although the user who
restores the result ܾܽ knows ܽߚ and ܾܽܽߚ, he cannot
know ܽ or ܾ . Even if the user and ݇ െ 1 players
collude, they cannot know ܽ or ܾ.

Secrecy division has the same security.

4.2 Security Analysis of Secrecy
Addition and Subtraction

In secrecy addition, all players know ߛߙ	and	ߛߚ. In
the reconstruction, the user who restores ܽ ܾ
knows ߛߚߙ and ߛߚߙሺܽ ܾሻ. Therefore, if a user and

DCNET 2016 - International Conference on Data Communication Networking

92

a player collude, ߙ and ߚ are known. However, ܽߙ or
݇ cannot be reconstructed, even if the user and ܾߚ െ
1 players collude. Therefore, they cannot know ܽ or
ܾ.

Secrecy subtraction has the same security.

4.3 Combination of Secrecy Addition
and Multiplication

In our scheme, a simple combination of secrecy
multiplication and addition features a problem.
Input: ሾܽሿ, ሾܾሿ	ሺ݆ ൌ 0,1,⋯ , ݇ െ 1ሻ
Output: ሾܿሿ ≔ ሾܾܽሿ, ሾ݀ሿ ≔ ሾܽ ܾሿሺ݅ ൌ
0,1,⋯ , ݊ െ 1ሻ
1. All players perform secrecy multiplication, as

shown in section 3.4, and obtain ሾܿሿ.
2. All players perform secrecy addition, as shown

in section 3.6, and obtain ሾ݀ሿ.
Therefore, ܽߙ is known in secrecy multiplication,

and ߙ and ߚ are known in secrecy addition.
Therefore, ܽ and ܾ	are known.

To solve this problem, we prepare one or more
sets for a secret. ሾܽሿ

 represents a different set of
shares for secret ܽ by using different random
numbers	ߙ

 selected independently (as in section 3.2).
For example, when ߙ

ଵ	and 	ߙ
ଶ	ሺ݅ ൌ 0,⋯ , ݇ െ 1ሻ are

uniform random numbers, ሾܽሿ
ଵ and ሾܽሿ

ଶ are
expressed as follows;

ሾܽሿ
ଵ ൌ ൫ሾߙଵܽሿതതതതതതത

, ሾߙ
ଵሿതതതതതത
,⋯ , ሾߙିଵ

ଵ ሿതതതതതതതത
൯

ሾܽሿ
ଶ ൌ ൫ሾߙଶܽሿതതതതതതത

, ሾߙ
ଶሿതതതതതത
,⋯ , ሾߙିଵ

ଶ ሿതതതതതതതത
൯

ሺߙଵ ൌෑߙ
ଵ

ିଵ

ୀ

, ଶߙ ൌෑߙ
ଶ

ିଵ

ୀ

ሻ	

By using ሾܽሿ
 , we can combine secrecy

multiplication and addition as follows, (where ሾܽሿ
 is

deleted after its used).

Input: ሾܽሿ
ଵ, ሾܽሿ

ଶ, ሾܾሿ
ଵ, ሾܾሿ

ଶ	ሺ݆ ൌ 0,1,⋯ , ݇ െ 1ሻ
Output: ሾܿሿ ≔ ሾܾܽሿ, ሾ݀ሿ ≔ ሾܽ ܾሿሺ݅ ൌ
0,1,⋯ , ݊ െ 1ሻ
1. All players perform secrecy multiplication, as

shown in section 3.4, by using ሾܽሿ
ଵ and ሾܾሿ

ଵ ,
and obtain ሾܿሿ.

2. All players perform secrecy addition as shown
in section 3.6, by using ሾܽሿ

ଶ	 and ሾܾሿ
ଶ , and

obtain ሾ݀ሿ.
3. All players delete ሾܽሿ

ଶ, ሾܾሿ
ଶ, ሾܽሿ

ଶ, and ሾܾሿ
ଶ.

In this case, because the ߙ of ܽߙ in secrecy
multiplication and the ߙ in secrecy addition are
different, ܽ is not revealed.

In the case where ሾݖሿ
ଵ calculated using

ሾܽሿ
ଵ ,…, 	ሾݕሿ

ଵ is used twice, such as in a square
calculation, ሾݖሿ

ଶ calculated from ሾܽሿ
ଶ ,…, 	ሾݕሿ

ଶ is
used as ሾݖሿ

ଵ ൈ ሾݖሿ
ଶ.

Therefore, secrecy multiplication, division,
addition, subtraction, and the combination of secrecy
multiplication (division) and secrecy addition
(subtraction) have information theoretical security.

4.4 Possible Application

As the conventional scheme requires 2݇ െ 1 ≦ ݊, the
value of ݊ must be approximately twice that of ݇. In
a cloud system, because ݊ is the number of servers
that store the shares, the composition of the cloud
system is restricted. For example, ሺ݇, ݊ሻ ൌ
ሺ2,2ሻሺ3,3ሻሺ3,4ሻ⋯cannot be selected. In contrast, our
scheme can select ݇ and ݊ሺ≦ ݇ሻ without restriction.

As one application, we consider the diagnostic
data for patients such as their blood glucose level and
the value of hemoglobin. Such values do not take 0.
We consider the case where a medical company
wants to maintain the average blood glucose level of
certain number of patients in different hospitals,
keeping the sum of blood glucose level and total
number of patients secret. Let the number of hospitals
be three. Further, let ܽ1 , ܾ1 , and ܿ1 be the blood
glucose levels, and ܽ2, ܾ2, and ܿ2 be the number of
patients in hospitals A, B, and C, respectively. In this
case, the (3,3) secret sharing scheme is suitable.
When the conventional scheme is used, hospital A
distributes ሾܽ1ሿതതതതതത

 and ሾܽ2ሿതതതതതത
 , hospital B distributes

ሾܾ1ሿതതതതതത
 and ሾܾ2ሿതതതതതത

, and hospital C distributes ሾܿ1ሿതതതതത
and

ሾܿ2ሿതതതതത
 to the other two hospitals, where j = A, B, C.

Each hospital calculates ሾܽ1 ܾ1 ܿ1ሿതതതതതതതതതതതതതതതതതതത
 and

ሾܽ2 ܾ2 ܿ2ሿതതതതതതതതതതതതതതതതതതത
, respectively. To obtain the average,

it is necessary to divide ሾܽ1 ܾ1 ܿ1ሿതതതതതതതതതതതതതതതതതതത
 by

ሾܽ2 ܾ2 ܿ2ሿതതതതതതതതതതതതതതതതതതത
 . However, division of shares is

difficult through the conventional scheme. If the three
hospitals send the shares to the company, and the
company can restore ܽ1 ܾ1 ܿ1 and ܽ2 ܾ2
ܿ2 , it can obtain the average by dividing them.
However, the company knows the sum of blood
glucose level and the total number of patients of the
three hospitals. Even if the shares of the
multiplicative inverse of the total number are
obtained, the conventional scheme cannot calculate
the multiplication of shares because of (k,n)=(3,3).

In contrast, our schemes can perform secrecy
addition and division by using (3,3) secret sharing
scheme. In this case, each hospital has ሾܽ1ሿ

ଵ, ሾܾ1ሿ
ଵ,

Secrecy Computation without Changing Polynomial Degree in Shamir’s (K, N) Secret Sharing Scheme

93

ሾܿ1ሿ
ଵ , ሾܽ2ሿ

ଵ , ሾܾ2ሿ
ଵ , and ሾܿ2ሿ

ଵ (j = A, B, C), and
calculates ሾܽ1 ܾ1 ܿ1ሿ

ଵ and ሾܽ2 ܾ2 ܿ2ሿ
ଵ by

using secrecy addition as shown in section 3.6. The
average is obtained using secrecy division as shown
in section 3.5, or using secrecy multiplication with the
shares of the multiplicative inverse as shown in
section 3.4. If other secrecy calculations are needed,
ሾܽ1ሿ

ଵ, ሾܾ1ሿ
ଵ, ሾܿ1ሿ

ଵ, ሾܽ2ሿ
ଵ, ሾܾ2ሿ

ଵ, and ሾܿ2ሿ
ଵ are never

used, instead ሾܽ1ሿ
ଶ , ሾܾ1ሿ

ଶ , ሾܿ1ሿ
ଶ , ሾܽ2ሿ

ଶ , ሾܾ2ሿ
ଶ , and

ሾܿ2ሿ
ଶ are generated and used.

5 CONCLUSIONS

We proposed a new secrecy multiplication scheme
without changing the degree of the polynomials in a
ሺ݇, ݊ሻ secret sharing scheme. In this scheme, we can
set ݇ ൌ ݊ in secrecy multiplication. This scheme has
information theoretical security, and can be extended
to secrecy division, addition, and subtraction. Our
new schemes realize some applications that were not
possible by using the conventional scheme.

REFERENCES

Shamir, A. 1979. How to share a secret. Communications
of the ACM, 22, (11), pp. 612-613.

Blakley, G. R. 1984. Security of ramp schemes. CRYPTO
’84, pp. 242-268.

Mell, P., Grance, T. 2011. The NIST Definition of Cloud
Computing. National Institute of Standards and
Technology.

Asharov, G., Jain, A., López-Alt, A., Tromer, E.,
Vaikuntanathan, V., Wichs, D. 2012. Secrecy
computation with low communication, computation and
interaction via threshold FHE. In D. Pointcheval and T.
Johansson, editors, EUROCRYPT, volume 7237 of
Lecture Notes in Computer Science, pp. 483–501.
Springer.

Beaver, D., 1991. Efficient secrecy protocols using circuit
randomization. In J. Feigenbaum, editor, CRYPTO,
volume 576 of Lecture Notes in Computer Science, pp.
420–432. Springer.

Ben-Sasson, E., Fehr, S., Ostrovsky, R. 2011. Near-linear
unconditionally-secure secrecy computation with a
dishonest minority. IACR Cryptology ePrint Archive,
2011:629.

Ben-Or, M., Goldwasser, S., Wigderson, A. 1988.
Completeness theorems for non-cryptographic fault-
tolerant distributed computation. Communications of
the ACM, pp. 1-10.

Krawczyk, H. 1994. Secret sharing made short. CRYPTO
’93, pp. 136-146.

Kawamoto, Y., Yamamoto, H. 1985. (k,L,n) Ramp secret

sharing systems for functions. IEIC, vol. J68-A, no. 9,
pp. 945-952.

Ito, M., Saito, A., Nishizeki, T. 1987. Secret sharing
scheme realizing general access structure. Proceedings
of the IEEE Global Telecommunications Conference,
Globecom ’87, pp. 99-102.

DCNET 2016 - International Conference on Data Communication Networking

94

