
Java Swing Modernization Approach
Complete Abstract Representation based on Static and Dynamic Analysis

Zineb Gotti and Samir Mbarki
MISC Laboratory, Faculty of Science, Ibn Tofail University, BP 133, Kenitra, Morocco

Keywords: Architecture-Driven Modernization (ADM), Static and Dynamic Analysis, Legacy System, Knowledge

Discovery Model (KDM), Graphical User Interface Meta-Model (GUIM), Abstract Syntax Tree Meta-

Model (ASTM), Java Development Tool (JDT), Reverse Engineering, Parsing, Slicing, Interaction Flow

Modelling Language (IFML), Task Model, Empirical Analysis.

Abstract: GUIs are essential components for today software. However, legacy applications do not benefit from the

advantages of user interfaces new technologies that enhance the interaction and the quality of the system.

Building a new system from another existing one is more requested and a very complex process. So, we

opted for an ADM approach based on the development of separate models capturing various aspects such as

tasks, presentation and structures of system dialogue and behavior. For this purpose, the software artifacts

should be analyzed and corresponding behavioral and structural models must be created. Two forms of this

analysis were developed: a static analysis that provides the ability to retrieve information from the

application using the source code and a dynamic analysis for extracting information about application

behavior in run mode. This paper presents the automation of the extraction process, which permits

understanding and analyzing the behavior of the legacy system, and compares the models generated to

deduce the best solution for an abstract representation of existing GUI’s models.

1 INTRODUCTION

It is necessary to migrate from old and obsolete

systems to others that are new and effective, in order

to follow the evolution of technology and evolve to

better system engineering practices such as model-

driven engineering MDE. The software

modernization refers to understanding and evolving

legacy softwares in order to maintain their business

(Ramón et al., 2010). The Object Management

Group OMG has defined an architecture-driven

modernization initiative ADM (http://adm.omg.org)

in 2003 to extend MDA practices and standards with

existing systems. It is intended for the standard

representation of reverse engineering applications.

In this work, we refer to an approach that is

based on this initiative to define abstract models and

automate their generation through transformation

chains. These models capture knowledge related to

the GUI and manipulate this knowledge to migrate

from one context to another (See Figure 1). All these

models will be described by meta-models, and

correspondences between related models will be

defined by transformation rules.

Figure 1: ADM Horseshoe model (http://adm.omg.org).

To meet the modernization requirements, ADM

defines two models: ASTM and KDM.

(http://adm.omg.org). These models are used to

capture design knowledge required to build the

future user interface (UI).

The migration process consists of two phases:

(Mbarki et al., 2015).

The model discovery of the legacy system

represents the extraction of information from the

source code; a text to model transformation for

210
Gotti, Z. and Mbarki, S.
Java Swing Modernization Approach - Complete Abstract Representation based on Static and Dynamic Analysis.
DOI: 10.5220/0005986002100219
In Proceedings of the 11th International Joint Conference on Software Technologies (ICSOFT 2016) - Volume 1: ICSOFT-EA, pages 210-219
ISBN: 978-989-758-194-6
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

building models code. This paper proposes a method

to retrieve important elements such as the

components of the graphical user interface and the

relationships between these components. All the

information generated in this step was incorporated

into concrete PSM models which are ASTM and

GUIM.

The Restructuring: it is a model to model

transformation for constructing abstract models; a

representation at a higher level of abstraction

defined in three PIM models: KDM, IFMLM and

TASKM.

The process illustrated in Figure 2, is based on

the analysis of both structural and behavioral aspects

of graphical user interfaces, and sophisticated

algorithms of reverse engineering.

In this article, we describe the three end-

generated models that are used to represent user

interfaces at a higher level of abstraction. We

compare the result and try to deduce the optimal

solution for presenting the existing system artifacts.

The rest of this article is organized as follows:

section 2 describes the process based on the ADM

approach and describes their different phases. In

section 3, we illustrate our proposal by different case

studies. Section 4 is devoted to the analysis of the

process result. Section 5 covers the related works.

Finally, section 6 concludes the work and presents

the perspectives.

2 PROPOSED PROCESS

The Modernization is the practice of understanding

and evolving existing software to take advantage of

the new technologies’ benefits. It is a process to

generate modern systems. In general, it includes all

activities related to the improvement of software

understanding and various quality parameters, such

as the complexity, maintainability, and reusability.

Thus, it will extend the lifetime of a software

system.

OMG has defined an ADM initiative related to

the construction of standards that can be applied to

modernize legacy systems. This initiative develops a

set of standards to facilitate interoperability between

modernization tools; we focus on the KDM and

ASTM in particular.

In this article, we propose an ADM based

approach allowing an abstract presentation of

interactive systems. We present below the

reengineering process which is divided into two

phases: Discovery Model and Restructuring phases.

The process allows the extraction of GUI

knowledge that will be presented in ASTM models,

a model expressing the syntax of the source code via

an abstract syntax tree, and also in GUIM, a model

representing the graphical components, their

relationship and their properties. The result of the

extraction is subsequently converted into three

independent platform models which are KDM,

IFML and TASKM.

Analytical techniques were used throughout the

process: a static analysis to extract information from

the source code; information on the hierarchy of user

interfaces; and dynamic analysis in order to extract

information in run mode, information about the

behavior of graphical user interfaces.

2.1 Model Discovery

The first step is to analyze the source code of the

legacy system to discover its corresponding PSM

models. It defines the structures and relationships

between system elements. It enables the extraction

of information from the system and stores it in

concrete models such as ASTM and GUIM.

Figure 2: Overview of the migration process.

Java Swing Modernization Approach - Complete Abstract Representation based on Static and Dynamic Analysis

211

The main purpose is to analyze an interactive

system developed in Java Swing. In this present

stage, we opted for a static analysis to extract any

information related to the syntax and structure of the

Java source code as well as the presentation of

graphical user interfaces.

2.1.1 Static Analysis

Its main purpose is to analyze and describe the

structure of the Java source code. An ASTM model

is obtained from the source code using a java

development tool parser. (https://eclipse.org/jdt).

Firstly our parser compiles the Java source code

to build the equivalent AST tree that will be

subsequently used as a source for the next parsing.

To generate the first model, the parser calls a

visitor for each AST node and creates the

corresponding elements in the ASTM model

respecting its meta-model (http://www.omg.org/

spec/ASTM).

As depicted in Figure 3, there are two main

parsing classes; ASTParser and ASTVisitor. The

ASTParser class calls the class ASTVisitor to cross

the various nodes of AST using the visit () method.

Figure 3: Parsing Classes.

Regarding the second GUIM model representing

the presentation layer; it is necessary to extract only

the information related to user interfaces. A method

was used that isolates the subprogram java swing

from the full program which is the slicing method.

Slicing (Harman and Hierons, 2001) or the

cutting of a program is a technique that allows you

to define an explicit recursive function that traverses

the source program AST by identifying all the

fragments of programs that interact with the

graphical user interface and returns the sub-tree of

Swing (Silva et al., 2006). This technique allows us

to ignore irrelevant details and focus only on the

presentation layer.

The model GUIM result represents all the

graphics components, their relationships and their

properties according to GUIM meta-model (see

figure 5).

There are different types of widgets (frames,

buttons, text fields, labels, tables ...), and each

widget is characterized by a set of graphical

properties (background color, font type...), there are

also the layouts used for the spatial distribution of

the application elements of view.

In Figure 4 we consider the frame Frame1. It has

properties such as background-Color and font type

and each property has a value. This frame contains a

panel to be structured. It encapsulates a set of

widgets and each widget has its own properties. The

panel has a layout property that is responsible for

managing the location of its widgets.

Figure 4: Graphical User Interface Model components.

2.2 Restructuration

This phase consists of analyzing all the information

obtained from the previous phase and presents them

in a higher level of abstraction.

In this present step, we develop a model-to-

model QVT transformation. The entries of this

transformation are the ASTM and GUIM models

generated from the first step. The output is the KDM

model

(http://www.omg.org/spec/KDM/1.1/PDF/2009), the

IFML model (http://www.ifml.org/) and the task

model. (http://www.w3.org/TR/task-models).

The transformation mapping allows us to just

extract the static aspect from GUIM and ASTM

models, but the information related to the GUIs

execution behavior in running mode is absent.

A dynamic analysis was used during this stage to

deduce the behavioral aspect of the GUI system.

2.2.1 Dynamic Analysis

The main objective of our approach based on ADM

is to extract both the structure and behavior of

graphical interfaces implementation; in fact, user

interfaces have a static part that is related to the

presentation of the information and a dynamic part

which is associated with the behavior. The runtime

behavior is created from the execution of the

graphical user interface.

The behavior is defined by events; each widget is

able to trigger certain types of events under certain

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

212

Figure 5: GUIM Meta-Model.

conditions.

Events are generated as a result of the user

interaction with the user interface widgets. For

example, clicking on a button, moving the mouse,

entering a character, selecting an item from the list

and scrolling down the page are the activities that

cause events that perform actions.

During this analysis we traverse the GUIM

model in order to extract all executable widgets, i.e.

Widgets that trigger events and cause actions,

according to the widget value we search in the

ASTM model the instruction block responsible to

perform the actions.

Consider the example of an action for opening a

new window Window2 after a click on a button B

located inside a Window1. First we travel the GUIM

model corresponding to window1 to find the B

button that triggered the opening. According to its

value we search in the ASTM model the instruction

block that presents the action to perform. We look

by following on the inside of this block for the

invocation method "setVisible ()" which will launch

the opening of the second window. The invoker of

this method is the window2.

With this analysis, we were able to deduce the

dynamic relationships between the windows.

Restructuring stage identified three PIM models

that describe the result of the static and dynamic

analysis in a higher level of abstraction. These

models are the KDM model, the IFML model and

TASKM model.

KDM Model

To support modernization activities OMG defined

KDM standard for the representation of existing

software systems. This is a meta-model used to

represent the system artifacts in a high level of

abstraction. It is the basic element for the ADM

approach. It provides a knowledge intermediate

representation of existing software systems.

Figure 6: KDM Architecture (http://www.omg.org/

spec/KDM/1.1/PDF/2009).

Figure 6 shows that KDM has twelve packages

organized in four layers. From the viewpoint of the

graphical user interfaces migration, four of these

packages can be useful: the code, the action, the user

interface and KDM packages. The package code

includes the meta-model elements that represent

program elements, such as data types, data elements,

classes, procedures, macros, prototypes and models.

The Action package defines a set of meta-model

elements, whose goal is to represent the behavior

descriptions at implementation level, e.g. statements,

operators, conditions, characteristics.

The UI and KDM package was designed to

represent the elements and the behavior of the GUIs

(see figure 7 and figure 8).

UIRessources: It can be defined as Screen,

report, UIField or UIEvent. Screens and Reports are

the display units. UIField is a generic element to

represent any field in a Screen or Report, as a field

of text or drop-down list. UIEvents can be reported

and associated with a uiAction.

Java Swing Modernization Approach - Complete Abstract Representation based on Static and Dynamic Analysis

213

Figure 7: KDM metamodel. UI package (UIResources)

(http://www.omg.org/spec/KDM/1.1/PDF/2009).

UIRelations defines the binding between the

elements of a display and their content. There are

two kinds of relationships: UIFlow and UILayout.

UILayout indicates the layout of a UIResource. It

captures an association between two instances of

display, one that defines the UI content, and the

other that defines its layout.

UIFlow defines the behavior of the user interface

as a sequential stream of a display instance to

another.

 The main objective of the UI package is to

represent the logical structure of views, the spatial

relationships between the elements of the UI

(layout), and related events.

Figure 8: Figure 8: KDM metamodel. UI package

(UIRelations) (http://www.omg.org/spec/KDM/1.1/PDF/

2009).

IFML Model

The Interaction Flow Modeling Language (IFML) is

an OMG specification (http://www.ifml.org/) for

building visual models of user interactions and front-

end behavior in software systems. The objective of

IFML is the definition of Interaction Flow Models

that describe the principal dimensions of the

application view part.

An IFML diagram consists of one or more top-

level view containers. Each view container can be

internally structured in a hierarchy of sub-containers.

A view container can contain view components,

which denote the publication of content or interface

elements for data entry (e.g., input forms).

A view component can have input and output

parameters. A view container and a view component

Table 1: Task Operators.

Interleaving The linked tasks can be performed concurrently,

Order independence the tasks can be performed in any order

Synchronization The tasks are concurrent and can exchange

information among them

Parallelism The tasks are performed in true parallelism

Choice in this case it is possible to choose one task

from a set of tasks

Disabling the second task is deactivated once the first one

has started

Suspend-Resume The first task interrupts the second one. When it

is finished, the second task can be reactivated from

the state it was before the interruption

Enabling when T1 completes it enables T2, when

T2 completes it enables T3, and so forth through

TN

Iteration the task is performed iteratively: when it

terminates, its execution is started again from the

beginning

Optional the task is optionally performed

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

214

Figure 9: Task Meta-model.

can be associated with events, to denote that they

support the user’s interaction. The effect of an event

is represented by an interaction flow connection,

which connects the event to the view container or

the component affected by the event.

Task Model

The task of an existing system model is created with

the aim of better understanding the design of the

user interface. Its purpose is to describe how the

activities should be carried out in an existing system,

in order to understand its limits, problems and

characteristics and so on.

A Task model consists of one or more top-level

tasks (see figure 9), linked by operators in order to

describe the relations between them. The operators

include both N-ary operators and 1-ary operators.

They are described in Table 1.

Tasks have many Categories:

 user task : an internal cognitive activity,

such as selecting a strategy to solve a

problem

 system task : performed by the application

itself, such as generating the results of a

query

 interaction task : user actions that may result

in immediate system feedback, such as

editing a diagram

 Abstract task: a task that has subtasks

belonging to different categories.

3 CASE STUDY

3.1 Case Study Examples

We empirically evaluate the performance of our appr

oach on three Java applications (see figure 10)

with complex graphical interfaces to verify its applic

ability.

3.1.1 First Case Study: Library System

It is a desktop management application. It can

manage a database library with user interface. An

advanced library system which contains best feature

with multi-threaded operation without fail. This

application is multi-threaded. It means that user can

do many task simultaneously. The system allows

users to perform the usual actions of adding and

listing books/members details. Furthermore, it

allows users to search for a book/member by its

detail.

3.1.2 Second Case Study: Student
Registration

It is a Desktop Management Application. It manages

the student’s registration. To register a new student,

he is invited to enter his name, password, date of

birth, mobile number, e-mail, region, nationality and

choose the gender and semester.

3.1.3 Third Case Study: Student

Management System

The Student Management System can handle all the

details about a student. The details include college

details, course details, students personal details,

academic details etc. The Student Management

System is an automated version of manual Student

Management System.

Table 2 shows the characteristics of our test syste

m. For this, we use a Java software testing tool;

CodeProAnalytix. (https://developers.google.com/ja

va-dev-tools/codepro/doc)

The table also indicates the files size to give an

Java Swing Modernization Approach - Complete Abstract Representation based on Static and Dynamic Analysis

215

Figure 10: Case Study interfaces.

idea on the amount of analyzed data, as well as the

number of widgets and treated events, which helps

us to control and ensure the quality of our approach.

3.2 Process Result

Our goal is to develop an approach based on the

ADM for the modernization of existing graphical

user interfaces. Our approach is described in Figure

2. Generally it is able to automatically generate

graphical user interfaces abstract models.

Figure 11 shows the result of the model

discovery phase presented by ASTM and GUIM

models that was applied to the main window of the

Library System’s application. ASTM and GUIM

models define the GUI components knowledge, their

interrelations and the structural aspect of the

application. They also encapsulate the events

attached to each graphical component.

As depicted in figure 11, the model on the left is

about the class structure for the selected graphical

interface. The model on the right focuses on the

presentation layer. It describes containers and

widgets of the main frame and their properties.

Figures below provide the result of the restructuring

phase that represents the abstract level of the

migration process of the migration process.

Figure 12 defines a model to model

transformation result, that generate a platform

independent model KDM, which is the most

appropriate solution to represent and manage

knowledge involved in a modernization process.

This KDM model represents the logical structure

of the view and the spatial relationships between the

user interface component represented by the

UILayout element that defines a link between a

resource and its layout. For example the UILayout

Figure 11: Example of code parsing result.

element in figure 12 links the Screen cp resource

with its layout which is stored in the UIResource

cpBorderLayout. There is also the UIFlow element

that describes a behavior of the system, as figured in

figure 12. After the click event on Button1, a

navigation action is generated, presented by the

UIFlow element, which has as property 'To' that

contains the window to open represented by the

AddBooks Report.

Figure 13 shows the model to model

transformation result represented by the IFML

model which specifies only the interactions between

user interfaces.

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

216

Table 2: Test System.

System Language
Loc

(Line of code)
size Windows Widgets Events

Library

management
Java Swing 3324 11 Mo 10 280 31

Registration Java Swing 1529 10 Mo 3 50 16

Student

management
Java Swing 3268 9 Mo 15 370 50

NavigationFlow, or navigation manager, is

generated when events are triggered. The

NavigationFlows connect events with Interaction

Flow Elements; the navigation target.

Figure 12: Restructuring KDM Result.

In Figure 13 the NavigationFlow element

represents a connection that links the event

‘OnSubmitEvent button1’ with the ‘ViewContainer

AddBooks’ affected i.e. the view container that will

be displayed after the execution of this event.

Figure 14 presents the task model generated from

a model to model transformation.

It contains the main possible tasks, their

relationships and how to perform activities to reach

users' goals. In this figure we see the way how these

tasks were carried out. For example the task "Insert

the information" will be executed only after the end

of the execution of the previous task which is "Edit

Information".

Figure 13: restructuring IFML result.

We can see that our approach can be applied to

any program based on the same GUI library. We

note that the results were well produced, which

means that our analysis is applicable to major

programs. The results of our empirical studies show

that our approach is effective.

4 ANALYSIS AND DISCUSSION

KDM is the key element to the ADM approach; it is

a complex meta-model that is used to model all of

the software system artifacts. It allows the structural

and semantic aspect representation of an application

in a high level of abstraction. It represents and

manages the knowledge involved in a modernization

process, knowledge related to user interfaces of the

existing software system. It also defines a specific

model used to statically represent the main

components of the user interface of an existing

system. However IFML aims to express the behavior

Java Swing Modernization Approach - Complete Abstract Representation based on Static and Dynamic Analysis

217

of content, interaction and user control of the front-

end applications. It provides a description of the user

interface regardless of the platform, focusing on the

user interactions. It can express the events occur in

the GUI. It can be considered as a better approach

for modeling the behavior of the user interface

independently of technology. But it does not

describe the graphic elements and the relationships

between them. While the task model determines how

and when a task is executed, and how these results

may impact on other parts of the system, it does not

provide any details required for a complete

description of the user interface. This analysis led us

to have a good abstract representation of existing

systems containing all necessary information needed

during the migration process. This presentation is

based on abstract combined models. KDM can

represent and manage knowledge related to

graphical user interfaces, while IFML is responsible

to express the behavior of graphical user interfaces.

The Modern interfaces can be induced from these

two abstract models, while the third model TASKM

will be exploited in the documentation of the

generated interfaces. We are convinced that the

combination of KDM, IMFL and TASKM will bring

a good understanding and interesting evolution of

existing software.

Figure 14: restructuring Task model result.

5 RELATED WORK

Software modernization is a specific kind of

evolutionary maintenance paradigm to solve

reengineering problems. Much research both on

model driven engineering and software

modernization has been conducted. In (Mbarki et al.,

2015) the authors develop a tool based on ADM

approach allowing automatic reverse engineering of

Swing GUI to obtain a RIA GUI. This tool allows

the extraction of knowledge about GUI elements that

can be represented in a KDM Platform Independent

Model.

In (Rodriguez-Echeverria et al., 2014) the

authors define a model-driven reengineering process

of Legacy Web Applications. In order to abstract the

extracted information and organize it according to

the structure of a platform-independent metamodel,

they used IFML.

To obtain a good understanding of system user

interfaces, an example of reverse engineering

techniques was described in (Stroulia et al., 1999).

The authors proposed a process to obtain a user tasks

model based on screen features analysis and on the

tracing of user interactions with the system.

The modernization process is based on the

analysis of the legacy application code. Two forms

of this analysis were introduced: static and dynamic

analysis. Concerning the static analysis, in (Silva et

al., 2007) and (Staiger, 2007) the authors describe

the static analysis of GUI code for reverse

engineering purposes, with a focus on a detection of

GUI elements and their relationships, exemplified in

the swing, GTK and Qt frameworks.

In (Silva et al., 2010) they have also applied the

static analysis in order to extract the behavior model

of spreadsheet systems. They used a reverse

engineering tool, named GUISurfer to infer models

of interaction. Static Reverse Engineering analysis

on the source code was performed also by using

MoDisco (http://www.eclipse.org/MoDisco). It

represents an extensible framework to extract

information from an existing system. Using its plug

in eclipse, the KDM and UML Model can be

generated from the source code.

In dynamic analysis side, a dynamic process

named GUI Ripping has defined. It dynamically

builds a running GUI model to facilitate test case

creation (Memon, 2003). It extracts sets of widgets,

properties and value. The dynamic Reverse

Engineering analysis was performed also by the

Diver tool. Diver is a dynamic analysis tool for Java;

it visualizes program’s runtime functionality using

sequence diagrams. (http://marketplace.eclipse.org/

content/diver-dynamic-interactiveviews-reverse-

engineering).

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

218

6 CONCLUSIONS

One of the major challenges in the migration of the

legacy system artifacts process is the definition of an

approach that allows a complete capture of various

aspects about tasks, presentation and dialog

structures and behaviors of the design knowledge,

needed for the construction of the future user

interface (UI). For that we used a static and dynamic

analysis to obtain knowledge of the structure and

behavior of source code. Our based ADM approach

gives a solution that generates three independent

platform combined models for good understanding

and evolving the existing software assets. The

process provides mechanisms and transformations in

several steps, for analyzing the structure and

behavior of the system objects. The resulting models

contain all necessary information presented in a

higher level of abstraction. This work should be

extended to complete the migration process toward a

modern specific platform.

REFERENCES

CodePro Analytix, https://developers.google.com/java-

dev-tools/codepro/doc/

Eclipse, Diver,

http://marketplace.eclipse.org/content/diver-dynamic-

interactiveviews-reverse-engineering.

Harman, M., & Hierons, R., 2001. An overview of

program slicing. Software Focus, 2(3), 85-92.

JDT, Eclipse Java development tools,

https://eclipse.org/jdt/

Mbarki, S.,Laaz, N., Gotti, S. & Gotti, Z., 2015. ADM-

Based Migration from JAVA Swing to RIA

Applications. In ICIST 2015, The 5th International

Conference on Information Systems and Technologies,

Istanbul, Turkey.

MBUI -Task Models, http://www.w3.org/TR/task-models/

Memon, A., Banerjee, I., & Nagarajan, A., 2003. GUI

ripping: Reverse engineering of graphical user

interfaces for testing. In null (p. 260). IEEE.

Eclipse, MoDisco, http://www.eclipse.org/MoDisco/

OMG, Abstract Syntax Tree Metamodel, http://www.omg.

org/spec/ASTM/

OMG, Architecture-Driven Modernization, http://adm.

omg.org.

OMG, Architecture-Driven Modernization: Knowledge

Discovery Meta-Model, v1.1, http://www.omg.org/

spec/KDM/1.1/PDF/2009.

OMG, Interaction Flow Modeling Language,

http://www.ifml.org/

Rodriguez-Echeverria, R., Pavón, V. M., Macías, F.,

Conejero, J. M., Clemente, P. J., & Sánchez-Figueroa,

F, 2014. IFML-based Model-Driven Front-End

Modernization.

Sánchez Ramón, Ó., Sánchez Cuadrado, J., & García

Molina, J., 2010. Model-driven reverse engineering of

legacy graphical user interfaces. In Proceedings of the

IEEE/ACM international conference on Automated

software engineering (pp. 147-150). ACM.

Silva, J. C., Campos, J. C., & Saraiva, J., 2006. Models for

the reverse engineering of java/swing applications.

In ATEM 2006, 3rd International Workshop on

Metamodels, Schemas, Grammars and Ontologies for

Reverse Engineering, Genova, Italy.

Silva, J. C., Campos, J. C., & Saraiva, J., 2007. Combining

formal methods and functional strategies regarding the

reverse engineering of interactive applications.

In Interactive Systems. Design, Specification, and

Verification (pp. 137-150). Springer Berlin

Heidelberg.

Silva, J. C., Silva, C. E., Campos, J. C., & Saraiva, J. A.,

2010. GUI behavior from source code analysis.

In Interacç ao 2010, Quarta Conferência Nacional em

Interacçao Humano-Computador, Universidade de

Aveiro.

Staiger, S., 2007. Reverse engineering of graphical user

interfaces using static analyses. In Reverse

Engineering, 2007. WCRE 2007. 14th Working

Conference on (pp. 189-198). IEEE.

Stroulia, E., El-Ramly, M., Kong, L., Sorenson, P., &

Matichuk, B., 1999. Reverse engineering legacy

interfaces: An interaction-driven approach. In Reverse

Engineering, 1999. Proceedings. Sixth Working

Conference on (pp. 292-302). IEEE.

Java Swing Modernization Approach - Complete Abstract Representation based on Static and Dynamic Analysis

219

