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Abstract: Navigation technology has an important role in designing intelligent vehicles and advanced robots. To have 
a continuous navigation solution that does not suffer from interruption, GPS (Global Positioning System) 
data is merged with relative positioning techniques such as inertial navigation system (INS) or odometry 
(Odm). To accomplish the reliability and integrity desired, it is therefore necessary to take into account 
physical capabilities and limitations of each sensor during navigation. A fuzzy switcher controller (FSC) is 
well suited for this task. FSC is an Expert rule-based method for choosing the best fusion from multiple 
redundant integration methodologies (GPS/INS, GPS/Odometry, Odometry/INS or GPS/INS/Odometry) 
based on navigation conditions and accuracy of the navigation systems. 

1 INTRODUCTION 

Road navigation systems are one of the main field of 
interest in the intelligent transport domain such as 
advanced driver assistance, route guidance or 
traveller information which  require a Road Side 
Equipment (RSE) able to provide an accurate 
position at low price (Boysen,2004). The commonly 
used sensors in these applications may be divided 
into two categories, external sensors and Dead 
Reckoning Sensors (DRS) such as Inertial 
Navigation System (INS) and Odometry. 

The common external sensors for land vehicle 
positioning are satellite navigation systems such as 
Global Positioning Systems (GPS). However, in 
GPS-denied environments (tunnels, canyons urban) 
the GPS satellite signal is not often available. Hence 
the positioning information provided is not accurate. 
To achieve continuous navigation solution even 
during GPS outages, the GPS is augmented with 
dead reckoning sensors. 

Inertial Navigation Systems and Odometry have 
always been presented as valuable sensors in many 
applications. Their advantages are well known: high 
update rates; position and heading accuracy in short 
time. However, Combining odometry with INS 
which is called in the literature “Reduced Inertial 

Sensor System –RISS- (North, 2012)” can enhance 
the positioning accuracy compared to INS or 
odometry alone. Indeed, odometry and INS have, to 
some degree, complementary characteristics: INS can 
provide the heading/attitude information (Xiaochuan, 
2009), while odometry can remarkably limit the 
position error accumulation of INS with respect to 
time. To design more precise systems,  external 
sensors are usually integrated with dead reckoning 
sensors taken on many forms, such as GPS/INS 
integration, GPS/Odm integration or integrating the 
three sensors together (GPS/RISS) (North, 2012). 
This latter gives the best solution when the three 
sensors are used in best conditions. In the case of 
failure of one of them the position accuracy 
decreases (North, 2012). 

To accomplish the best reliability and integrity 
desired, it is therefore necessary to choose which 
sensors integration gives the best result. A Fuzzy 
Logic based on expert rules derived from careful 
observations of the physical functioning of each 
sensor is certainly required to process the available 
data. The algorithms must provide fault detection and 
data fusion capabilities to make the best use of the 
available information  (Xiaochuan, 2009), (Singhala, 
2014).  
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To fuse information coming from sensors 
different approaches can be found in the literature. 
Many of them rely on the implementation of an 
Extended Kalman Filter (EKF) (Boysen, 2004), 
(Boucher, 2004), (Hay, 2005), (Sukkarieh, 2000). 
The performance of the EKF is reliable in many 
practical situations, but the non-linear state equations 
may lead to instability problems. Other filtering 
methods can be found in the literature, such as the 
Unscented Kalman Filter (St-Pierre, 2004) and 
particle based solution (Boucher, 2004).  

This paper aims to develop an experimental 
approach of GPS/INS/Odometry data fusion that uses 
fuzzy rule-based system. It is divided into four (4) 
main sections. Section 2 presents different integration 
methodologies (GPS/INS, GPS/Odometry, 
GPS/INS/Odometry and Odometry/ INS integration) 
and a brief description of Fuzzy Switcher.   Finally 
section 3 presents the results and discussion with a 
hardware implementation. A conclusion is given in 
Section 4. 

2 INTEGRATION ALGORITHMS  

The concept of integrating GPS and dead reckoning 
sensors (INS or Odometry) has been well discussed 
in the research community. Different integration 
strategies have been developed and tested with 
different grades of INS. Typically; three main 
strategies are used, namely loose integration, tight 
integration and ultra-tight (or deep) integration. We 
have chosen the loose coupling integration scheme 
with close-loop. This schema lets  control the 
navigation accuracy and reduce the cost of design 
(Sakhi, 2014). 

 
Figure 1: Architecture of proposed integrated 
GPS/INS/Odm system.  

The implemented algorithms consist of four (4) 
filters. The first filter fuses the INS and GPS 
measures, the second filter fuses the odometry and 
GPS measures, and the third filter fuses odometry 
and inertial data, while the fourth filter fuses the three 
sensors data together. Then, an adaptive algorithm, 

based on signal degradation conditions of the 
different navigation systems, is used to choose the 
best combination that gives the best navigation 
solution. These algorithms are summarized in the 
following diagram (Figure 1).  

Kalman filter is a suitable filter used to integrate 
sensors information. The prediction step, of the used 
filter, is based on a kinematics model of motion. 
Because of the non-linearity of the process model, we 
have used an EKF filter. 

The Extended Kalman filter (EKF) proceeds by 
linearizing the model about the latest estimate to 
meet the Kalman Filter assumptions (Boucher, 2004). 
EKF is summarized by the flow chart showed in 
Figure 2. 

 
Figure 2: Kalman Filter Algorithm. 

xk         :  state vector of the process at epoch tk, 
zk+1          :  actual observation, 
Φk+1/k     :  state transition matrix from time tk to tk+1,  
 Rk ,Qk : measurement and process covariance matrix,  
Pk          : error covariance matrix, 
Kk+1           : Kalman gain matrix, 
zk+1             : observation matrices, 

Where ,  represent a prior and a posterior 
estimated state vector.  

The implemented algorithms consist of an 
Extended Kalman filter of 5-states including position, 
velocity, and angular velocity in two (2) dimensions 
for GPS/INS integration.  However, for both 
INS/Odm and GPS/RISS integration we have used a 
Kalman filter of 3-state. The three integrated 
algorithms are summarized in the following. 

2.1 INS/GPS Integration Algorithm 

Several techniques are proposed in the literature for 
inertial and GPS fusion (Xiaochuan, 2009), 
(Quinchia, 2011), (North, 2009). We have chosen the 
loose coupling integration scheme with close-loop, as 
shown in Figure 3, in order to reduce inertial unit 
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errors. This has implications for inertial units of low 
and medium precision (Sakhi, 2014). 

 
Figure 3: Loose coupling integration scheme (INS/GPS). 

We have used the kinematics model which is 
defined by the following equations (Kubrak, 2007) 
instead of using dynamics model of a robot in order 
to reduce the complexity of calculations.  

 

(1)

2.2 Odometry/GPS Integration 
Algorithm 

Many techniques are proposed for integrating 
Odometry  with GPS (Lamon, 2004).  We have 
chosen a loose coupling integration scheme with 
close-loop, where the state feedback PVA (Position, 
Velocity and Attitude) correction to the Odometry 
system, as shown in Figure 4 in order to reduce scale 
factor errors. 

 

Figure 4: Loose coupling integration scheme (GPS/Odm). 

The motion model equations that transform 
odometer measures in the navigation frame are 
equations expressing the predicted function: 

 

(2)

Where this state is defined by the coordinates of 
its center M and the angle  relative to   , the 

velocity  of the center based on the average wheel 
speeds and the steering angle of wheels .  

2.3 RISS/GPS Integration Algorithm  

The  concept  of  RISS (Reduced  Inertial  Sensor  
System ) was  used  in  vehicle  navigation  in  order  
to  further  higher   the  accuracy  of  the  positioning  
solution. The RISS used  in  (North, 2009) involves a  
single-axis  gyroscope  and the vehicle odometer 
model  to  provide  2-D navigation  solution  , with  
the  assumption  that  the  vehicle  mostly  stays  in  
the  horizontal  plane. 

 
Figure 5: Schematic diagram of the RISS/GPS Integration. 

The discrete form of Mechanization equations is: 
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Where Wz is the gyroscope measurement (rate of 
turns) in radium/second. 

2.4 Odometry/INS Integration 
Algorithm  

Different configurations are proposed in the 
literature (North, 2012), (Rogers, 2012) for 
integrating Odometers and INS. In (North, 2012), N. 
Eric used an IMU and the information delivered by 
odometry as measurement update of  the Kalman 
filter . 

 
Figure 6: Schematic diagram of the Odm/INS Integration. 

In our work, after testing several methods we 
have chosen the RISS configuration which gives a 
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good positioning accuracy with simple integration 
strategies without the need of filter. The system 
model based on inertial and Odometry data is 
depicted in (Figure 6).  

2.5 Fuzzy Switcher Controller (FSC) 

When designing a fusion system, we must take into 
consideration the multi-rate sensor data collection, 
and implement the integration algorithm 
appropriately. Here, the term “fusion” refers 
generally to the process of combining three sets of 
measures to produce a consistent solution. That is, 
we need to fuse odometry, inertial and GPS data 
when all sensors perform well, but in the case of a 
sensor failure, which may lead to degradation of 
overall system performance, we have to eliminate its 
use.  

 
Figure 7: Architecture of the fuzzy logic data classification 
system. 

 
Figure 8: Block diagram of the fuzzy inference system 
(Wang, 2006). 

A fusion algorithm that takes into accounts the 
physical capabilities and limitations of each sensor is 
therefore necessary. A Fuzzy Logic is well suited for 
this task. The down-mentioned expert rule-based 

method for choosing best fusion result from multiple 
redundant algorithms can help in selecting the most 
accurate fusion algorithm. Our fuzzy algorithm uses 
three fuzzy membership function inputs and one 
output, as shown in Figure 7. 

In a typical fuzzy system (Figure 8) the crisp 
inputs are first converted to the input fuzzy sets 
using the membership functions. Then, the input 
fuzzy sets are mapped into a consequent fuzzy set 
based on the adopted fuzzy logic operators, if-then 
rules and aggregation strategy. Finally, the 
consequent fuzzy set is converted into a scalar 
quantity as the system output using a defuzzification 
method. 

2.5.1 Fuzzification Interface 

It transforms crisp data (GPS data, Ground Truth, 
and sensor’s data quality) into fuzzy sets. The 
assignment of membership values to fuzzy variables 
are based on experimental testing and logical 
operations. For a computational simplicity, the 
triangle membership function (equation 4) , shown 
in Figure 9, is used. 

,

( ) ,

0,
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c xf x b x c
c b
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(4)

 

 
Figure 9: Trapezoidal fuzzy membership function. 

Path Condition Fuzzification: It is beneficial to 
know if a robot (or vehicle) is crossing sandy 
surfaces in order to eliminate the use of odometers 
and reduce positioning errors. For the detection of 
sandy surfaces, the robot literally bounces on the 
ground when the rear bogie wheels go through rough 
terrain. Shocks occurring during the experiment are 
easily identified when looking at the roll angel 
variation. The equations used to calculate roll from 
accelerometers are based on the idea presented in 
(Kubrak, 2007). 

1tan
z

ya
a

φ − ⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

=  (5)

:  ,  are the accelerometer readings.y zwhere a a   

( )xμ
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An effective method for estimating the ground 
truth is to calculate the current roll angle of the land 
vehicle displacements. The Variation of this angle is 
beings used to select the appropriate fuzzy decision 
to the navigated terrain. 

In our case the roll angle is the mean computed 
for a period of 1 second (which corresponding to 40 
samples of odometer’s data). After experiments test 
we have assigned our membership function of path 
condition as shown in Figure 10.  

 
Figure 10 : The first input variable (Path Condition).  

Number of Satellite Fuzzification: The second 
input (Figure 11) represents the number of satellites. 
As we have seen in experiments, RISS outperforms 
all the other compared solutions when the number of 
visible satellites is less than tree (3). Furthermore, 
the RISS solution provides very good results, 
compared to IMU or Odometer alone. So it is very 
important to detect degradations of GPS signal to 
use RISS for position estimation. 

 
Figure 11: The second input variable (number of satilites). 

IMU‘s Data Quality Fuzzification: Our fusion 
algorithm takes into account the physical capabilities 
and limitations of each sensor. 

 
Figure 12: The third input variable (number of satellites). 

Therefore, it is necessary to determine the quality 
of IMU data during experiments. Since we are 
looking to produce a simple and flexible algorithm 
suitable for any IMU quality, we took into account 

this point by giving users the possibility to predefine 
the quality of the IMU before starting experiments. 
Users can a score from 0 (very bad) to 10 (good), as 
shown in Figure 12, based on the bias and scale 
factor of the used inertial navigation sensor.   

2.5.2 Inference System 

To describe the relationship between the input and 
the output, a set of rules is applied as shown in Table 
1. The fuzzy rules are derived directly from the three 
basic rules defined at the beginning of this section 
and they cover all possible combinations of input 
variables. 

Table 1: If-then rules used in the fuzzy inference system 
for data classification. 

 Inputs Output 
N. NVS PAC SQ SW 
1 Low Low Bad INS/Odm 
2 Low Low Good INS/Odm 
3 Low Med Bad INS/Odm 
4 Low Med Good INS/Odm 
5 Low High Bad INS/Odm 
6 Low High Good INS/Odm 
7 Med Low Bad GPS/INS 
8 Med Low Good GPS/INS 
9 Med Med Bad GPS/INS 
10 Med Med Good GPS/INS 
11 Med High Bad GPS/Odm 
12 Med High Good RISS 
13 Med Low Bad GPS/INS 
14 High Low Good GPS/INS 
15 High Med Bad GPS/Odm 
16 High Med Good GPS/INS 
17 High High Bad GPS/Odm 
18 High High Good RISS 

 
NVS: Nbr of visible satellites, PAC: path condition 
SQ: sensor quality, SW: Switch data fusions. 

2.5.3 Defuzzification Interface 

Several popular  methods exist for defuzzification 
such as max-membership principle, centroid method, 
weighted average method, centre of sums (Singhala, 
2014). In our algorithm, the result of the 
defuzzification has to be a single value that 
determines which sensors integration is used to give 
the best results, as shown in Figure 13. 

In our case, outputs of the fuzzy fusion system, 
SW (switch) are dimensionless weighting factors that 
emphasize either the 1st (GPS/INS), 2nd (GPS/Odm), 
3nd (GPS/RISS) or 4th (RISS) solution is the best in 
terms of accuracy. The weighted average 
defuzzification technique is the most prevalent and 
widely adopted defuzzification method.  The centroid 
method is given by the following algebraic 
expression:  

ICINCO 2016 - 13th International Conference on Informatics in Control, Automation and Robotics

394



 
(6)

 
Figure 13: The output variable (Switch). 

3 RESULTS AND DISCUSSION 

In order to evaluate the FSC performances, several 
driving were performed using data of a driving 
simulator framework called Virtual Robot 
Experimentation Platform (V-REP). The V-REP is a 
very versatile and ideal for multi-robot applications. 
This software is an open source for use in research 
or academic environments which can model 
dynamics of several robots (Tharin, 2012). 

 
Figure 14: Screen shot of V-REP’s application main 
window. 

We have used a Simple Ackermann steering 
mobile robot.  It has four-wheel drive and a steered 
locomotion system. The sensor part includes two 
encoders measuring rear wheels rotation at 20Hz. 
The system provide also GPS (1HZ) data and 
inertial (acceleration and gyroscope) at 40Hz.   

3.1 Evaluation of Algorithms during 
GPS Outages 

This section aims to evaluate the "standalone" 
performances of the different integrations by 
simulating a long GPS outage in sensor’s data 
acquisition. During a period without GPS signal, no 
updates are performed. The resulting trajectory is 
built using only the prediction. Therefore, difference 

in terms of positions is well highlighted.  

 
Figure 15: Estimated and reference trajectories: bleu for 
reference, Red for GPS/INS, Green for GPS/Odm, black 
for the GPS/RISS integration. 

Table 2 presents difference in terms of position, 
resulting from a comparison of trajectories computed 
with the various GPS outages. These divergences are 
expressed using Root Mean Square (RMS). The 
maximum differences is also listed. Note that these 
different integrations are computed using only the 
trajectory differences during the outages. 

Table 2: Comparison of trajectories computed with GPS 
outages of various duration. ( 5 s and 10 s). 

 
First GPS outage 

for 10s 
Second GPS outage 

for 5s 
GPS/INS GPS/Odm GPS/RISS GPS/INS GPS/Odm GPS/RISS

East  
errors 

(m) 

Max 16.25 1.21 3.42 4.11 1.50 2.11 

RMS 10.85 0.64 3.64 1.12 0.16 0.85 

North  
errors 

(m) 

Max 70.23 11.26 2.05 43.29 2.41 1.55 

RMS 24.28 6.04 1.32 11.72 1.48 0.69 

Outages of short duration (5 seconds) are well 
bridged by the Odometry navigation system. Indeed, 
the maximum position deference ranges from 1.5 m 
to 11 m. But the range of errors proportionally 
increases with the GPS outages duration due to 
accumulation of errors which appears clearly in the 
first case when the outages is 10s. Moreover, the 
position accuracy of a GPS/RISS trajectory ranges 
from 1 m to 3 m. These results show that the 
reduced inertial navigation system (RISS) is able to 
bridge GPS outages of long duration or short 
duration with best position accuracy. 

3.2 Evaluation of Fuzzy Switcher 
Controller 

Several experiments with GPS outages and rough 
terrain condition, using good and bad quality of 
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IMU, were processed to evaluate FSC performances. 
We did a comprehensive set of tests in V-REP using 
different speeds varying between 5-25 m/s. The 
deferent characteristics, i.e. the RMS, and the max 
are well presented. 

The trajectory used for this evaluation is similar 
to the applied in section A. Here, we introduced a 
variation in the number of satellites (on view) to see 
the functionality of the FSC during GPS signal 
degradation. However, we have simulated four GPS 
outages as shown in Figure 17.  

The potential parameter used to detect the 
surface condition is   computed from the variance of 
the roll angle using 40 last samples of the 
acceleration corresponding to 1s which is the 
frequency of GPS, as mentioned before. The rough 
terrain is easily detected as show in the Figure 16. 

In the down-mentioned simulation results we 
have presented only the case of a medium Quality of 
inertial navigation system. However, we have given 
a mark of “6”. Figure 18 shows the output of Fuzzy 
switcher controller. Hence we are using an IMU 
with a good quality, the FSC switches to GPS/RISS 
during good surface and good GPS signal, but when 
the vehicle go by a rough surface the FSC  
eliminates the use of odometers measures by 
switching to GPS/INS. The same case is produced 
during GPS signals degradation. The FSC eliminate 
the use of GPS by switching to RISS.  

 
Figure 16: Variance of the roll angle during trajectory. 

 
Figure 17: Variation of number of satellites. 

 

Figure 18: Outputs of the FSC during trajecory. 

Figure 19 shows the estimated trajectory of the 
robot and the ground truth during the simulation. 
The trajectory is portion-colored to easily see the 
different integrations used during the trajectory.  

 
Figure 19: Trajectory plot using FSC. 

Simulation results (Figure  20 and Figure 21 ) 
clearly show the advantage of FSC over GPS/RISS, 
GPS/Odm and GPS/IMU. However there is a big 
difference in 2-D positional errors when we compare 
GPS/INS and GPS/Odometry with results of FSC 
integration during GPS outages. This later has an 
average of the maximum positional error off 3m as 
shown in Table 4. 

 
Figure 20: East position Error computed by different 
integrations.  
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Figure 21: North position error computed by different 
integrations.  

Table 3: Simulation measurements. 

 Errors during GPS outages 

Outage .N° 1 2 3 4 
Duration (s) 10 10 10 10 
East 

errors (m) 
Max 2.709 2.801 4.617 1.565
RMS 1.969 1.778 2.042 0.547

North 
errors (m) 

Max 3.070 3.299 3.188 1.011
RMS 2.159 1.188 1.588 0.996

4 CONCLUSIONS 

In this paper we introduced a Fuzzy Switcher 
Controller (FSC) for navigation systems. Several 
methodologies of integrating inertial sensors, 
Odometry and GPS data using a loosely coupled 
integration techniques are also presented. Results 
show that the Fuzzy switcher controller has a 
powerful adaptability to physical capabilities and 
limitations of navigation systems which improves 
the navigation positioning accuracy. Compared to 
others integration methods, the new position errors 
are controlled within ± 3m even during a GPS 
outages or a rough terrain condition.  
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