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Abstract: Agent-based Modeling (ABM) has become quite popular to the simulation community for its usability and
wide area of applicability. However, speed is not usually a trait that ABM tools are characterized of attaining.
This paper presents HLogo, a parallel variant of the NetLogo ABM framework, that seeks to increase the
performance of ABM by utilizing Software Transactional Memory and multi-core CPUs, all the while main-
taining the user friendliness of NetLogo. HLogo is implemented as a Domain Specific Language embedded in
the functional language Haskell, which means that it also inherits Haskell’s features, such as its static typing.

1 INTRODUCTION

Agent-based Modeling (ABM) is a computer simula-
tion technique that uses intelligent agents as its build-
ing blocks. ABM has gained traction lately, espe-
cially for its ease of use and broad applicability, e.g.
in social sciences (Epstein and Axtell, 1996), ecol-
ogy (Grimm et al., 2005), biology (Pogson et al.,
2006), and physics (Wilensky, 2003). ABM offers
the right level of abstractions to construct large agent
populations that can exhibit interesting (from a sim-
ulation perspective) emergent patterns. This success
of ABM sprang off numerous frameworks to allevi-
ate the development of agent-based models (Tobias
and Hofmann, 2004; Railsback et al., 2006; Cas-
tle and Crooks, 2006). While research has been fo-
cused on the methodology (Salamon, 2011), ease of
use (Wilkerson-Jerde and Wilensky, 2010), portabil-
ity (Grimm et al., 2006) and expressiveness (Sakel-
lariou et al., 2008) of agent-based models, little has
been done in improving the performance of available
ABM frameworks (Riley and Riley, 2003).

The execution performance of ABM limits the
agent population size and increases simulation time,
which may impact the emergence of sought-after phe-
nomena. To this end, we propose in this paper a new
ABM framework called HLogo, that strives to speed
up the simulation execution by harvesting the avail-
able parallelism of the ubiquitous, modern multi-core
CPUs. The framework’s language & engine is imple-
mented entirely in Haskell and is inspired much for

its user-friendliness by NetLogo (Wilensky, 1999), ar-
guably one of the most well-known and widely-used
ABM framework. Unlike NetLogo, our framework
offers three unique features which also constitute the
main contribution of this paper:

• agents inside the simulation framework can run
concurrently by utilizing a technology called
Software Transactional Memory (STM) (Shavit
and Touitou, 1995). Coupled with Haskell’s
lightweight (green) threads, the overall ABM exe-
cution enjoys significant benefits frommulti-core
parallelism.

• the framework isembeddedas a Domain Specific
Language (eDSL), which comes with the advan-
tage of ease of language, framework, and program
extensibility (via modules and plugins), but limits
the syntax to that of the host language Haskell.

• the HLogo language is statically typed with type
inference, which strengthens the ABM program
safety, yet not burden the user with writing type
annotations.

The rest of this paper is organised as follows. Sec-
tion 2 introduces the main concepts of ABM and their
realization in the HLogo language. Section 3 explains
how HLogo implements multi-core execution. In Sec-
tion 4 we show the performance and scalability results
of our benchmarking, which also includes a compari-
son with NetLogo. In Section 5 we visit related work
and how others have addressed the same problem. Fi-
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nally, Section 6 maps out future research and con-
cludes.

2 HLOGO’S LANGUAGE

2.1 Main ABM Concepts

An agent-based model is a system of multiple agents
which are stateful entities, capable of carrying out ac-
tions and interact with each other. A simulation run
is the execution of such an agent model, where the
agents ‘drive’ the computation. Following NetLogo’s
conventions,agentslive in a tiled 2D and drawable
environment, which we will refer to as thecanvas.
There are three types of agents: patches, turtles1, and
links. Patchesare stationary, occupying a single tile
on the canvas; they are statically created at the start
of a simulation run and cannot be later destroyed.
Turtlescan be programmatically created & destroyed,
and move around the canvas.Linksare agents with a
dynamic lifespan as well; each representing a connec-
tion between two turtles.

Each type of agent has a different set of muta-
ble attributesthat form its state; e.g. turtles have at-
tributesxcor andycor to represent their position on
the canvas, patches have attributepcolor to represent
the color of the tile, etc.. Besides standard attributes,
the user may introduce new attributes to the agents
by defining ‘breeds’. Abreedextends an agent-type
(turtle or link) with custom attributes, similar to the
object-oriented concept of final class (cannot be fur-
ther subclassed). For example, the NetLogo code be-
low declares a turtle-breed calledcows, with ageand
hungeras extra attributes:

breed [cows cow]
cows-own [age hunger]

The declaration implicitly creates a global variable
cows that contains all currently alive cows, as well as
getters and setters (such ashunger andset hunger)
to get and set the attributes of a cow.

An agent can command any other agent to ex-
ecute some code (e.g. for changing its state or
interacting with each other) through theask oper-
ation. For example, ifT is a set of cows, the
NetLogo statementask T [set color brown set
hunger 0] commands every cow inT to change the

color of the patch it is currently on to brown (e.g. to
represent that the cow has eaten all the grass in the

1Historically, the concept of ’turtle’ has its origin in the ed-
ucational programming language Logo, which was inspi-
rational for NetLogo.

patch), and then set its hunger attribute to 0 (repre-
senting ‘not hungry’). Two other operations are pro-
vided: ‘of’ queries a set of agents for their values, e.g.
[xcor] of turtles, and ‘with’ filters an agentset
based on a given predicate, e.g.patches with [
color = red]. Besides built-in commands (e.g.set
), an agent can execute custom commands by user-
defined procedures. Lastly, the built-in variablesself
and myself refer to the currently executing agent

(similar to ‘this’ in OO), and the parent caller thatask
ed this agent, respectively.

2.2 Haskell Embedding

Both NetLogo and HLogo are Domain Specific Lan-
guages (DSLs) to describe simulations. Whereas Net-
Logo is a native DSL, HLogo is embedded (eDSL)
inside a general purpose language2, namely Haskell,
which is a lazy-by-default functional language. An
eDSL is easier to build, as there is no need to create
a separate compiler or interpreter. Furthermore, an
eDSL inherits its host language’s features; e.g. (for
Haskell) the support for higher-order functions and
overloading make Haskell particularly attractive for
embedding DSLs (Bjesse et al., 1998; Elliott, 2003;
Peterson and Hager, 1999).

With the HLogo’s eDSL, the simulation user can
benefit from the Haskell’s module system by organiz-
ing the agent program into separate modules, or im-
porting and reusing code from the already vast col-
lection of open-source Haskell libraries (Hackage).
NetLogo, on the other hand, currently (as of version
5.2.1) lacks a module system.

A second reason for choosing the eDSL approach,
is that HLogo can be more easily extended with new
language constructs, and plugins targeting the simula-
tion engine (e.g. visualization). Still, embedding does
mean that the syntax of HLogo is constrained by that
of Haskell. For example, in NetLogo binary operators
have higher precedence than function application; e.g.
print 1+3, whereas in Haskell the precedence is re-
versed; so, we have to writeprint (1+3).

Typing. Other than the syntax, HLogo inherits
Haskell’s static typing: all HLogo expressions are
statically typed, which is in contrast to NetLogo’s
dynamic typing — NetLogo performs very minimal
type checking. For example, in HLogo the type error

2A native DSL has a dedicated parser and a compiler or
interpreter to execute its code; e.g. NetLogo compiles its
code to Scala. An eDSL is a DSL embedded inside another
language (host). It tries to mimic a native DSL by provid-
ing its language constructs in terms of the constructs of the
host.
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in the expression1+non_number will be detected at
compile time, whereas NetLogo will only detect this
later at runtime3. To this degree, we are allowed to
say that HLogo provides more safety for agent model
programs.

An additional significant advantage of Haskell’s
typing is that HLogo can type-check not just simple
arithmetic expressions, but more elaborate statements
that contain some agent context: almost all built-in
Logo commands can be executed in a restricted agent
context (self,myself); e.g. the commandforward N
may only be executed by a turtle agent (and moves

the turtleN units forward on the canvas). In the ex-
ample that follows, we erroneously ‘ask’ a patch to
move f orward (they are stationary) anddie (cannot
be destroyed):

%% NetLogo: yields error only later at runtime
ask patch x y [forward 3

die]

-- HLogo: program does not type-check
ask (atomic (do forward 3

die)) =<< patch x y

Type-checking of such agent commands is
achieved through Haskell’s typeclasses, a similar con-
cept to OO interfaces used for ad-hoc polymorphism.
Specifically, every built-in HLogo command is typed
with its expected agent context, e.g. die takes the
Haskell typedie:: ∀a.∀m.TurtleLink a⇒ Logo a m()
where TurtleLink is a typeclass that points to either a
turtle or a link,a is the self context andm is any my-
self context.

Haskell’s strong type system also comes with
Hindley-Milner type inference (Milner, 1978), which
makes type annotations optional. This overall pro-
vides type safety to the user, without the burden of
annotating the code with type signatures. As can eas-
ily be witnessed from the illustrated example above,
no type annotations were necessary for the HLogo
code since the underlying Haskell compiler can de-
rive the types of HLogo expressions —die expects
a TurtleLink, f orward expects turtle-only, so by im-
plication Haskell expects a turtle as the agent’s self
context.

Monads. Since agents are stateful, what they do
may also have side effects on their own or each other’s
states. Haskell is by intent a purely functional lan-
guage that has no natural concept of side effect. Side
effect is brought into the language as instances of so-
calledmonad(Peyton Jones and Wadler, 1993), which

3If the user insists on using dynamic typing, e.g. for
its flexibility, it can also be done in Haskell through the
Data.Dynamic module.

is a generic concept representing a category of things
sharing a set of algebraic laws, e.g. associativity. A
monadic actione is an expression of typeM t where
M is a type that specifies the structure of the monad
e operates on (which could be a state), andt is the
type of the ‘return value’ of this action. So, ife is a
command to a turtlea, thenM is a type describinga’s
state structure (and that of the patcha is on).

Monadic actions can besequentially composed
with the do notation. E.g., supposec is a monadic
action, then the expression:do { z <- c; return
(z+1)} is a new monadic action, that first executesc,
captures its return value inz, then returnsz+1. More
generally, the expressiondo{e1 ; e2 ; ...} will evalu-
ate the expressionse1, e2 in the given order. Whene1,
e2, ... are written vertically, and starts at the same col-
umn, we can drop the use of delimiter “{”, “ }”, and
“;” to get a cleaner syntax. Ado-sequence that does
not explicitly specify a return as the last expression
implicitly returns whatever the last expression returns.
For example,count is a monadic action that returns
given agentset’s size:

do
p <- patches
count p

There is also thee =<< d operator that can be used to
directly pipe the value returned by the monadic action
d as an input fore. So, the above code can also be
written more compactly ascount =<< patches. In
HLogo, any agent action that has side-effects is ex-
pressed as a monadic action.

Procedures. Defining a procedure in NetLogo is
done through theto ... end syntax. E.g. the code be-
low defines themove[p] procedure, which will turn all
cows 5 degrees to the right, then move themp points
forward:

to move [p]
ask cows [rt 5 fd p]

end

In Haskell, the same definition is achieved by a
top-level function bound to its corresponding right-
hand side monadic action:

move p = do
a <- cows
ask (atomic (do { rt 5; fd p} )) a

Or more compactly as:

move p = do
ask (atomic (do { rt 5; fd p } )) =<< cows

The built-in commandatomic controls the con-
currency and will be detailed in Section 3. Haskell
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(and thus HLogo) does not in principle support poly-
variadic procedures of NetLogo (procedures that al-
low variable number of arguments to be passed to
them), but there exist Haskell packages that can sim-
ulate this feature, e.g. HList (Kiselyov et al., 2004)
or Liquid Haskell (Vazou et al., 2014). Conversely, a
Haskell function unifies the concepts of the NetLogo
procedure and the NetLogo reporter (procedure with
return value), and, moreover, can support anonymous
reporters via lambda abstractions (a current limitation
of NetLogo as of version 5.2.1).

Extending agents with new breeds or attributes
requires the user to define a new datatype, together
with a set of getter/setter functions. To avoid hav-
ing to write such boilerplate code, we employ Tem-
plate Haskell (Sheard and Jones, 2002), a compile-
time meta-programming technique that will generate
the needed code. The following Haskell code is a
preamble of an example HLogo model that showcases
the use of Template Haskell macros:

1 -- HLogo eDSL is a library
2 import Language.Logo
3

4 -- generates: cows ,cows_here ,...
5 breeds ["cows", "cow"]
6

7 -- generates getter/setters: energy
8 breeds_own "cows" ["energy"]
9

10 -- generates program ’s entrypoint
11 run ["setup", "go"]

Nearly the complete set of NetLogo’s standard li-
brary has been ported. A rudimentary support for vi-
sualization is present: the commandsnapshot can
be called at any place in HLogo code to save an im-
age of the current simulation’s 2D canvas to a fresh
postscript image. The code in Listing 1 shows an ex-
ample HLogo model of cows (turtles) moving & eat-
ing grass (patches), with its snapshot image in Fig. 1.
Live visualization, as offered by the NetLogo plat-
form, is part of future work.

3 HLOGO’S EXECUTION

The HLogo user arranges the agent model in a num-
ber of Haskell source files which are then compiled
via a Haskell compiler into native code and executed
to start the simulation run. A NetLogo model is in-
stead parsed and translated into intermediate bytecode
which gets interpreted by a JVM; however, nowadays
JVM employs regularly Just-In-Time (JIT) compila-
tion to native code. Both HLogo and NetLogo sim-
ulation engines use similar data-structures to store
the agents: 2-dimensional array for patches, map

1 setup = do
2 ask (do
3 c <- one_of [green , brown]
4 atomic (set_pcolor c)
5 ) =<< patches
6 cs <- create_cows 50
7 ask (do
8 x <- random_xcor
9 y <- random_ycor

10 atomic (do
11 set_color white
12 set_energy 50
13 setxy x y
14 )) cs
15 reset_ticks
16

17 go = forever (do
18 t <- ticks
19 when (t > 10) stop
20 ask (do
21 move
22 eat_grass) =<< cows
23 snapshot
24 tick)
25

26 move = do
27 r <- random 50
28 atomic (do
29 right r
30 forward 1)
31

32 eat_grass = atomic (do
33 c <- pcolor
34 when (c == green) (do
35 set_pcolor brown
36 e <- energy
37 set_energy (e+30)))

Listing 1: An example of agent model in HLogo. Cow-
turtles move around and eat grass-patches to gain energy.

tree for turtles/links. Their principal difference is on
how their commanding operators (ask/of/with) are ex-
ecuted: NetLogo calls each agent in turn (sequen-
tially), and the called agent runs the body of com-
mands to completion. NetLogo also provides the al-
ternative operator ‘ask-concurrent’ that does not run
in parallel, instead ‘simulates concurrency‘ by inter-
leaving the body of commands between the agents.
HLogo tries to parallelize the execution of ask/of/with
operators, by utilizing Software Transactional Mem-
ory (STM) and lightweight (green) threads, two tech-
nologies for parallelism provided by Haskell.

3.1 Software Transactional Memory

Software Transactional Memory (STM) is a concur-
rency control mechanism that allows concurrent pro-
cesses to transparently yet safely operate on com-
mon resources. It departs from the common lock-
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Figure 1: An example of HLogo visualization output.
White triangles represent cows, patches are (eaten) grass.

ing mechanism by avoiding locks altogether. STM’s
concurrency relies on the so-calledtransactions. A
transaction is a sequence of reads and writes to a set
of transactional variables, or TVars for short, which
point to actual places in a shared memory; the trans-
action will not write to those places directly. TVars
are normally shared between transactions. A trans-
action isvirtually atomic. That is, its intermediate
changes on its TVars cannot be witnessed by other
transactions. The idea originates from the field of
Distributed Databases; indeed, people who are famil-
iar with SQL databases can view STM transactions as
the usual SQL atomic transactions albeit with a big-
ger focus on concurrency. Historically, Transactional
Memory was introduced a long time ago as a novel
extension to Lisp with suitable hardware modifica-
tions to enable concurrency (Knight, 1986). The idea
was later refined in (Shavit and Touitou, 1995), which
also coined the term Software Transactional Memory
by realizing a purely in-software implementation of
the approach. Recently, STM programs can be fur-
ther accelerated through hardware instruction-set ex-
tensions, e.g. with Transactional Synchronization Ex-
tensions (TSX) of IntelR© Skylake processor.

Each transactionτ can in principle be assigned to
a separate thread that keeps a separate log of reads
and writes to the transaction’s TVars. These writes
are not committed yet. At the end of the transac-
tion, the thread checks for possible inconsistencies in
the log. If one is found, because another transaction
has in the mean time updated one of the TVars,τ is
aborted, and later retried again. Importantly, aborted
transactions have no side effect. If there are no in-
consistencies, the transaction is said to be successful,
and the changes made on the TVars are committed
(executed). Internally, the orchestration of a commit
is realized by automatically putting locks in proper
places in the shared memory, but this involved pro-
cess is hidden from the programmers, thus effectively

alleviating concurrent programming. For our case this
is important, since we want to maintain NetLogo’s
user friendliness. Using STM does incur overhead,
but still, considerable speedup is observed (Perfumo
et al., 2008).

Ultimately, transactions are run by threads for
concurrent execution. There are several options on
how to do this. The obvious choice is to run ev-
ery transaction on its own thread. Haskell provides
green (lightweight) threads. These are virtual threads
managed by a virtual machine (or by a language’s ad-
vanced runtime-system), as opposed to native threads
managed by the Operating System. Green threads
have a smaller memory footprint, and faster thread ac-
tivation and synchronization. A large number (thou-
sands; even millions) of such threads can be spawn
without running out of memory. Haskell runtime em-
ploys an M:N threading model, where M lightweight
threads are automatically mapped to N kernel (heavy-
weight) threads for multi-core parallelism. While this
maximizes the parallelism, the number of actual CPU
cores is usually much less than the number of agents.
The above solution would lead to performance degra-
dation. Subsection 3.2 discusses our solution.

The choice of Haskell was made for its strong and
quality-standard STM library (Discolo et al., 2006),
coupled with multi-core-enabled lightweight threads.
Moreover, it is important that the effects of a transac-
tion can be rollbacked, in case the transaction fails to
commit: the type system of Haskell guarantees that
STM effects cannot be intermixed with other effects
which cannot be rollbacked (e.g. doing IO by writing
to a file), since they belong to two different monads
(e.g. STM monad vs IO monad).

3.2 Parallelizing HLogo

During execution, the ask/of/with operators ‘drive’
the computation of simulation. In HLogo, the ask op-
erator is implemented as a function that takes as input
a block of commands and a set of agents. First, the
function splits the given agentset and the current ran-
dom number generator (RNG) into equal pieces —
the splitting is specialized for the agentset type (ar-
ray or treemap) and we make use of a high-quality
splittable treefish RNG library (Claessen and Pałka,
2013). Next, the function spawns as many lightweight
threads as there are CPU cores. Each spawned thread
will execute the block of commands for each agent
in its agentset slice in a modified (self,myself) agent
context. A Haskell pseudocode of the above descrip-
tion is given in Listing 2.

This simple motif of ‘divide and conquer’ is used
to parallelize the other two operators (of/with), the
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ask cmds agentset = do
caller <- self
r <- currentRNG
cores <- getNumCapabilities
-- splits agentset in CPU -core slices
let splitted = split agentset r cores
threads <-forM splitted (λ(slice ,rng)

→
forkIO (do

setRNG rng
forM slice (λcallee→

-- callee=>self , caller=>myself
executeIn (callee ,caller) cmds)

))
forM threads wait -- caller blocks

Listing 2: Pseudocode for HLogo ’ask’ implementation.

only difference being that the caller will collect/fil-
ter back the results of the block. All ask/of/with op-
erators will make the callerblock until the spawned
‘worker’ threads have finished (which implies that
all the workload of that operator has completed);
there is also a non-blocking variant of ask (named
ask_async) where the caller immediately continues.
Again all these three operators support nesting; it is
perfectly allowed to call an ask inside an ask, ask
inside an of, or any other operator thereof; for ex-
ample the agent programask(ask eat_grass =<<
cows_here)=<<patches (i) will have maximum

(N*N) (+1 for the caller) threads running; the Haskell
runtime system will automatically load-balance the
threads to the CPU cores if for example there are some
patches with less or no cows sitting on.

A Haskell thread expects to execute some code
with IO effects (an IO monadic action); as such the
IO effects will be applied in parallel to other threads.
In case of HLogo, if we allow the agent commands
to operate (apply their effects) in the IO monad, race
conditions might happen between the agents. Con-
sider an example HLogo procedure:

eat_grass = do
g <- grass
when (g > 30) (do

set_grass (g - 30)
e <- energy
set_energy (e + 30))

If we allow the above agent commands (getters/set-
ters of grass and energy) in the body of the procedure
to operate in IO, two race conditions may happen: a)
two cows eat grass from the same patch, but the patch
grass level is decreased only once; b) at another point
in the program, an agent ‘ask’s to (destructively) mod-
ify the energy of a currently-eating cow.

Instead, what Hlogo actually does is store all agent
attributes into TVars and restrict basic agent com-
mands (all standard library and getters/setters), to

be allowedonly inside an STM transaction; in other
words, the code at (i) would not even type-check.
Multiple agent commands can then be monadically
sequenced as usual into a bigger STM transaction
block. We extend the language with the command
atomic which given a transaction block will try to
‘run’ it; when theatomic succeeds, it means its ef-
fects have been committed as a whole to the out-
side (IO) world, and will not be again rollbacked.
The type of atomic isatomic :: STM a -> IO a,
which reads as a function that lifts an STM transac-
tion (monadic action) to an IO monadic action. To fix
& type-check the HLogo code at (i) we simply sur-
round the wholeeat_grass in an ‘atomic’ block:ask
(ask (atomic eat_grass)=<< cows_here) =<<
patches, which is parallel, and race-condition free.

Does this mean that the user should create as large
transaction blocks as possible and merely surround
them with a single ‘atomic’? Not exactly, since larger
transactions can hurt performance, because of larger
kept STM logs and potentially more rollbacks caused
by other competitor-threads trying to commit their
own, related transactions. With HLogo, it is solely left
to the user to decide if the whole transaction should be
atomic or if it is safe to break it into smaller atomic
blocks. As an example, the following code albeit
faster, does not avoid race-condition (a) (but race-
condition (b) is avoided):

eat_grass = do
g <- atomic grass
atomic (when (g > 30) (do

set_grass (g - 30)
e <- energy
set_energy (e + 30)))

Despite the gain in parallelism, STM is not a ‘sil-
ver bullet’ to all the problems that are encountered in a
parallel setting. Any executed STM transaction is in-
herently non-deterministic; in the simplest case, two
simultaneous threads competing to modify the same
TVar will not commit always in the same order: there
may be program runs where thread 1 commits before
thread 2 and vice versa. As a consequence, this turns
HLogo simulations non-reproducible, but still consis-
tent with respect to race-conditions. On the bright
side, HLogo’s engine guarantees that on 1-core con-
figurations and with no use ofask_async, the simu-
lation of the agent model is reproducible.

4 EXPERIMENTAL EVALUATION

To compare the performance of HLogo to that of
NetLogo, we ran the following benchmarks:
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1. The benchmarkRedbluehasN turtles living on a
100× 100 torus-shaped canvas. They move for-
ward one step on every tick. If they are on a red
patch, they also turn left by 30 degrees. If they
are on a blue patch, they turn right by 30 degrees.
This is simulated for 1000 ticks. In this bench-
mark, the agents never write to the sameTVar,
and therefore the transactions never need to roll
back.

2. The benchmarkCows has N cows living on
a 100× 100 torus-shaped canvas. They move
around and eat grass. If the grass on a patch is
consumed by a cow, after some time it will re-
grow. This is simulated for 1000 ticks. In this
benchmark, cows compete for the grass, so some
transactions may conflict and have to roll back.

The benchmarks are run on a system provided
by the SURF foundation with 16 cores IntelR© Xeon
E5-2698, 128GB RAM, and Hyper-Threading dis-
abled. The OS Ubuntu 14.04 64bit was installed
with The Glorious Glasgow Haskell Compiler version
7.10.3, NetLogo 5.2.1 running Java-8 version Open-
JDK 1.8.072.

We benchmarked configurations with varying
number of cores (1,2,4,8,16), and varying the prob-
lem size (N). We executed 20 simulation runs for each
such configuration and computed the average runtime
and resident memory; the results are shown in Ta-
ble 1 (plotted in Fig. 2 and Fig. 3). Note that the
NetLogo runtime includes only the actual execution
of the model, not including the model parsing, com-
piling and firing up the JVM. We can clearly witness
speed gain in HLogo, the more we increase the num-
ber of cores; the performance scalability is retained.
The 16-core HLogo configuration manages to be at its
best 87% faster than its NetLogo counterpart. Even
with two cores and while using much less memory
(74% less memory than NetLogo), HLogo manages
to match or surpass the speed of NetLogo, which is a
positive thing considering the fact that STM concur-
rency incurs a certain overhead.

The HLogo eDSL implementation, the
HLogo/Netlogo benchmarks and exam-
ples are open-source software situated at
http://github.com/bezirg/hlogo.

5 RELATED WORK

NetLogo (Wilensky, 1999) is one of the de-facto
agent-based modeling framework. Models are written
in the dynamically-typed NetLogo language, which
is a dialect of the educational programming language
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Figure 3: NetLogo & HLogo execution time for ’Cows’.

Logo. Internally, NetLogo is implemented in the
Scala programming language. A Scala-written com-
piler translates NetLogo code to Java bytecode to be
later run in a Java Virtual Machine (JVM). NetLogo
comes with a GUI to visualize simulation results, and
a rich collection of predefined models, dealing with
aspects of Biology, Computer Science, Earth Science,
Social Science, Chemistry and others. ReLogo (North
et al., 2013) is a NetLogo clone embedded as a DSL
in Groovy (an OO language running in JVM). As is
the case with NetLogo, ReLogo is single-threaded
and comes with a rich GUI. Although Groovy version
2.0 and onwards introduced optional static typing, the
ReLogo language cannot type-check many of its ex-
pressions: agentsets are untyped, and ask/of/with clo-
sures cannot track the type information of their con-
text (self,myself). In such cases, the simulation user
has to either resort to typecasting or turn off Groovy’s
static typing in the pertinent code.

Both NetLogo and ReLogo supportparameter
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Table 1: Benchmarks results of NetLogo against HLogo. N is the agent model problem size.

runtime (sec) memory usage (MB)
NetLogo HLogo, #cores NetLogo HLogo, #cores

N 1 2 4 8 16 1 2 4 8 16
Redblue 1000 0.41 0.67 0.46 0.31 0.24 0.26 489 98 159 262 288 310

2500 0.95 1.57 1.46 0.86 0.53 0.39 621 102 136 222 351 616
5000 1.64 2.97 2.59 1.53 0.97 0.62 623 108 137 231 397 663
10000 3.08 6.03 5.23 2.93 1.71 1.03 625 121 155 246 405 737
20000 6.02 11.86 9.85 5.64 3.4 1.9 652 143 170 276 437 773
30000 9.02 19.68 10.39 6.26 3.6 2.14 671 157 231 357 603 1099

Cows 100 4.28 1.33 0.9 0.59 0.53 0.57 643 97 165 297 555 916
250 4.63 1.75 1.14 0.72 0.62 0.64 650 98 166 299 555 954
500 5.07 2.42 1.57 0.95 0.74 0.74 645 98 167 300 561 999
1000 5.76 3.48 2.26 1.31 0.93 0.88 650 100 167 301 569 1050
2000 6.42 5.04 3.22 1.84 1.20 1.08 646 102 170 303 571 1072
3000 7.02 6.39 4.64 2.70 1.63 1.29 649 104 155 267 498 929

sweeping(Koehler et al., 2005), for running multiple
instances of the same model in parallel while vary-
ing the model’s input parameters (e.g. initial random
seed); however, this method is orthogonal to HLogo’s
parallelism and could as well be combined with HL-
ogo: the purpose of parameter sweeping is to exploit
multi-core by replicating the model and running ‘dif-
ferent’ instances of it, whereas HLogo tries to inject
parallelism inside a single instance of a simulation
run. The latter case is crucial for large models or time-
critical simulations where any performance gain in a
single run is desirable.

To the best of our knowledge, the work described
here is the first to apply Software Transactional Mem-
ory in Agent-Based Modeling. Other scientists in
the field, however, have priorly investigated to speed
up ABM execution using various parallel techniques:
The work described in (Logan and Theodoropou-
los, 2001) proposes to execute Agent-based systems
through Distributed Discrete-Event Simulation. The
key problem as they state is the decomposition of the
environment which leads to the problem of fair load
balancing of the distributed machines. (Riley and Ri-
ley, 2003) propose another Distributed Agent Simu-
lation Environment called SPADES. SPADES tries to
address the concerns of Artificial Intelligence when
designing agent systems, while having distributed ex-
ecution and reproducibility of results. (Massaioli
et al., 2005) uses another parallelization technology,
called OpenMP, to speed up the execution of agent-
based models. However, the technique restricts the
implementation of ABM frameworks to only that
which provide an OpenMP implementation, i.e. C,
C++, Fortran. Also, it adds the requirement to the
simulation user to annotate simulation code with ex-
tra OpenMP pragmas, which is rather discouraging.
SASSY by (Hybinette et al., 2006) is a scalable agent
based simulation system that sits as a middle-ware

between an agent-based API and a Parallel Discrete
Event simulation (PDES) kernel. The difference in
SASSY compared to (Logan and Theodoropoulos,
2001) and (Riley and Riley, 2003) is that the ABM
framework can be built up from existing standard
PDES kernels. (D’Souza et al., 2007) proposes an
innovative method of executing mega-scale Agent-
Based Models in the massively parallel Graphics Pro-
cessing Unit (GPU). Although, it is well established
that this method can lead up to considerable speed
gains, we feel that the expressiveness of Agent-based
models that can be run on this platform is restricted.
A similar framework is Flame GPU, built on-top the
FLAME ABM framework (Kiran et al., 2010), and
has successfully been applied on project EURACE to
simulate the European economy model (Deissenberg
et al., 2008).

Concerning Haskell, our solution is the first Logo-
based modeling framework to be implemented in the
Haskell programming language. There have been,
however, other Haskell simulation packages. E.g.
Aivika is a promising Haskell library that provides ex-
tensive system dynamics and discrete event simula-
tion. Event-monad, as the name suggests, provides an
event monad and monad transformer; it can be used as
a low-level helper library to build a simulation frame-
work. Users can create an event-graph simulation sys-
tem and schedule events to it. In principle, it does not
employ any parallelism, but it could theoretically be
used together with some parallel strategy to exploit
parallelism.Hasimis a library for process-based Dis-
crete Event Simulation in Haskell. It does not employ
any kind of parallelism.
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6 CONCLUSION AND FUTURE
WORK

We have presented HLogo, a variant of the NetLogo
framework that utilizes Software Transactional Mem-
ory to benefit in parallelism. Although the agent ex-
ecution may become non-reproducible, we still be-
lieve that there is room for applying HLogo, consid-
ering the potential speedup and the fact that NetLogo
is widely used as well for constructing Multi-Agent
Systems (where reproducibility is not a factor). The
HLogo language is embedded as a Domain-Specific
Language in Haskell, which has the advantage of in-
heriting the Haskell’s module system and allowing the
ease of import of existing Haskell libraries. Further-
more, the DSL is typed for all its expressions and
agent commands, which adds a certain level of safety
to Logo models. We managed to port NetLogo mod-
els to HLogo and benchmark two of those against the
frameworks. Execution results show that HLogo is
faster than NetLogo when increasing the number of
cores.

One of our future plans regarding the extension
of the presented approach, is to investigate if the
atomic construct can be automatically inserted in cer-
tain places of HLogo programs that will retain con-
sistency while in the same time admit reproducibil-
ity; possibly as the result of static program analy-
sis. Moreover, some STM transactions can be acceler-
ated after applying certain optimizations, e.g. when a
cow moves, it may wiggleatomic(do rt=<<random
50; lt=<<random 50). The above code can be op-

timized byatomic(do i<-random 50; j<-random
50; lt(j-i)) which is faster since the STM trans-

action log is shortened through combining two mod-
ifications of the turtle’s heading (right,left) to one
(left). The program remains consistent since this code
runs atomically: no other agent could have, in any-
way, witnessed the intermediate modification.

Concerning HLogo’s engine, the ‘divide and con-
quer’ method of splitting the workload to the threads
does not involve any intelligence; it simply slices
equally the given agentset. This naive method can
possibly lead to unnecessary STM conflicts. By ex-
ploiting the spatial characteristics of the model we
could better (more cleverly) assign the work to the
threads, so that it minimizes the number of con-
flicts (retries). In other words, interdependent agents
should end up in the same thread, whereas indepen-
dent agents should be distributed to different threads
(and CPU cores). This work clustering could be static
(on initialize), or adaptive (during runtime execution).

Since the Cloud has become very accessible, we
would like to investigate the execution of HLogo

simulations in a distributed setting. Compared to a
single physical multi-core system, a distributed set-
ting can enable Agent Based Models to run in High-
performance Computing (HPC); there is also the ex-
treme case where the model cannot fit in a single
shared memory and has to be distributed to multi-
ple processing nodes. Haskell technologies, such as
Distributed Software Transactional Memory (Kupke,
2010) or Cloud Haskell (Epstein et al., 2011) could
help us achieve this task.

Finally, we have to note that our ideas are in no
sense restricted to NetLogo-like simulations; our ap-
proach is framework-agnostic and thus could be eas-
ily applied to other ABM frameworks too. However,
since NetLogo is a well-established platform, with a
large user base, we would also like to experimentally
extend the existing NetLogo engine with support for
one of the many Scala STM implementations. We ar-
gue that the NetLogo language again needs only to be
extended with anatomic construct, thus, remaining
close to NetLogo’s syntax and utilizing the original
Graphical User Interface.
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