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Abstract: In many cases, Software Product Line Testing (SPLT) targets only the selection of test cases which cover
product features or feature interactions. However, higher testing efficiency can be achieved through the se-
lection of test cases with improved fault-revealing capabilities. By associating each test case a priority-value
representing (or aggregating) distinct criteria, such as importance (in terms of fault discovered in previous test
campaigns), duration or cost, it becomes possible to select a feature-covering test suite with improved capabil-
ities. A crucial objective in SPLT then becomes to identify a test suite that optimizes reaching a specific goal
(lower test duration or cost), while preserving full feature coverage. In this paper, we revisit this problem with
a new approach based on constraint optimization with a special constraint called GLOBAL CARDINALITY

and a sophisticated search heuristic. This constraint enforces the coverage of all features through the compu-
tation of max flows in a network flow representing the coverage relation. The computed max flows represent
possible solutions which are further processed in order to determine the solution that optimizes the given ob-
jective function, e.g., the lowest test execution costs. Our approach was implemented in a tool called Flower/C
and experimentally evaluated on both randomly generated instances and industrial case instances. Comparing
Flower/C with MINTS (Minimizer for Test Suites), the State-Of-the-Art tool based on an integer linear formu-
lation for performing similar test suite optimization, we show that our approach either outperforms MINTS or
has comparable performance on random instances. On industrial instances, we compared three distinct mod-
els of Flower/C (using distinct global constraints) and the one mixing distinct constraints showed excellent
performances with high reduction rates. These results opens door to an industrial adoption of the proposed
technology.

1 INTRODUCTION

1.1 Context

Testing a software product line entails at least the se-
lection of a test suite which covers all the features
of the product-line. Indeed, even if it may not guar-
antee that each product would behave correctly, en-
suring that each feature is tested at least once is a
minimum requirement of Software Product Line Test-
ing (SPLT) (Martin Fagereng Johansen and Fleurey,
2011; Henard et al., 2013). However, among the vari-
ous test suites which cover all the features, some have
higher fault-revealing capabilities than other, some
have reduced overall execution time or energy con-
sumption properties (Li et al., 2014). Dealing with
different criteria when selecting a feature-covering
test suite is thus important. Yet, at the same time,

the budget allocated to the testing phase is usually
limited and reducing the number of test cases while
maintaining the quality of the process is challenging.
For example, selecting a feature-covering test suite
which minimizes its total execution time is desirable
for testing some product lines which are developed
in continuous delivery mode (Stolberg, 2009). Sim-
ilarly, if the execution of each test case is associated
a cost (because the execution requires access to cloud
resources under some service level agreement), then
there is a challenge in selecting a subset of test cases
which can minimize this cost. Of course, ideally one
would like to deal with all the criteria (feature cov-
erage, execution time, energy consumption, ...) at
the same time in a multi-criteria optimization process
(Wang et al., 2015). Unfortunately, this approach can-
not offer strong guarantee on the coverage of features
or reachability of a global minimum, which is often
not acceptable for validation engineers. Thus, there is
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room for approaches which offer guarantees in terms
of feature coverage and optimize individually some
criteria such as test execution time or energy con-
sumption.

1.2 Existing Results

Test suite reduction has received considerable atten-
tion in the last two decades. Briefly, we can dis-
tinguish greedy techniques (Rothermel et al., 2002;
Tallam and Gupta, 2005; Jeffrey and Gupta, 2005),
search-based testing techniques (Ferrer et al., 2015;
Wang et al., 2015), and exact approaches (Hsu and
Orso, 2009; Chen et al., 2008; Campos et al., 2012; Li
et al., 2014; Gotlieb and Marijan, 2014). Test suite re-
duction should not be confounded with test selection
and generation for software product lines which has
also received considerable attention these last years
(Henard et al., 2013).

Greedy techniques for test suite reduction are usu-
ally based on variations of the Chvatall algorithm
which selects first a test case covering the most fea-
tures and iterates until all features are covered. In
the 90’s, (Harrold et al., 1993) proposed a technique
which approximates the computation of minimum-
cardinality hitting sets. This work was further re-
fined with different variable orderings (Offutt et al.,
1995; Agrawal, 1999). More recently, (Tallam and
Gupta, 2005) introduced the delayed-greedy tech-
nique, which exploits implications among test cases
and features or requirements to further refine the re-
duced test suite. The technique starts by removing
test cases covering the requirements already covered
by other test cases. Then, it removes test require-
ments which are not in the minimized requirements
set, and finally it determines a minimized test suite
from the remaining test cases by using a greedy ap-
proach. Jeffrey and Gupta extended this approach by
retaining test cases which improve a fault-detection
capability of the test suite (Jeffrey and Gupta, 2005).
The technique uses additional coverage information
of test cases to selectively keep additional test cases
in the reduced suites that are redundant with respect
to the testing criteria used for the suite. Comparing
to (Harrold et al., 1993), the approach produces big-
ger solutions, but with higher fault detection effective-
ness.

One shortcoming of greedy algorithms is that they
only approximate true global optima without provid-
ing any guarantee of test suite reduction. Search-
based testing techniques have been used for test suite
reduction through the exploitation of meta-heuristics.
(Wang et al., 2013) explores classical evolutionary
techniques such as hill-climbing, simulated anneal-

ing, or weight-based genetic algorithms for (multi-
objective) test suite reduction. By comparing 10 dis-
tinct algorithms for different criteria in (Wang et al.,
2015), it is observed that random-weighted multi-
objective optimization is the most efficient approach.
However, by assigning weights at random, this ap-
proach is unfortunately not able to place priority over
the various objectives. Other algorithms based on
meta-heuristics are examined in (Ferrer et al., 2015).

All these techniques can scale up to problems hav-
ing a large number of test cases and features but they
cannot explore the overall search space and thus they
cannot guarantee global optimality.
On the contrary, exact approaches, which are based
either on boolean satisfiability or Integer Linear Pro-
gramming (ILP) can reach true global minima. The
best-known approach for exact test suite minimiza-
tion is implemented in MINTS (Hsu and Orso, 2009).
It extends a technique originally proposed in (Black
et al., 2004) for bi-criteria test suite minimization.
MINTS can be interfaced with either MiniSAT+
(Boolean satisfiability) or CPLEX (ILP). It has been
used to perform test suite reduction for various crite-
ria including energy consumption on mobile devices
(Li et al., 2014). Similar exact techniques have also
been designed to handle fault localization (Campos
et al., 2012). Generally speaking, the theoretical lim-
itation of exact approaches is the possible early com-
binatorial explosion to determine the global optimum,
which exposes these techniques to serious limitations
even for small problems. In the context of feature cov-
ering for software product lines, an approach based on
SAT solving has been proposed in (Uzuncaova et al.,
2010). In this approach, test suite reduction is en-
coded as a Boolean formula that is evaluated by a SAT
solver. An hybrid method based on ILP and search,
called DILP, is proposed in (Chen et al., 2008) where
a lower bound for the minimum is computed and a
search for finding a smaller test suite close to this
bound is performed. Recently, another ILP-based ap-
proach is proposed in (Hao et al., 2012) to set up up-
per limits on the loss of fault-detection capability in
the test suite. In (Mouthuy et al., 2007), Monthuy et
al. proposed a constraint called SC for the set cover-
ing problem. They created a propagator for SC by us-
ing a lower bound based on an ILP relaxation. Finally,
(Gotlieb and Marijan, 2014) introduced an approach
for test suite reduction based on the computation of
maximum flows in a network flow. This theoreti-
cal study was further refined in (Gotlieb et al., 2016)
where a comparison of different constraint models
was given, but there was no multi-objectives test suite
optimization.

In this paper, we propose a new approach of
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feature-based test suite reduction in software product
line testing. Starting from an existing test suite cover-
ing a set of features of a software product line, our ap-
proach selects a subset of test cases which still covers
all the features, but also minimizes one additional cri-
teria which is given under the form of sum of priori-
ties over test cases. This is an exact approach based on
the usage of a special tool from Constraint Program-
ming, called the global cardinality constraint (Régin,
1996). This constraint enforces the link between test
cases and features while constraining the cardinal-
ity of the subset of features each test case has to
cover. By combining this tool with a sophisticated
search heuristics, our approach creates a constraint
optimization model which is able to compete with the
best known approach for test suite reduction, namely
MINTS/CPLEX (Hsu and Orso, 2009).

Associating a number to each test case is conve-
nient to establish priorities when selecting test cases.
Indeed, such a priority-value can represent or aggre-
gate distinct notions such as execution time, code cov-
erage, energy-consumption (Li et al., 2014), fault-
detection capabilities (Campos et al., 2012) and so
on. Using these priorities, feature-based test suite re-
duction reduces to the problem of selecting a subset
of test cases such that all the feature are covered and
the sum of test case priorities is minimized. Feature-
based test suite reduction generalizes the classical test
suite reduction problem which consists in finding a
subset of minimal cardinality, covering all the fea-
tures. Indeed, feature-based test suite reduction where
each test case has exactly the same priority yields to
the de-facto size-minimisation of the test suite. How-
ever, solving feature-based test suite reduction is hard
as it requires in the worst case to examine a search
tree composed of all the possible subsets of test cases.
Typically, for a test suite composed of N, there are
2N such subsets and N typically ranges from a few
teens to thousands, which makes exhaustive search in-
tractable.

1.3 Contributions of the Paper

The work presented in this paper is built on top of
previously-reached research results. In 2014, we pro-
posed a mono-criteria constraint optimization model
for test suite reduction based on the search of max-
flows in a network flow representing the problem
(Gotlieb and Marijan, 2014). Unlike the method
based on search-based test suite minimization pre-
sented in (Wang et al., 2013), our approach is exact
which means that it offers the guarantee to reach a
global minimum.

This paper introduces a new constraint op-

timization model based on the usage of the
GLOBAL CARDINALITYconstraint for performing
multi-criteria test suite optimization in the context of
SPLT. This model also features a dedicated search
heuristic which permits us to find optimal test suite in
a very efficient way. According to our knowledge, this
is the first time a multi-criteria test suite minimization
approach based on advanced constraint programming
techniques is proposed in the context of SPLT. This
constraint optimization model has been put at work
to select test suites on both randomly-generated in-
stances of the problem and also real cases.

1.4 Plan of the Paper

Next section introduces the necessary background
material to understand the rest of the paper. Section
3 presents our approach to the feature-based test suite
reduction problem. Section 4 details our implemen-
tation and experimental resuls, while section 5 dis-
cusses of the related works. Finally, section 6 con-
cludes the paper.

2 BACKGROUND

This section introduces the problem of feature-based
test suite reduction and briefly reviews the notion of
global constraints. It also presents the global con-
straint called global cardinality.

2.1 Feature-based Test Suite Reduction

Feature-based Test Suite Reduction (FTSR) aims to
select a subset of test cases out of a test suite which
minimizes the sum of its priorities, while retaining its
coverage of product features. Formally, a FTSR prob-
lem is defined by an initial test suite T = {t1, . . . , tm},
each test case being associated a priority-value p(ti), a
set of n product features F = { f1, . . . , fn} and a func-
tion cov : F → 2T mapping each feature to the subset
of test cases which cover it. Each feature is covered
by at least one test case, i.e., ∀i∈ {1, . . . ,n},cov( fi) 6=
/0. An example with 5 test cases and 5 features is given
in Table 1, where the value given in the table denotes
the priority of the test case. Given T,F , p the pri-
orities, and cov, a FTSR problem aims at finding a
subset of test cases such that every feature is covered
at least once, and the sum of priorities of the test cases
is minimized. For the sake of simplicity, we consider
minimization of the priorities, but maximization can
be considered instead without changing the difficulty
of the problem.
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Table 1: A FTSR Example.

f1 f2 f3 f4 f5

ta 2 2 - - -
tb 1 - 1 - -
tc - 3 3 - 3
td - - - 2 2
te - - - 1 -

Definition 1 (Feature-based Test Suite Reduc-
tion (FTSR)). A FTSR instance is a quadruple
(T,F, p,cov) where T is a set of m test cases
{t1, . . . , tm} along with their priorities p(ti), F is a
set of n product features { f1, . . . , fn}, cov : F → 2T is
a coverage relation capturing which test cases cover
each feature. An optimal solution to FTSR is a subset
T ′ ⊆ T such that for each fi ∈ F, there exists t j ∈ T ′

such that ( fi, t j) ∈ cov and ∑t j∈T ′ p(t j) is minimized.

A labelled bipartite graph can be used to encode
any FTSR problem, with edges denoting the relation
cov and labels denoting p, the priorities over the test
cases, as shown in Fig.1. Note that the priorities are
associated to the test cases and not to the features. In
fact, in feature-based test suite reduction, all the fea-
tures must be covered at least once, so that it is point-
less to define priorities over features. As an exten-
sion, it is possible to consider for each test case dis-
tinct priorities for covering the features but this com-
plexifies the problem without bringing much benefice
as it is too complex for validation engineers to man-
age complex priority sets. Note also that the opti-
mal solution shown in Fig.1 is not unique. For ex-
ample, {ta, tb, td} covers all the features and has also
TotalPriorities = 5. When all the priorities are the
same, then the FTSR problem reduces to the problem
of finding a subset of minimal size.

2.2 Global Constraints

Constraint Programming is a declarative language
where instructions are replaced by constraints over
variables which take their values in a variation do-
main (Rossi et al., 2006). In this context, any con-
straint enforces a symbolic relation among a sub-
set of variables, which are known only by their
type or their domain. Formally speaking, a do-
main variable V is a logical variable with an asso-
ciated domain D(V ) ⊂ Z which encodes all possi-
ble labels for that variable. In the rest of the pa-
per, upper-case letter or capitalized word will de-
note domain variables, while lower-case letter or word
will denote constant values. For example, the do-

main variable COLOR takes its values in the domain
{black,blank,blue,red,yellow} which is encoded as
1..5, and the constraint primary color(COLOR) en-
forces COLOR to be blue,red,yellow, but not black
or blank. We use to say that 3,4,5 satisfies
primary color and that 1,2 are inconsistent with re-
spect to the constraint. In the rest of the paper, we will
use a..b to denote {a,a+ 1, . . . ,b− 1,b} and {a,b}
to denote the enumerate set composed only of a and
b. Note that in our context, we consider only finite
domains, i.e., domains containing a finite number of
possible distinct labels.

A constraint program is composed of both reg-
ular instructions and constraints over domain vari-
ables. Interestingly, constraints come with fil-
tering algorithms which can eliminate some in-
consistent values. For example, the constraint
same color(COLOR1,COLOR2) enforces COLOR1
and COLOR2 to take the same color. Let suppose that
the variable COLOR1 has domain {blue,red,yellow}
and COLOR2 has domain {blank,blue,red}, then
the consraint prunes both domains to {blue,red} be-
cause all other label are inconsistent with the con-
straint same color. Among the possible type of
constraints, we have simple constraints, which in-
clude domain, arithmetical and logical operators, and
global constraints (Régin, 2011). The constraints
primary color and same color are simple constraints
as they can be encoded with a domain and an equal-
ity operators. A global constraint is a relation which
holds over a non-fixed number of variables and imple-
ments a dedicated filtering algorithm. A typical exam-
ple of global constraint is NVALUE(N,(V1, . . . ,Vm)),
introduced in (Pachet and Roy, 1999), where
N,V1, . . . ,Vm are domain variables and the constraint
enforces the number of distinct values in V1, . . . ,Vm
to be equal to N. This constraint is useful in
several application areas to solve tasks assignment
and time-tabling problems. For example, suppose
that N is a domain variable with domain 1..2 and
FLAG1,FLAG2,FLAG3 are three domain variables
with domains FLAG1 ∈ {blue,blank}, FLAG2 ∈
{yellow,blank,black} and FLAG3 ∈ {red}, then
the constraint NVALUE(N,(FLAG1,FLAG2,FLAG3)
can significantly reduce the domains of its variables.
In fact, the value 1 is inconsistent with the constraint
and can thus be filtered out of the domain of N,
as there is no intersection between the domains of
FLAG1 and FLAG3. It means that, if there is a so-
lution of the constraint, it should at least contain two
distinct values, constraining N to be equal to 2. In ad-
dition, the domains of FLAG1 and FLAG2 have only
a single value in their intersection (blank), meaning
that they can only take this value and all the other val-
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Figure 1: FTSR as a bipartite graph (a), with an optimal sol. (b).

ues are inconsistent. So, in conclusion, the constraint
NVALUE(N,(FLAG1,FLAG2,FLAG3) is solved and
N = 2, FLAG1 = FLAG2 = blank and FLAG3 = red.
Of course, this is a favourable case and other instances
may lead to only prune some of the inconsistent as-
signments without being able to solve the constraint.
In this case, a search procedure must be launched in
order to eventually find a solution. This search pro-
cedure selects an unassigned variable and will try to
assign it a value from its current domain. The pro-
cess is repeated until all the unassigned variables be-
come instantiated or a contradiction is detected. In
the latter case, the process backtracks and makes an-
other value choice. This process is parametrized by
a search heuristic which selects the variable and the
value to be assigned first.

In our framework, we will use a powerful global
constraint, which can be seen as an extension of
NVALUE: the GLOBAL CARDINALITYconstraint
or GCC for short (Régin, 1996). The
GLOBAL CARDINALITY(T,d,C) constraint, where
T = (T1, . . . ,Tn) is a vector of domain variables,
d = (d1, . . . ,dm) is a vector of distinct integers, and
C = (C1, . . . ,Cm) is a vector of domain variables.
GLOBAL CARDINALITY(T,d,C) holds if and only
if for each i ∈ 1..m the number of occurrences
of di in T is Ci. The Ci variables are called the
occurrence variables of the constraint. The filtering
algorithm associated to GLOBAL CARDINALITY
is based on the computation of max-flows in a
network flow. Interestingly, this algorithm has a
cubic time-complexity (Régin, 1996) which means
that exploiting GLOBAL CARDINALITY for filtering
inconsistent values can be realized in polynomial
time.

3 FTSR THROUGH GLOBAL
CONSTRAINTS

In this section, we show how a constraint optimization
model based on GCC can actually encode the solu-
tions of a Feature-based Test Suite Reduction prob-
lem. This encoding is explained in Sec.3.1, while
Sec.3.3 introduces a dedicated search heuristics to
deal with priority-based test case selection.

3.1 A Constraint Optimization Model
For FTSR

The FTSR problem can be encoded with the follow-
ing scheme: each feature can be associated with a do-
main variable F having the following finite domain:
{T1, ...,Tn}, where each Ti corresponds to a number
associated to a test case which covers F . So, for ex-
ample, the problem reported in Tab.1 can be encoded
as follows: F1 ∈ {1,2},F2 ∈ {1,3},F3 ∈ {2,3},F4 ∈
{4,5},F5 ∈ {4} where Ta is associated to 1, Tb is as-
sociated to 2, and so on.

Given a FTSR problem (F,T, p,cov), a constraint
optimization model can be encoded as shown in
Fig.2, where the domain variables Ci denote the
number of times test case i is selected to cover any
feature in F1, . . . ,Fn, let Bi be Boolean variables
denotating the selection of test case i. In this model,
(F1, . . . ,Fn),(C1, . . . ,Cm) are decision variables, only
known through their domain. The boolean variables
B1, . . . ,Bm are local variables introduced to establish
the link with the priorities. First, the goal of this
model is to minimize TotalPriorities, the sum of
the priorities of selected test cases. For computing
TotalPriorities, we have used the global constraint
SCALAR PRODUCT((B1, . . . ,Bm),(p1, . . . , pm),
TotalPriorities) which enforces the relation
TotalPriorities = ∑1≤i≤m Bi ∗ pi. Actually, the
non-zeroed Bi correspond to the selected test cases.
Second, the constraint GLOBAL CARDINALITY
allows us to constrain the variables Ci which are
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Minimize TotalPriorities s.t.

GLOBAL CARDINALITY((F1, . . . ,Fn),(1, . . . ,m),(C1, . . . ,Cm)),
for i = 1 to m do Bi = (Ci > 0),
SCALAR PRODUCT((B1, . . . ,Bm),(p1, . . . , pm),TotalPriorities).

Figure 2: A constraint optimization model for solving FTSR.

associated to number of times test case are se-
lected. The model can be solved by searching
the space composed of the possible choices for
(F1, . . . ,Fn),(C1, . . . ,Cm). Interestingly, it allows us
to branch either on the choice of features or on the
choice of test cases. Solving this model allows us to
find an optimal solution to FTSR, as proved by the
following sketch of proof.
(⇒) An optimal solution of FTSR corresponds to an
assignment of (F1, . . . ,Fn) with test cases which min-
imizes the sum of priorities. Let us call {tp, . . . , tq}
this solution and minimum this sum. This is also an
optimal solution of our model. In fact, the variables
{Cp, . . . ,Cq} are strictly positive because their asso-
ciated test case is selected in the solution through
GLOBAL CARDINALITY, which means that only the
corresponding {Bp, . . . ,Bq} are equal to 1 and thus
SCALAR PRODUCT((B1, . . . ,Bm),(p1, . . . , pm),
TotalPriorities) is equal to minimum.
(⇐) An optimal solution of our constraint optimiza-
tion model is also an optimal solution of FTSR. In
the model, TotalPriorities is assigned to the sum of
priorities of selected test cases, which is exactly the
definition of FTSR.

Note that even if the model given in Fig.2 is
generic and solves the FTSR problem, it includes
a search within a search space of exponential size
O(Dn) where D denotes the size of the greatest do-
main of the features and n is the number of test cases.
This does not come as a surprise as the feature cover-
ing problem is a variant of the set covering problem
which is NP-hard (Hsu and Orso, 2009).

3.2 Search Heuristics

Search heuristics consist of both a variable selec-
tion strategy and a value assignment strategy, which
both relate to the finite domain variables used in the
constraint optimization model. Regarding variable-
selection, a first idea is to use the first-fail principle in
the model of Fig.2, which selects first a variable rep-
resenting a feature that is covered by the least number
of test cases. As all the features have to be covered,
it means that those test cases are most likely to be se-
lected. However, this strategy ignores the selection
of the test case having the greatest priority or the test

cases covering the most features, which would be very
interesting for our FTSR problem. Regarding value-
selection, it is also possible to define a special heuris-
tic for our problem.

3.3 A FTSR-dedicated Heuristic

Unlike static variable selection heuristics used in
greedy algorithms such as for example, the selec-
tion of variables based on the number of features
they cover, our strategy is more dynamic and the or-
dering is revised at each step of the selection pro-
cess. It selects first the variable Oi associated to
the test case with the greatest priority. Then, among
the remaining test cases which cover features not yet
covered, it selects the variable O j with the greatest
priority and iterates until all the features are cov-
ered. In case of choice which may not lead to a
global minimum, then the process backtracks and per-
mits us to select a distinct test case, not necessar-
ily associated with the greatest priority. Regarding
value-selection heuristics, it is possible to combine
it with the variable-selection heuristics so that, each
time a choice is made, it selects first the test cases
which cover the most features. These ingredients have
made the FTSR-dedicated heuristic a very powerfull
method for solving the FTSR problem as shown in
our experimental results.

4 IMPLEMENTATION AND
RESULTS

We implemented the constraint optimization model
and search heuristic described above in a tool called
Flower/C. The tool is implemented in SICStus Prolog
and utilizes the clpfd library of SICStus which is a
constraint solver for finite domain variables. It reads
a file which contains the data about test cases, covered
features, priorities, execution time, etc. and processes
these data by constructing a dedicated constraint opti-
mization model. Solving the model requires to imple-
ment the search heuristics and tuning the input format
for a better preprocessing. These steps are encoded
in SICStus Prolog and a runtime is embedded into a
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tool with a GUI, in order to ease the future industrial
adoption of the tool.

We performed experiments on both random and
industrial instances of FTSR. For random problems,
we created a generator of FTSR instances, which
takes several parameters as inputs such as the number
of features, the number of test cases along with their
associated priorities, and the density of the relation
cov which is expressed a number d representing the
maximum arity of any links in cov. For industrial in-
stances, we took a feature model designed to represent
video-conferencing systems and a test suite available
for testing the products of this software product line.
The generator draws a number a at random between 1
and d and creates a edges in the bipartite graph which
represents cov.

4.1 Results and Analysis

4.1.1 Comparison of CP Models
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Figure 3: Comparison of FLOWER/C with other CP models
(to=300s).

Fig. 3 contains a comparison of the CPU time used
to solve instances of FTSR for three distinct CP mod-
els used in our implementation FLOWER/C. The goal
here is to observe the time taken to find an actual
global optimum of the constraint optimization mod-
els. The data used for this experiment have been ran-
domly generated and we show the results on 20 ran-
dom samples. A time-out of 300 seconds was set up
in order to keep reasonable time for the results analy-
sis. The model based on two GCC global constraints
(called GCC2) exhibits time-out for all the data sets
but TD1. On the contrary, the results obtained for
the model with NVALUE shows better performences
for this model as it achieves good results in all the
cases. Even better, the mixt model which combines
NVALUE and GCC guarantees optimal results in all
the five case studies. Comparing the CPU time taken

by the three models is obviously interesting but it may
hide differences in terms of reduction rates obtained
in a given amount of time. This is the objective of the
following experiment.

4.1.2 Comparison of the Reduction Rate
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Figure 4: Comparison of reduction rate (in % of remain.
test cases, to=30s).

Fig. 4 shows the reduced percentage of test cases
after 30 seconds of computation.

In this experiment, the constraint optimization
model using NVALUE is less efficient than the two
models using GCC. This is due to the usage of dedi-
cated search heuristics in the latter case which allows
much more efficient searches among the feasible solu-
tions of the optimization problem. Despite the inter-
est of comparing constraint optimization models us-
ing similar techniques based on global constraints, it
is equally important to compare Constraint Program-
ming techniques with other traditional approaches.

4.1.3 Evaluation of Flower/C against Other
Approaches

In a first experiment, we compared our implementa-
tion, Flower/C, with three other approaches, namely
MINTS/MiniSAT+, MINTS/CPLEX and Greedy on
randomly-generated instances. MINTS is a generic
tool which handles the test-suite reduction problem
as an integer linear program (Hsu and Orso, 2009).
For each feature to be covered, a linear inequality
is generated which enforces the coverage of the re-
quirement. The selection of test cases is ensured by
the usage of auxiliary boolean variables. MINTS can
be interfaced with distinct constraint solvers, includ-
ing MiniSAT+ and CPLEX. Note that CPLEX is con-
sidered as the most advanced available technology to
solve linear programs. We also implemented a greedy
approach for solving the FTSR-problem. This ap-
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proach is based on the selection of the test cases cov-
ering the most features. All our experiments were
run on a standard i7 CPU machine at 2.5GHz with
16GB RAM. Fig. 5 shows the results of experiments
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Figure 5: Comparison of reduction rate of Flower/C (Mixt),
MINTS/MiniSAT+, MINTS/CPLEX and Greedy on ran-
dom instances with uniform priority values (to=60s).

when considering the reduction rate achieved by all
the three approaches in 60s of CPU time. In this ex-
periment, the same priority-values are used for all test
cases. By reduction rate, we mean the ratio between
the size of reduced test suite over the initial size of the
test suite expressed in percentage. In this context, the
smaller the better. We observe that for the four groups
of random instances (ranging from 1000 to 2000 fea-
tures with distinct maximal density values), Flower/C
achieves equal or better results than all the three other
approaches in terms of reduction rates in a limited
amount of time. Regrading the two last groups (TD3
and TD4), Flower/C performs even strictly better than
all the three other approaches reaching exceptional
reduction rates. It is worth noticing for each group,
one hundred random instances was generated which
means that the results are quite stable w.r.t. random
variations. It is also quite clear that CPLEX performs
much better for these problems than MiniSAT+. This
does not come as a big surprise by noticing that the
FTSR problem has a simple formulation in terms of
integer linear program which are better solved with
CPLEX than MiniSAT+. In a second experience re-
ported in Fig.6, we gave different maximum cost val-
ues to each instance and the random generator se-
lected at random for each test case a value in be-
tween 1 and this maximum value. In this experiment,
we did not get any result with MiniSAT+ because
the encoding of the objective function as the sum of
priority-values did not allow us to use a Boolean SAT
solver. So, only the results with CPLEX, Flower/C
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Figure 6: Comparison of reduction rate of Flower/C (Mixt),
CPLEX and Greedy with non-uniform cost values (to=60s).

and greedy are reported. Fig.6 shows that the results
are slightly in favor of MINTS/CPLEX on the three
first groups of random instances, while the allocated
time for the last group was insufficient to get any in-
teresting results.

4.1.4 Evaluation on Industrial Instances

We conducted a third experience reported in Fig.7 on
industrial instances of the FTSR problem. One of
our industrial partners provided us with data extracted
from a software product line of video-conferencing
systems. This industrial case study includes a feature
model to represent the product line and meta-data as-
sociated to test cases (test case execution duration, re-
alized feature coverage, fault-detection proness, etc.).
We compared three distinct constraint optimization
models (all three based on the usage of the global con-
straints NValue and GCC). The CPU time required to
solve the FTSR problem reported in Fig.7, shows that
the model combining NValue and GCC is the best.
Interestingly, the results also show that the reduction
rate is quite high for all the five industrial instances
(from 61,80% to 26,67%) which indicate that solving
the FTSR problem in practice is of great importance.
Finally, the last row of the table shows the number
of removed features while processing the instances.
A feature f1 can automatically be removed from the
constraint optimization model when the coverage of
another feature f2 necessarily entails the coverage of
f1. Here again, the results show that detecting such
automatically entailed features is of paramount im-
portance. However, it is worth noticing that we con-
ducted our evaluation in the laboratory and further ex-
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Figure 7: Evaluation of Flower/C on industrial instances.

periments are requested to understand how Flower/C
could be integrated in a realistic software develop-
ment chain.

5 RELATED WORKS

In this section, we analyse our approach FLOWER/C
based on Constraint Programming and global con-
straints with other approaches for feature-based test
suite reduction. Different techniques have been
proposed to minimize the number of test cases in
the context of feature coverage. Among these ap-
proaches, Combinatorial Interaction Testing (CIT)
(Cohen et al., 1997) is the most important. As ob-
served by Kuhn in (Kuhn et al., 2004), software de-
fects are often due to the interactions of only a small
number of parameters of features. A simple case of
CIT, widely used by validation engineers, is one-way
or pairwise testing. One-way testing aims at covering
each feature at least once while pairwise testing aims
at covering all the interactions between two features
(Cohen et al., 1997). Some of the best algorithms
used to generate all combinatorial interactions have
been implemented in commercialized tools, such as
AETG (Cohen et al., 1997), TConfig and so on. Even
if these tools have demonstrated their potential for in-
dustrial adoption, they do not guarantee the reach of
global minima when it comes to find the smallest sub-
set of test cases such that all features are covered at
least once. Moreover, they hardly take into account
priorities and other criteria (test execution time, code
coverage, etc.) when selecting test cases.

More recently, some authors have proposed to use
constraint solvers to generate test cases such that all
one-way or pairwise feature interactions are covered.
CIT can been tuned for the coverage of feature in-
teractions with SAT-solving as shown in (Mendonca
et al., 2009). (Perrouin et al., 2012) proposes to con-
vert variability models (used to represent all the fea-
tures of a software product line) in Alloy declarative

programs, so that an underlying SAT-solver can be
used to generate test cases. Despite its novelty, this
approach does not scale well because it is based on
a generate-and-test paradigm. More precisely, it pro-
poses a candidate test case and test wether it covers
remaining uncovered features or not. Moreover, it
represents the coverage relation with Boolean vari-
ables, which may lead to a combinatorial explosion
in the problem representation. Unlike this approach,
FLOWER/C represents the problem in a radically dif-
ferent way by associating a finite domain to each vari-
able associated to a test case. This representation is
efficient as it allows us to save much space. Fur-
thermore, using global constraints, FLOWER/C can
prune the search space by eliminating in advance pos-
sible choices of test cases which would lead to non-
optimal feasible solutions. (Oster et al., 2010) pro-
poses to use a greedy algorithm for solving the prob-
lem. This algorithm is very similar to the one we
implemented to compare FLOWER/C with a greedy
approach. Our experiments show that Constraint Pro-
gramming achieves better reduction rates than greedy,
as it can reach actual global minima. Another greedy
algorithm coupled with clever heuristics is proposed
in (Johansen et al., 2012). Although this approach
allows validation engineers to deal with large in-
dustrial case studies, it is not easily comparable to
FLOWER/C as it uses heuristics and does not guar-
antee to reach global minima.

6 CONCLUSION

In the context of software product line testing, this
paper addresses the Feature-based Test suite Reduc-
tion problem which aims at minimizing a test suite
where priority-values are given to the test cases, while
preserving the coverage of tested features. It intro-
duces Flower/C, a tool based on global constraints
and a dedicated search heuristics to solve this prob-
lem. The tool is evaluated on both random and indus-
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trial instances of the problem and the results showed
that Constraint Programming with global constraints
achieves good results in terms of reduction rate on
both the random and industrial instances. For indus-
trial instances, three Constraint Programming mod-
els are compared with different global constraints
and we show that this is a mixture of NVALUE
and GLOBAL CARDINALITY which achieves the best
result. Interestingly, these results show that Con-
straint Programming is competitive with other multi-
objectives test suite optimization approaches.

The main persepctive of this work includes the
deployment of this technique and its industrial adop-
tion. Even if the preliminary results reported in this
paper need to be further refined and extended, we be-
lieve that they are sufficiently convincing to industri-
alize the technology. For that purpose, its integration
within an existing software development chain needs
to be understood. In particular, handling meta-data
about test cases such as duration, priority and code-
coverage needs a proper instrumentation and the im-
plementation or usage of specific monitiring tools to
capture the required information.
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