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Abstract: Badly-scaled matrix pencils could reduce the reliability and accuracy of computed results for many numeri-
cal problems, including computation of eigenvalues and deflating subspaces, which are needed in many key
procedures for optimal andH∞ control, model reduction, spectral factorization, and so on. Standard balancing
techniques can improve the results in many cases, but there are situations when the solution of the scaled
problem is much worse than that for the unscaled problem. This paper presents a new structure-preserving
balancing technique for skew-Hamiltonian/Hamiltonian matrix pencils, and illustrates its good performance
in solving eigenvalue problems and algebraic Riccati equations for large sets of examples from well-known
benchmark collections with difficult examples.

1 INTRODUCTION

Computing eigenvalues and bases of certain associ-
ated invariant or deflating subspaces of matrices or
matrix pencils is central to various numerical tech-
niques in control engineering and other domains.
When the corresponding eigenproblems have special
structure, implying structural properties of their spec-
tra, it is important to use structure-preserving and/or
structure-exploiting algorithms. General numerical
algorithms cannot ensure that the theoretical prop-
erties are preserved during computations (Paige and
Van Loan, 1981; Van Loan, 1984; Kressner, 2005).
Common special structures are Hamiltonian and sym-
plectic matrices or matrix pencils, which are encoun-
tered in optimal orH∞ control (e.g., solution of alge-
braic Riccati equations, or evaluation of theH∞- and
L∞-norms of linear dynamic systems), spectral factor-
ization, model reduction, etc., see, for instance, (Bru-
insma and Steinbuch, 1990; Laub, 1979; Mehrmann,
1991; Sima, 1996). While structured matrices are en-
countered for standard linear dynamic systems, gen-
eralized and descriptor systems may involve struc-
tured matrix pencils. Often such pencils can be re-
cast as skew-Hamiltonian/Hamiltonian pencils, for
which dedicated algorithms have been developed, see
e.g., (Benner et al., 2007; Benner et al., 2002; Ben-
ner et al., 2005; Benner et al., 2012a; Benner et al.,
2012b; Benner et al., 2013a; Benner et al., 2013b;

Jiang and Voigt, 2013), and the references therein.
Quite often, the pencil matrices have large norms

and elements with highly different magnitude. Such
pencils imply potential numerical difficulties for
software implementations of eigensolvers, with
negative consequences on the reliability and accuracy
of the results, see, e.g., (Sima and Benner, 2015a).
Balancing procedures can be used to improve the
numerical behavior. Ward (1981) proposed a bal-
ancing technique for general matrix pencils, which
has been incorporated in state-of-the-art software
packages, such as LAPACK (Anderson et al., 1999).
(This will be referred below asstandard balancing.)
The data matrices are preprocessed by equivalence
transformations, in two optional stages: the first
stage uses permutations to find isolated eigenvalues
(which are available by inspection, with no rounding
errors), and the second stage uses diagonal scaling
transformations to make the row and corresponding
column 1-norms as close as possible. Balancing
may reduce the 1-norm of the scaled matrices, but
there is no guarantee in general. This is the reason
why full balancing is either avoided or provided as
an option in the LAPACK subroutines; some expert
driver routines, such as DGEES, DGEESX, DGGES,
DGGESX, and DGGEV use permutations only, while
other drivers, e.g., DGEEVX and DGGEVX, have an
input argument allowing either permutations, scaling,
both permutations and scaling, or no balancing at all.
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A structure-preserving balancing technique for
Hamiltonian matrices has been developed in (Benner,
2001), but no special procedure has been available
for skew-Hamiltonian/Hamiltonian matrix pencils.

This paper presents a new, structure-preserving
balancing procedure for skew-Hamiltonian/Hamil-
tonian pencils, and illustrates its performance for
some control engineering applications, in comparison
with the general approach, and with the case when
no balancing is used. This procedure includes several
optional enhancements which allow to get meaning-
ful results when standard balancing (possibly even a
structured variant) fails, as shown for some numerical
examples.

2 BALANCING
SKEW-HAMILTONIAN/
HAMILTONIAN PENCILS

Let αS − βH be a complex skew-Hamiltonian/
Hamiltonian pencil, withα, β ∈ C, S ∈ C2n×2n a
skew-Hamiltonian matrix andH ∈ C2n×2n a Hamil-
tonian matrix, i.e.,

(SJ )H =−SJ , (H J )H = H J , J :=

[
0 In

−In 0

]
,

(1)
whereMH denotes the conjugate transpose of a ma-
trix M, MH = M̄T , the overbar denotes the complex
conjugate,MT denotes the transpose ofM, andIn is
the identity matrix of ordern. These definitions imply
the following structure forS andH :

S =

[
A D
E AH

]
, H =

[
C V
W −CH

]
, (2)

whereD andE are skew-Hermitian, i.e.,DH = −D,
EH = −E, and V and W are Hermitian matrices.
WhenS andH are real matrices, thenD andE are
skew-symmetric,V andW are symmetric, theH su-
perscript is replaced byT, and some derivations be-
low simplify.

When the matricesS andH are badly scaled, e.g.,
when their elements have moduli with highly differ-
ent magnitude, the accuracy of computed solutions of
related eigenproblems can be very poor. The accuracy
may be improved by using a balancing procedure, as
described in (Ward, 1981) for general matrix pencils,
and implemented in the LAPACK package (Anderson
et al., 1999). Similarly to the techniques in (Anderson
et al., 1999; Benner, 2001; Ward, 1981), a structure-
exploiting balancing procedure for the structured pen-
cil matrices in (2) would involve, in a first step,
permuting αS − βH by a symplectic equivalence

transformation to isolate eigenvalues in the elements
1 : ℓ−1 andn+1 :n+ℓ−1 on the diagonals ofS and
H , and in a second step, applying a diagonal equiva-
lence transformation to rows and columnsℓ : n and
n+ ℓ : 2n, to make the rows and columns as close
in 1-norm as possible. (A MATLAB-style notation
for array indexing (MATLAB, 2016) is used.) Both
steps above are optional. Balancing may reduce the
1-norms of the matricesS andH .

Note that it is enough to equilibrate the 1-norms
of the rows and columns 1:n of the matricesS andH ,
since‖Si+n,:‖p = ‖S:,i‖p and‖S:,i+n‖p = ‖Si,:‖p, for
anyp-norm, forp≥ 1, and similarly forH (see (Ben-
ner, 2001)). The balancing procedure performs the
following transformation:

S̃ = LSR , H̃ = LH R , (3)

where

L = Ln · · ·LℓP
T
ℓ−1 · · ·P T

1 , R = P1 · · ·Pℓ−1Rℓ · · ·Rn,
(4)

wherePk, k= 1 : ℓ−1, are symplectic permutation or
J -permutation matrices (Benner, 2001), andLk and
Rk are left and right diagonal scaling matrices (with
Lk(k,k), Lk(k+n,k+n), Rk(k,k), andRk(k+n,k+n)
the only diagonal elements different from 1), chosen
to equilibrate the 1-norms of thek-th row and col-
umn of S and H , for k = ℓ, · · · ,n. A permutation
matrix has exactly one nonzero entry, which is 1, in
each row and column. AJ -permutation matrix has a
similar structure, but the nonzero entries may also be
−1. When possible, the permutations are chosen in
the form

P =

[
P 0
0 P

]
, (5)

whereP is ann×npermutation matrix (hence,PTP=
PPT = In). Clearly,P is symplectic, sinceP J P T =
J . As shown in (Benner, 2001), it is generally not
possible to preserve the (skew-)Hamiltonian structure
using symplectic permutations only, but symplectic
J -permutations are also needed.

Applying a permutation (5) in (3) is easy. Specifi-
cally, the transformed matrices becomePTAP, PTDP,
PTEP, PTCP, PTVP, andPTWP.

Consider applying aJ -permutation,P , which has
the following structure, defined by an indexi, i ≤ n,

P =




Ii−1 0 0 0 0 0
0 0 0 0 1 0
0 0 In−i 0 0 0
0 0 0 Ii−1 0 0
0 −1 0 0 0 0
0 0 0 0 0 In−i



, (6)

to the skew-Hamiltonian matrixS , and Hamiltonian
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matrix H . Using the partition ofH in (2), the trans-
formed matrixP T H P is

P TH P =




⋆ −v1:i−1,i ⋆
−wi,1:i−1 −c̄ii −wH

i+1:n,i
⋆ −vH

i,i+1:n ⋆

⋆ cH
i,1:i−1 ⋆

ci,1:i−1 −vii ci,i+1:n

⋆ cH
i,i+1:n ⋆

⋆ c1:i−1,i ⋆
cH

1:i−1,i −wii cH
i+1:n,i

⋆ ci+1:n,i ⋆
⋆ wH

i,1:i−1 ⋆

vH
1:i−1,i cii vi,i+1:n

⋆ wi+1:n,i ⋆



, (7)

where⋆ denotes submatrices which do not change.
Matrix S is transformed similarly.

The permutation procedure first scans the columns
1 : n and then the rows 1 :n of S andH , and uses
row and column permutations with matrices of the

form (5) and (6) so that̃S and H̃ finally have the
first ℓ− 1 columns upper triangular, i.e., with zeros
below the diagonals. This way, the firstℓ−1 eigen-
values of the pencil are defined by the diagonal ele-

ments 1 :ℓ−1 in S̃ andH̃ . The upper triangular struc-
ture is built column by column, starting from the first.
Therefore, the permutations above can take advantage
of the zero subdiagonal part in the already processed
columns. For instance, when aJ -permutation (6) is
formed and applied, the vectorsci,1:i−1, andwi,1:i−1
in (7) (and similarly forai,1:i−1, ei,1:i−1 in S ), as well
as all⋆ vectors under the diagonals in the firsti −1
columns are already zero.

The balancing procedure for (skew-)Hamiltonian
matrices must usesymplectic scalingmatrices as well,
in order to preserve the structure (Benner, 2001). For-
tunately, this is not needed for skew-Hamiltonian/Ha-
miltonian pencils, if diagonal scaling is used, as men-
tioned above. Indeed, without loss of generality, con-
sider that permutations are not wanted, and only scal-
ing should be applied. LetL andR be the real diago-
nal matrices which scale the firstn rows and the first
n columns, respectively, ofS andH . SinceR andL
will be the scaling matrices for the lastn rows and
columns, respectively, the global scaling transforma-
tion is

S̃ =

[
L 0
0 R

][
A D
E AH

][
R 0
0 L

]
,

H̃ =

[
L 0
0 R

][
C V
W −CH

][
R 0
0 L

]
. (8)

Then,

S̃ J =

[
LAR LDL
RER RAHL

][
0 In
−In 0

]

=

[
−LDL LAR
−RAHL RER

]
=−(S̃ J )H , (9)

sinceD =−DH , E =−EH . Similarly,

H̃ J =

[
LCR LVL
RWR −RCHL

][
0 In

−In 0

]

=

[
−LVL LCR
RCHL RWR

]
= (H̃ J )H , (10)

sinceV = VH andW = WH . Therefore, the struc-
ture of S andH is preserved for the transformation
in (8). Note that the left and right transformations
are not symplectic ifL 6= R−1, but they are structure-
preserving, for diagonalL andR. The permutations
used for isolating the eigenvalues must, however, be
symplectic.

As described above, the elementary scaling matri-
ces in (4) are, fork= ℓ, · · · ,n,

Lk = bl diag(Ik−1, lk, In−1, rk, In−k),

Rk = bl diag(Ik−1, rk, In−1, lk, In−k), (11)

where bldiag(X,Y, . . .) denotes a bloc-diagonal ma-
trix with diagonal blocksX, Y, etc. Note that

L−1 = P1 · · ·Pℓ−1L−1
ℓ · · ·L−1

n . (12)

Formula (12) can be used to apply, from the left, the
back balancing transformations to a given 2n×mma-
trix. SinceL−1 has a formula similar toR , to obtain
R , one can apply toI2n the transformations in (12),
with scaling factorslk and rk replaced by 1/rk and
1/lk, respectively. There is no need for an algorithm
to apply the right back transformation.

A special case of application of the balancing
transformations appears when computing the solu-
tion of algebraic Riccati equations (AREs) using the
skew-Hamiltonian/Hamiltonian approach, see (Ben-
ner et al., 2013a), and the references therein. This
approach uses a basis for the stable right deflating
subspace of the matrix pencilαS − βH , where S
andH are suitably defined in terms of the dynamic
system and performance index matrices. For conve-
nience, assume thatS = I2n, which is the case for stan-
dard continuous-time dynamic systems, e.g., when
the control weighting matrix of the performance index
is well-conditioned. (The general case will be briefly

described below.) Let̃U =
[

ŨT
1 ŨT

2

]T
be a ba-

sis of the stable right deflating subspace ofαS̃ −βH̃ ,
corresponding to the balanced pencil. The stabilizing
solution of the balanced ARE is given bỹX = Ũ2Ũ

−1
1 .
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Note thatŨ is related to a basis,U, of the stable right
deflating subspace of the original pencil,αS −βH , by
the transformatioñU = bl diag(R−1,L−1)U, hence[

UT
1 UT

2

]T
:= U = bl diag(R,L)Ũ. Therefore,

the stabilizing solution of the original ARE can be
computed as follows

X =U2U
−1
1 = LŨ2Ũ

−1
1 R−1. (13)

Formula (13) allows to represent and use the solution
X in a factored form, which may be useful for nu-
merical reasons. If balancing also involves symplec-
tic permutations of the form (5) only, then the right
hand side in (13) becomesPLŨ2Ũ

−1
1 R−1PT , where

P denotes here the product of theℓ−1 permutations
performed. Such factorization, is, however, not possi-
ble if J -permutations are also needed, in which case
it is necessary to apply the balancing transformations
before solving the set of linear systems givingX̃.

If S is a general matrix, the order ofS andH is
2(n+ p), wheren is the dimension of the state vector,
andp may be chosen asp= ⌈m/2⌉ (i.e., p= m/2, if
m is even, andp= (m+1)/2, otherwise), withm the
number of system inputs. In this case, the computa-
tions are similar, but̃Ui andUi, i = 1,2, refer to the
lines 1 :n andn+ p+1 : 2n+ p of the matrix bases
Ũ andU, respectively.

3 IMPLEMENTATION ISSUES

The developed balancing algorithm operates only on
the matricesA, D, E, C, V, andW, and preserves
the pencil structure. Moreover, the pairs of skew-
Hermitian matrices,D andE, and Hermitian matri-
ces,V andW, are stored compactly in twon× (n+1)
arrays,DE andVW. Specifically, the lower triangle of
E and the upper triangle ofD are concatenated along
their main diagonals, and similarly forW andV:

DEi j = ei j , j = 1 : n, i ≥ j,

DEi, j+1 = di j , j = 1 : n, i ≤ j,

VWi j = wi j , j = 1 : n, i ≥ j,

VWi, j+1 = vi j , j = 1 : n, i ≤ j. (14)

This way, the storage requirements are reduced by
4n2 − 2n memory locations, in comparison with the
general algorithm in (Anderson et al., 1999), which
needs 8n2 storage space forS andH . Note that in
the real case, the diagonal elements ofD andE, dii
andeii , i = 1 : n, which should be zero, by definition,
are not stored and not used. However, in the complex
case,dii andeii , i = 1 : n, should have zero real parts,
while the imaginary parts might be nonzero; more-
over, the diagonal elements ofV andW should have

zero imaginary parts, but possibly nonzero real parts.
The implementation takes care of the compact storage
scheme when computingPTDP, . . . ,PTWP.

Consider a structured pencil, (S ,H ), and assume
that S = I2n. The order of magnitude of the dif-
ferences in size of the nonzero elements in theH
matrix can be huge. For instance, for the CM6
and CM6IS examples from the COMPleib collec-
tion (Leibfritz and Lipinski, 2003), the maximum
and minimum absolute values of the nonzero en-
tries are about 2.53·105 and 4.9407· 10−324, hence
their ratio is not representable in the usual double
precision representation, and it is evaluated as Inf
(∞). The standard balancing algorithm implemented
in the LAPACK Library subroutineDGGBAL (for ma-
trix pencils) returns scaling factors covering a very
large range of magnitudes, namely with maximum
and minimum values 10159 and 10−47, respectively,
for both left and right scaling factors. No eigenvalue
can be isolated. The scaling transformation matrices,
L andR , have condition numbers with values 10206.
The 1-norms of scaled matrices,H̃ andS̃ , are about
10228 and 10184, respectively, while the 1-norms of
the originalH andS are 6.9123· 105 and 1. Com-
puting the eigenvalues or deflating subspaces using
the balanced matrices would return results very far
from the true ones. CM6 and CM6IS are not the only
examples in the COMPleib collection which produce
numerical troubles for eigenproblem-related compu-
tations. The CM5 and CM5IS examples have also
a huge ratio, 10279, between the magnitudes of their
elements. Other very large ratios are 10141, for CM4
and CM4IS, 1072, for CM3 and CM3IS, or 1037, for
CM2 and CM2IS.

The proposed algorithm uses an adaptation of
the basic LAPACK procedure for finding the scaling
factors, but optionally limits the range of their
variation, possibly via an outer loop. Specifically,
the user can set a threshold value,τ; if τ ≥ 0,
the entries whose absolute values are smaller than
τM0, whereM0 = max(‖H (s,s)‖1,‖S(s,s)‖1), with
s := ℓ : n∪ n+ ℓ : 2n, are considered negligible,
and do not count for computing the scaling factors.
(For the CM6 and CM6IS examples,ℓ = 1, and
setting τ = 10−20, all entries with magnitude less
than about 7· 10−15 will be taken as zero by the
procedure.) Ifτ < 0 on entry, an outer loop over a set
of valuesτi > 0 will enable to select a set of scaling
factors which, if possible, ensure the reduction of a
desired norm-related measure for the scaled matri-
ces. Forτ = −1, this measure is the minimum of
maxi(‖Hi(s,s)‖1/‖Si(s,s)‖1,‖Si(s,s)‖1/‖Hi(s,s)‖1)
whereHi(s,s) andSi(s,s) are the scaled submatrices
corresponding to the thresholdτi . This strategy
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tries to balanceH andS , but also have comparable
1-norms. Forτ =−2, the same measure is used, but if
max(‖H̃ (s,s)‖1,‖S̃(s,s)‖1)> cM0 andt > T, where
c and T are given constants (c possibly larger than
1), andt is the maximum ratio of the scaling factors
found (the maximum of the condition numbers of
L and R ), then the scaling factors are set to 1 and
a warning indicator is set; here, the matrices with
tilde accent are the solution of the above norm ratio
reduction problem. This approach avoids to obtain
scaled matrices with too large norms, compared to
the given ones, and also limits the range of the scaling
factors. Forτ = −3, the measure used is the smallest
product of norms, mini(‖Hi(s,s)‖1‖Si(s,s)‖1), over
the sequence ofτi values tried, while forτ = −4,
the condition numbers of the scaling transformations
are additionally supervised, and the scaling factors
are set to 1 if the “optimal” scaling has a condition
number larger thanT. This tends to reduce the
1-norms of both matrices. Finally, ifτ = −10k, the
condition numbers of the acceptable scaling matrices
are bounded by 10k.

4 NUMERICAL RESULTS

An extensive testing has been performed to assess the
performance of the new balancing solver for skew-
Hamiltonian/Hamiltonian matrix pencils. Computa-
tion of eigenvalues, as well as solution of AREs, have
been considered as main applications. This section
summarizes part of the results.

The COMPleib collection (Leibfritz and Lipin-
ski, 2003) is taken here as a benchmark for eigen-
value computations. All 151 problems withn< 2000
have been tried. For testing purposes, the balancing
algorithms have been used in combination with the
MATLAB eigensolverseig(H ), whenS = I2n, and
eig(H ,S ), whenS is general, or, for small-size prob-
lems, with the symbolic solverseig(vpa(H )) (with
default number of digits, i.e., 32), oreig(sym(H )).
Usually, eig(vpa(H )) andeig(sym(H )) have been
used for examples withn≤ 200 andn≤ 30, respec-
tively. Examples with larger orders need significant
CPU times for symbolic solvers, e.g., over one hour
for CM4 or CM4 IS (n = 240) usingvpa, or much
longer forsym. But a comparison between the eigen-
values computed byeig(vpa(H )) andeig(sym(H ))
has shown a very good agreement between their re-
sults. The maximum absolute difference between
the relative errors ofeig(H ) in comparison with
eig(vpa(H )) andeig(sym(H )) for 100 COMPleib
examples withn ≤ 30 is 3.0292· 10−28. (Examples
JE2 and JE3, withn = 21 andn = 24, respectively,

have been excluded, sinceeig(sym(H )) needed un-
reasonably large CPU time.) However, the rela-
tive errors ofeig(H ,S ), when S = I2n, compared
to eig(vpa(H )) andeig(sym(H )), for example PAS
have been 1.2798· 10−6, and 1.4432· 10−6, respec-
tively. Omitting PAS, the norm of the differences
between relative errors ofeig(H ,S ) compared to
eig(vpa(H )) andeig(sym(H )) was 5.8491·10−25.

There are 18 examples with ratios between the
magnitude of the largest and smallest moduli of
their elements larger than 1016. Besides exam-
ples CM2* – CM6*, this set also includes AC10,
BDT2, PAS, TL, CDP, NN16, ISS1, and ISS2 ex-
amples. Most of these are difficult examples for
any balancing algorithm, and for generalized eigen-
solvers using standard balancing. For instance, for
CDP example, even the structure-exploiting skew-
Hamiltonian/Hamiltonian solver with standard bal-
ancing, forS = I2n, returns eigenvalues with a relative
error of 0.19172 (when compared toeig(H )), and
of 0.24788 (when compared toeig(vpa(H )), while
the same solver without scaling delivers relative er-
rors 1.0476· 10−14 and 1.3064· 10−14, respectively.
These values are close to the error obtained using
eig(H ), 4.9248· 10−15, compared toeig(vpa(H )).
The structure-exploiting solver with balancing option
τ < 0 returns a relative error of 5.4838·10−15 (when
compared toeig(H )), and of 3.9091· 10−15 (when
compared toeig(vpa(H )), even more accurate than
eig(H ).

Figure 1 shows the relative errors of eigenval-

ues computed usingeig(Hl,Sl), where Hl := H̃ , Sl
:= S̃ , with LAPACK balancing (using DGGBAL)
andeig(H ,S ), in comparison witheig(H ) for 151
COMPleib examples. The error is infinite for CDP,
CM3, CM4, CM3 IS, and CM4IS examples. There
are also several large errors using LAPACK balanc-
ing. However, for many examples, balancing im-
proves the accuracy of the computed eigenvalues.
Similar results have been obtained using the struc-
tured balancing solver with optionτ= 0. Specifically,
except for five examples, the differences between the
relative errors of eigenvalues computed using LA-
PACK balancing and the new balancing solver with
optionτ = 0 have been less than about 3.64·10−3.

Figure 2 shows the relative errors of eigenvalues
computed usingeig(Hl,Sl) with the new balancing
solver with optionτ=−1 andeig(H ,S ), in compari-
son witheig(H ) for 151 COMPleib examples. There
are no infinite errors. The errors are smaller for many
examples than when using LAPACK balancing. Note
that the ordinate axes have different scales. Note also
thateig(H ,S ) has often larger errors thaneig(Hl,Sl)
with the new solver. The behavior forτ=−3 has been
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Figure 1: Relative errors of eigenvalues computed using
eig(Hl,Sl) with LAPACK balancing andeig(H,S), com-
pared toeig(H), for COMPleib examples.
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Figure 2: Relative errors of eigenvalues computed us-
ing eig(Hl,Sl) with new balancing solver,τ = −1, and
eig(H,S), compared toeig(H), for COMPleib examples.

almost the same (the maximum difference between er-
rors for the two options has been of order 10−9).

Figure 3 illustrates the relative errors of eigen-
values of αS + βH , computed usingeig and
the SLICOT structured eigensolver MB04BD (see
www.slicot.org), without balancing, in comparison
with eig(H ). The structured eigensolver is more ac-
curate thaneig for almost all examples and compa-
rable witheig for the remaining examples. Figure 4
uses similarly the structured eigensolver applied toS̃

andH̃ , obtained with balancing optionτ =−1. It can
provide even more accurate results thaneig(H ,S ),
see Fig. 2. For comparison, Fig. 5 shows results for
option τ = 0. Clearly, standard balancing does not
provide good results in all cases, even using a struc-
tured solver.

The remaining of this section considers the per-
formance of the new balancing solver, in combina-
tion with the structured SLICOT routine MB03LD,
to compute the deflating subspaces of skew-
Hamiltonian/Hamiltonian pencils, for solving AREs
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Figure 3: Relative errors of eigenvalues computed by
SLICOT structured eigensolver without balancing and
eig(H,S), compared toeig(H), for COMPleib examples.
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Figure 4: Relative errors of eigenvalues computed by
SLICOT structured eigensolver with balancing,τ=−1, and
eig(H,S), compared toeig(H), for COMPleib examples.
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Figure 5: Relative errors of eigenvalues computed by
SLICOT structured eigensolver with balancing,τ = 0, and
eig(H,S), compared toeig(H), for COMPleib examples.

from the SLICOT CAREX collection (Abels and
Benner, 1999). This combination is referred to as
skHH in the legends of the following figures. Both
pencils of order 2n (with S = I2n) and extended pen-
cils of order 2(n+ p) have been tried. The com-
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Figure 6: Relative errors of the stabilizing ARE solutions
computed by SLICOT structured eigensolver (for extended
pencil), with balancing optionτ = 0, compared tocare, for
examples from the SLICOT CAREX collection.
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Figure 7: Relative errors of the stabilizing ARE solutions
computed by SLICOT structured eigensolver (for 2n-order
pencil), with optionτ = −1, compared tocare, for exam-
ples from the SLICOT CAREX collection.
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Figure 8: Relative errors of the stabilizing ARE solutions
computed bycare and SLICOT structured eigensolver (for
extended pencil), with optionτ = 0, compared to exact so-
lution, for examples from the SLICOT CAREX collection.

puted solutions are compared with the exact ones,
when known, or with the solutions returned by the
MATLAB function care. Note thatcare uses a
special balancing procedure, and Hamiltonian ma-

trices, instead of pencils, for all examples, except
for CAREX example 2.2 with default parameter, for
which the control weighting matrix tends to be sin-
gular. This creates an advantage forcare over the
new solver. However, both solvers produce compa-
rable results, when the balancing optionτ = −1 is
used. See (Sima and Benner, 2015b) for a compari-
son between a Hamiltonian-based solver andcare for
CAREX examples.

Figure 6 shows the relative errors of the stabiliz-
ing solution of the AREs computed using SLICOT
structured eigensolver (for extended pencil), with bal-
ancing optionτ = 0, in comparison withcare, while
Fig. 7 plots similarly the relative errors when option
τ =−1 is used. Moreover, Fig. 8 and Fig. 9 present in
the same manner the relative errors compared to the
known, exact solutions. The balancing optionτ =−1
ensures better results than the standard balancing (for
τ = 0). Finally, Fig. 10 plots the relative residuals for
care and the structured solver.
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Figure 9: Relative errors of the stabilizing ARE solutions
computed bycare and SLICOT structured eigensolver (for
2n-order pencil), with optionτ =−1, compared to exact so-
lution, for examples from the SLICOT CAREX collection.
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Figure 10: Relative residuals of the stabilizing ARE so-
lutions computed bycare and SLICOT structured eigen-
solver (for 2n-order pencil), with optionτ =−1, for exam-
ples from the SLICOT CAREX collection.
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5 CONCLUSIONS

A new structure-preserving balancing technique for
skew-Hamiltonian/Hamiltonian matrix pencils is pre-
sented. Symplectic (J -)permutations and equivalence
scaling transformations are used. Several enhance-
ments are described, which avoid a large increase of
the norms of the pencil matrices, and/or of the con-
dition numbers of the scaling transformations, which
can appear when using the standard balancing pro-
cedure. The numerical results show a good perfor-
mance of the new technique in comparison with state-
of-the-art solvers. Tens of examples from well-known
benchmark collections have been investigated.
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