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Abstract: Vehicles with several centered orientable wheels have one of the highest maneuverability and are hence an

excellent choice for transportation tasks in narrow environments. However, they are non-holonomic, in general
redundantly actuated, and additionally suffer from configuration singularities, which makes their modeling and
control challenging. Existing control approaches only consider the vehicle kinematics whereas the required
torques are commonly controlled by classical PD motor controllers. However, this leads to considerable
tracking errors and a violation of the constraints especially during acceleration phases. Moreover, actuator
counteractions and an undefined torque distribution can be observed. This paper introduces a model-based
control concept that overcomes these issues. It resolves counteractions and distributes torques according to
physical limitations which significantly reduces slippage and the energy consumption and further reduces the
tracking error. To this end, an inverse dynamics solution of a redundantly parametrized model is used. The

method is robust to configuration singularities. This is confirmed by experimental results.

1 INTRODUCTION non-holonomic, i.e. they can independently attain any
position and orientation but may have to reorient their

Mobile platforms offer a large workspace for appli- wheels during the navigation. For this reason they are

cations in service robotics as well as manufacturing. often called pseudo-omnidirectional.

Their main application is, especially in industry, still The number of driven wheels depends on the
the transportation of goods —a seemingly simple task transporter size, i.e. the payload, and is often higher
that can, however, become very complex given the than 2. The driving motors are thereby acting in par-

demand from industry for compact and cost-efficient allel which means that the vehicle is not only non-

shop floor solutions. A consequence is that a pre- holonomic but also redundantly actuated. There are
cise locomotion with a mobile base offering the max- several publications about the higher-level kinematic

imum degree of rnaneuverabi"ﬁj/I (Campion etal., control of such vehicles (Giordano et al., 2009; Of-
1996), ie. 6M =3, is ever more relevant. Vehicles tadeh et al., 2013; Stoger et al., 2015), which results in

with 6M — 3 are also called omnidirectional since they a feasible motion of the wheels and moves the vehicle

are able to move in each direction and independently to & destination. However, there is hardly any lower-
change their orientation. Holonomic omnidirectional l€vel dynamic control scheme for actually achieving
Vehic|eS, equipped with > 3 Mecanum or Swedish this motion reported in the literature. It is mOStly in-
Whee|S, are the most popu|ar type of this class. They dicated that a Simple PD controller is used. Such a
need a small number of actuators, since they do notcontrol neither takes the dynamic of the vehicle into
need to steer, and are easy to control. However, &ccount, nor the redundancy of the actuation. Consid-
Mecanum wheels possess poor load capacities com-€rable errors in dynamic phases and unnecessary high
pared to standard wheels, they introduce vibrations forques d_ueto the actuator counteraction, which again
to the actuators and chassis, and lead to much highef€ad to slip, are the consequence.

slippage. Platforms witm > 2 centered orientable Common approaches for controlling platforms
standard wheels overcome these problems. Centemwith dy < 3 can be divided into two classes: 1) ro-
orientable wheels are wheels which can be steeredbust control and 2) model-based control strategies. In
about a vertical axis passing through the center of the the first class sliding mode controllers are widely used
wheel. Such platforms are omnidirectional as well but (Yang and Kim, 1999). One and the same controller
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works for different loads quite well but the robust- cluding friction is given and the constraint forces are

ness has to be paid by a high switching frequency of eliminated. In Section 4 the inverse dynamics is com-
the input torques. Thereby, the second class is moreputed and the torque distribution method presented.
promising for us. A model-based inverse dynam- Subsequently, the control concept is formulated and
ics controller reduce the tracking error significantly its asymptotic stabilization is proofed. Experiments

and can easily be adapted if the load of the vehicle which validate the theory are presented in Section 5.
changes. So far there is hardly any dynamic con- The paper closes with a summary in Section 6 and
trol method for redundantly actuated platforms with some remarks for future research.

Ov = 3. In (Lee and Li, 2015) the authors use the in-

verse dynamics solution extended by a sliding mode

controller but have not addressed the redundancyres2  PL.ATFORM KINEMATICS

olution or counteraction avoidance. Methods for the

control of redundantly actuated systems can be foundThe variables that parametrize the current configura-
in the field of parallel mechanisms (Muller and Huf-  tjon of the platform, see Figure 1, can be divided into

nagel, 2012) and are adapted in this paper to the needsyyg sets (Ostrowski and Burdick, 1996). The first set

of mobile robots. Ouraimis to use only aminimal de- gescribe the vehicle’s posture, i.e. displacement of

mand of torque and to distribute this demand among the chassis-fixed fram@c = {Oc,cx, cy} relative to
the actuators by considering their limitations as well 5, jnertial framer; = {0y, X, 1y}

as differences in fr|ct|onal cqndltlons, €.9. d_ue to an Assumption 1. The vehicles motion is assumed to be
unbalanced load, in order to increase the uptime of therestricted to the horizontal plane

vehicle and reduce slippage in the resulting motion. ) ' .

The result is a novel concept for the low-level control With Assumpt|o$ 1 the pose can be parametnze;d us-
of non-holonomic, omnidirectional vehicles equipped "9 dc = (%Y,y)" € SE(2). The vector(x,y) € R

with an arbitrary numben of wheels. The control desclnpes the reference poi@¢ in the framef; and
concept can be seen as building block which is inde- Y € S is the angle enclosed by andcx.

pendent from the higher-level control scheme used for
motion planning.

Although there is a large number of dynamic mod-
els for other platform types, e.g. differential drives
(Fukao et al., 2000) or car like systems (De Luca
et al.,, 1998), only a few models are available for
omnidirectional, non-holonomic vehicles. Moreover,
those models either do not consider constraint forces
(Lee and Li, 2015) or neglect the wheels (Ploeg et al., 1y
2002) which results in a considerable model error.
However, such models can still be found in the lit-
erature since they bypass the resolution of the singu-
lar rolling constraints. Therefore, a novel dynamic
model is presented in this paper. It is redundantly
parametrized, which is especially also valid in sin-
gular configurations, and includes all relevant effects.
Constraining forces are numerically eliminated by a
null space projection method (Muller and Hufnagel,
2012). The null space projector is computed by a
novel semi-analytic orthogonalization method which
takes the structure of the constraints into account an
is computationally efficient. The latter is especially in
the context of the control crucial. Qo = (Or1,...Om, §st,- . Osn)T €T (1)

The paper is structured as follows. In Section HereT?2" is the 2n dimensional torus. For later pur-
2 the description of the platforms kinematics is pre- Pose additional frameg$wi = {Owi,wiX, wiy} are at-
sented. The configuration variables are described andi@ched at each drive unit. .
the rolling constraints are formulated. In Section 3 The configuration of the mobile platform is thus de-

the redundant parametrized dynamic model is derived Scribed by the vector of generalized coordinates
whereby an overview about the modeled effects in- q=(qt.qy)" € Q=SE(2) x T?". 2)

o) chassis

Figure 1: Non-holonomic, omnidirectional vehicle witk=
4 centered orientable wheels.

The second set of variables are called shape or inter-
nal variables. They describe the configuration of the
locomotion system and are given hyoll anglesoy;
dandn steer angle®g, with i € {1,...n}. They are
summarized in
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Although ideal rolling is a simplified assumption 3 DYNAMIC MODELING

we can use it within the control in order to minimize

the resultant slippage and counteraction. Ideal rolling

means that the longitudinal velocity;k direction) of
a certain wheel is consistent with its rolling speed,
which requires

cogdsi +Y)X+sin(¢s + Y)Y+ li sin(ds — doi)y — rri
=0, 3)
and that the lateral velocityfy direction) is zero, i.e.
—sin(¢g +Y)X+cogds +Y)y+li cogds — o )VZ(Oj
4

The polar coordinatds anddo; describe the position
of theith wheelOw; observed fron¥c, see Figure 1.

The following properties directly follow from the
rolling constraints, see Equation (3) and (4):

Property 1. The constraints can be written faf-
fianform, i.e. linear in velocities, a3(d)g = 0.

Property 2. The n steering velocitiegg are uncon-
strained. Hence, the columns dfwhich correspond
to them are zero.

The rankm of J € R2"%3+2" determines the number

3.1 Redundantly Parametrized
Equations of Motion

The equations of motion are derived using Ehejec-
tion Equations

% [aRv_cb aﬂ]} T <R.pc4_b +RORRPcH — Rfc,b> _o (8
ey Lo 0 RrLb + RGIRRLL — RTb

Projection Equations are based on tRewton-
Euler equationdor body b which are evaluated in a
reference framefr, and are projected onto the direc-
tion of the generalized coordinatgs Hererpcp =
MpRVc b IS the linear momentum of the center of grav-
ity (c) of bodyb. rLp = rOprOX, is the angular mo-
mentum, angkVcp, andro), are corresponding trans-
lational and angular velocitiegd is a skew symmet-
ric matrix representing the cross proddg = w x p.
rfcp andgTy, are total forces and torques acting on
the center of gravity / body. The Equations (6) are

of independent constraints. Hence, the number of in- used to model inertia effects, the influence of traction
dependent velocities respecting the constraints, alsoand friction forces as well as motor torques.

referred to as generalized velocities, is
oy =3+2n—m. (5)

Another interesting property is that tihdateral con-
straints (4) only restrict the chassis twigty,y). By
considering the corresponding rowslinone can eas-
ily proof the following property.

Property 3. The number and set of independent lat-
eral constraints depends on the steering angles and is

between 1 and 3.

In the case ofh > 2 wheels the minimum number of
generalized velocities i8, = 3+ 2n— (n+ 3) = n.

Inertia is considered fal = 2n+ 1 bodies:
e the chassis (c)
andn drive units including:

e n steer motors {§, which are mounted on the
chassis and are rigidly coupled with a drive unit

e n drive motors (), which are in turn mounted
on the drive unit and are rigidly coupled with the
wheel.

The inertia of the chassis is, in general, significantly
higher than the inertia of the drive unit. However,

Referring to Property 2, they are given by the uncon- Since especially the orientation of the drive unit has
strained steering angles. In this case, the vehicle can@ much higher acceleration they are relevant too. The
not drive but only steer the wheels. Thus, vehicles velocities of the chassis are

with n > 2 wheels have to drive in regions of reduced (s i va : T
rank. In this regions, only one particular twist, namely ° ¢~ (xcody) +Tysm(y) Xsin(y) +ycosy) )
the rotation about the instantaneous center of rotation, cwe= (0 0 )
is possible. Some wheel setups, especiallynfer 2
wheels, permit the axial alignment of all wheel axes.
In this special configuration, the numberof inde-
pendent constraints further reduces by 1 since all lat- wiVes = wiVeri =

eral constraints are equal. Such configurations allow %cogy+ bs) -+ ysin(y+ og) + I sin(ds — doi)y

the vehicle to rotate about an arbitrary point on the | . . Ny , ) NEPYAR
line specified by the wheel axes. This is summarized xsin(y+@s) +ycos(yar ¢s) +licosds — ¢a)y

by the following property.

Property 4. The constraint matri¥ Js either perma-
nent singular or can become singular. The nhumber of
generalized velocities is thd € {n+1,n+2}.

and the velocities of the steer axes and the rolling
wheels are

wis = (0 0 V+os)
wiaxi = (0 i V+¢9)T,
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all vectors are expressed jAyi (Figure 1). Itis as-  Then, the input matrix has the following structure
sumed that the center of gravity of the drive unit co-
incides with the steering axBy;. B— [ B, 0n+3,n] )
There are two kinds of friction sources. The first Onni3 Tan
kind is bearing friction. It is commonly modeled as where0; j € R is a zero matrixin, € R™ a identity
a viscose and coulomb friction using a static model matrix and '
(Bonaand Indri, 2005). The modelis computationally Ozn
inexpensive and the parameters can be easily identi- By = [ ' ] :
fied since the model is linear w.r.t. the parameters.
The second kind of friction source is the tire/soil con-
tact. Since ideal rolling is assumed the generalized,
i.e. projected, traction force®; are imposed by the
constraints (3), (4):

(10)

In,n

The dimensions slightly change for vehicles where
this is not the case but the method is still valid.

3.2 Elimination of Constraint Forces

Q =J"A, (7) The Equations (8) form a differential algebraic sys-
, . tem, and their evaluation requires the determination
whereA € R“" are the correspondirigangrange mul-  of the Lagrange multipliers. The computational ex-

tipliers. The ground contact model must also take the pense of this computation is in particular problematic
rolling resistance into account. The rolling resistance since it should be used within the control law (Miiller

is caused by elastic deformation of tire and soil, and and Hufnagel, 2012). Therefore, the constraint reac-
can again be modeled (within a certain velocity range) tions are not computed but eliminated instead. This
by a Coulomb and viscous friction model (Hall and js commonly done by reformulating the equations of
Moreland, 2001). The applied driving (r) and steering motion with a set of generalized velocities that respect

(s) torques are given by the constraints. However, the subset of regular con-
T ] straints depends on the configuration of the vehicle.

wits = (0 0 1) (Ts — HsaSIgn(Ps) — Hsids) As a consequence, a set of different generalized ve-
witi= (0 1 O)T (Tri — Wi SIgN(Ori) — P ) locities and their corresponding dynamics equations

are often used. However, this leads to issues dur-
wherep are friction coefficients for the Coulomb (c) ing the transition between these models which can be
and viscous (V) frictiontg is the steering torque and  avoided by the following approach.
T;i the rolling torque, respectively. The discontinuous (Muller and Hufnagel, 2012) suggest to use one
sign(x) function leads to chattering about zero veloc- redundantly parametrized model, as in (8), but elimi-
ity. In order to avoid that, this function is replaced in nate the constraining forces by projecting the dynam-
the control law by the smooth tapty'e) function. The ics equation with a projectd to the null space al.
parametee is used to determine the region where the This projector is not unique. The requirements are
force is reduced due to low speeds. The valueds-
pends on the application. In the experiment it was set IN=0, (11)
to 0.01rad's, which corresponds to a driving speed of j.e. N is an orthogonal complement of, and
~ 1 mny/s for the considered system. rankN) = 3, i.e. NT only removes constraining

The dynamics of the non-holonomic, omnidirec- forces. Projecting Equations (8) leads to
tional vehicle can be expressed by the system of dif- T s ax . T
ferential algebraic equations N' (MG+Cq+f)=N'Bu. (12)
There are two methods proposed by (Muller and

M(@)a+Cla.a)a+f(q) =B(@u+J(@) A (8a) Hufnagel, 2012) for the analytic computation Nf

J@gq=0. (8d)  Both, however assume regular constraints and, as a
consequence of Property 4, are not directly applicable
for pseudo-omnidirectional vehicles. In this work a
semi-analytical approach is used which consist of an
analytical and a numerical step.

In the analytical step Property 2 is used
to determinen columns of N.  The columns
k € {4+ n,...3+4 2n}, corresponding to the
Assumption 2. Itis assumed that each wheel is fully steering velocities, of] are zero. Hence, unit
actuated, i.e. each wheel has a steering and driving vectors ug, which are zero but have 1 at the
motor. kth component, lie in the null space of the

HereM e R2"32M3 jg the generalized inertia ma-
trix, C§ € R?"3 includes Coriolis and centrifugal
forces,f € R?™3 Coulomb and viscous frictions =
(Tr1,---Tm, Tst, .. Tsn) € R?", andB € R?"32" are
the input torques and matrix, addA the generalized
constraining forces acting on the system.
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Algorithm 1: Gram-Schmidt inspired projec-
tion method for the null space computatidn|
is the Euclidean vector norm.

1 Function computeremainingnull_spacevectors
input : Constraint matrixJ

output: Remaining null space directioiN,
K=Q3T], Nn=[],i=1

d=n

fori=1,... 3do

q=ui
i=i+1
eliminatedirections(q, K)
if ||@l| > €then
a=aq//ql
Nn = [qu]
o =0/+1
K=K,
end

© 00 N O O B~ WN

PR
N B O

[y
w

end

[N
I

end

Function eliminatedirections

input : q vector under consideratioK, column
vectors represent directions which
should be eliminated

output: n: remaining components @f

T
o o

17 k=1

18 repeat

19 j = columnK, k)

20 k=k+1
ST UAY

X a=a- ()i

22
23

until ||g|| < € or k >nr_of_columnsky
end

constraint Jacobian, i.dux = 0. Hence, the full rank

matrix
Na = |:On+37n:|
In,n

(13)

satisfies (11). This providescolumns ofN.
In the numericalstep the remaining, — n null

space vectors are computed. This is commonly done

by a singular value or full QR decomposition. These

algorithms, however, compute a basis for both, the

n+ 2 (or n+ 1) constrained and the remaining 1 (or

zero. However, since the column spacdbfand the
allowed directions form an orthogonal complement,
this vector can always be split into allowed and con-
strained components. The constrained components
are removed in theliminationdirectionsphase by
means of a vector projection. This reveal whether
there is any motion possible which has a component
in the x-direction. If not, they-direction or finally a
pure rotation is tried. The algorithm also works in
the case of aligned wheel axes, i.e. 2 missing vectors.
The only thing to do is to continue searching after one
admissible velocity is found, and to remove not only
the constrained directions but also the former found
admissible directions.

The computation is very efficient since the projec-
tion, which is needed for the elimination step, only
consists of simple arithmetical operations and the
number of projections is limited toré J has only
zero columns in the last entries, thus the result has
the following structure

_ Nr
Nn = [On.tsv—n]

whereN; e R33N js computed by the algorithm,
so that the columns &4, are orthonormal.

Combining the analyticaN, and numericaN,
null space bases finally result in

_ [ N;
On.&,—n
Property 5. The columns of the null space projection

matrix N are orthonormal. Hence the left inverse of
N is given by its transposed.

(14)

N=[Nn N

0n+3.n] ) (15)

In.,n

4 MODEL-BASED CONTROL

4.1 Inverse Dynamics and Redundancy

Resolution

2) unconstrained directions and thereby add an un- a this point the inverse dynamics can be computed
necessary high computational expense to the method~Dy evaluating (12) with a desired motigg(t)

ology. An algorithm that avoids this is introduced in
the following, see Algorithm 1. It is inspired by the
Gram-Schmidorthogonalization (Bjorck, 1994).

The algorithm determines a non-trivial vectqy,
which is orthogonal to the constrained directigns
where j is a transposed row af and hence again
fulfills Jg, = 0. The search starts with = u; =
(1,0,...0)" that correspond to a pure translation in
thex-direction of frame¥,, see Figure 1 and (2). The
rolling constraints are obviously violated since the en-
tries that correspond to the drive velocitigg are

N'Mdy+NTCay+N"f =Qy=N"Bup, (16)

which determines the required generalized foQgs
Resolving the last term in (16) yields required torques
up thus solving the inverse dynamics problem. The
computational effort of this task can be significantly
reduced if the structures Bf see (9), andll, see (15),

are taken into account
NrTBr Os,—nn| (Ur Qrd
b A 17
{ Inn Us Qsd (17)
73
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Hence, the special choice Nfdecouples the driving
ur and steerings torques. The latter are directly given
by the lasth elementLs 4 of the generalized torques
Qu-

The driving torques must be computed by the re-
maining equations

Biur = Qr g. (18)

By investigating the dimensions of the projected input
matrix B, = N B; ¢ RY>~NN whered, — nis in gen-
eral 1 or 2, it follows that the equation is underdeter-
mined. Hence, there is an infinity number of driving
torquesy; which resultin the sam@, 4. The systemis

therefore called redundantly actuated. To resolve this

redundancy, the solution is chosen which minimize
the following quadratic cost function (Muller, 2011)

.1
Ui =arg rLunéurTWu( (19a)
r

Bru = Qra,

with a positive definite weight matrW € R™", The
cost function ensures that only a minimal torque de-
mand is used to provid® 4. The distribution of this

st. (19b)

demand can be done by choosing a proper weight ma-

trix. In our approach the following diagonal matrix is
used

W = diag(1/T maxa - - - 1/ Tmam) » (20)

wherebyTt, maxi are the maximum torques w.r.t. the
motor and friction limitations. The latter is approxi-

4.2 Augmented PD-control

The inverse dynamics (22) provides the torque needed
to follow a given desired motioqy. However, there

is no feedback stabilization mechanism in this law.
Hence, model uncertainties and disturbances will in-
evitably lead to significant errors. The classical ap-
proach to eliminate these errors is a decentralized
strategy which independently controls thegtuated
degrees of freedom

Ti = Pr/ot (brig— i) dT+Dr(dria—dri)  (24)

Ts = Ps(bs.0— ¢si) + Ds(dsi,a — dsi)- (25)

The rolling constraints instantaneously only admit
oy € {n+1,n+ 2} independent velocities, hence the
result is a violation of the rolling constraints and a
counteraction of the control torques.

Our approach resolves this problem by a central-
ized model-based control

uapp = (NTB)* (NTqu +NTCqy+NTf

t
+DNT(@y @) +P [ NT(gg ) ). (20

The system matrices and vectdsC, f are evalu-
ated by the vehicles current pose/velocity. The argu-
ments of them are suppressed due to the lack of space.
D,P € R®% are positive definite gain matrices. The
idea behind (26) is to use the projected velocity error

mated by the stall torques, that is the maximum torque nd its integral

which can be applied to a single wheel, while accel-

erating the chassis against a stop, that does not result
in slippage. They are determined by experiments and.

should include frictional differences due to an unbal-
anced load in the torque distribution.
The solution of (19) is given by

_ __ _ -1
u =W (BrW’lBrT) Qg (21)

= B:r

WhereB,  is a right inverse oB;, i.e.BB, = I.
Summarizing, the inverse dynamics yields

up = (N"B)*Qu, (22)
with the right inverse
"t
(NTB)* — [ B Q-m} (23)
On,n+3 In,n

of the projected input matriN™B .
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t
a=N'(@-0. &=/ ad @)
instead of the individual velocity error of each wheel
to stabilize the system. The counteraction is thereby
removed since the dimension of the error is equal to
the local degree of freedody. The resulting torques
are finally again distributed in a minimal fashion over
the existing drives.

In the following it is proven that (26) asymptot-
ically stabilizesq along a desired motiofy. It is
therefore assumed that the desired velogitys pro-
vided by a higher-level controller and respects the
constraints. By applying (26) to (12) and project
it into unconstrained directions, the closed loop dy-
namic equations can be formulated as follows

N"M(d — &) +N"C(3y — @) + Dey + Pe, = 0. (28)

Moreover,q andqy respect the constraints. Hence,
they are lying in the null space dfand, as such, can
be expressed by a linear combinatianv, of the ba-
sisN of this space

0y—a=Nv; —Nv2 =Ne,. (29)
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It follows from Property 5 and Equation (27) thegt=
vi —V,. Inserting (29) in (28), yields the following
error system

Mé, +Ce, +De, +Pe, =0 (30)

with the projected mass matrM = NTMN and the
projected Coriolis and centrifugal forc€®, where
C =NTMN +NTCN. The stability can be proven by
introducing the followind.yapunov function
_1lag 1

V= 2ev Me, + 2epPep. (31)
Differentiating V= w.r.t.
e,(t),ep(t) of (30) yields

time along a solution

V= %eI(M ~2C)e, —€)De, = —€]De, < 0. (32)

Thereby, the following properties are used:
Property 6. M is positive definite,
Property 7. M — 2C is skew symmetric.

The proof of them can be found in (Murray et al.,
1994). Referring to th&rasovskii-LaSalle invari-
ance principle for a positive definite functiok’ > 0
with a negative semi-definite derivatiwe < 0 the
state converge to a rest position in the subset of
V = 0. The only rest position of (30) in this subset
is (ev(t),ep(t)) = (0,0) which proves the asymptotic
stabilization of the control law.

5 EXPERIMENTAL RESULTS

In this Section experimental results of the proposed

Figure 2: Non-holonomic omnidirectional manipulator with
n = 2 actuated wheels. The laser scanner marks the front
side.

Table 1: Selected parameters of the equations of motion.
Inertias are given together with the corresponding rotatio
axes.

symbol value description

mc 93 kg chassis weight
Cc 4.51kg nt inertia chassigyjz axis
Bi 205-10 3kgn? inertia steering unify
G 0.2234kgmM inertia steering unifyiz
rci 0.88Nm Coulomb, driving
Hrvi 0.35Nms/rad viscous, driving
Msd 2.11Nm Coulomb, steering
Msvi 2.08 Nms/rad viscous, steering

configuration. The orientation is chosen to be always

theory are presented. The used vehicle is equippedtangential to the desiretkq,yq) curve. The corre-

with n = 2 actuated wheels and is shown in Figure
2. The wheels are diametrically mounted about the
reference poinOc. The front wheel is indexed by

i = 1, the rear wheel by= 2. The driving motors
are DC motors with a maximum torque of BHNm.
They allow a maximum driving speed of4ad/s
which equals a linear velocity op;ir = 0.41m/s
with a wheel radiug = 0.1m. The steering motors
are brushless DC motors with a maximum torque of
129Nm and a maximum steering speed of 985/s.

Selected parameters of the considered vehicle are

summarized in Table 1.

Figure 3 visualizes the driven maneuver. It can be
divided into two parts. The first part £ 0...5s) is
a pure rotation by = 180° about the reference point

sponding steering and driving velocities are summa-
rized in Figure 4. The motion is firstly controlled by a
classic PD control approach (25) and secondly by the
proposed model-based control (26). A fair compari-
son between them is ensured by an independent op-
timization of the corresponding control coefficients.
The result of this optimization is summarized in Ta-
ble 2. The coefficient® andD, corresponds to the
error component which is projected By while Ps
andDs correspond to the projection bl.

Since the steering angles are unconstrained and
regularly actuated, both control concepts result in the
same error correction laws. Thus, the same control
coefficients can be used. Differences between the re-
sulting tracking errors, see Figure 6, are a result of the

Oc. Therefore, the wheel axes have to be aligned, inverse dynamics and can be primary seen in acceler-
hence it is a motion where the constraints are singu- ation phases € {11,15,...18}s. There, the model-
lar. In the second part, a mixed motion with transla- based control result in a significantly lower tracking
tional and rotational components is done in a regular error. The tracking error of the driving velocities can
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Figure 3: — Desired chassis positior— sampled chas-

sis orientation and driving directiori,) points in timet; € Figure 5: Velocity tracking error for the- classic PD and

— model-based controlled front whaek 1.

{0s 105125165 22s}.
Table 2: Control coefficients.
1
symbol value description
P 0.937Nm/rad driving classic
0.5 D, 0.181 Nms/rad driving classic
x P 0.112Nm/rad  driving model-based
_eE_ 0 D, 0.238Nms/rad driving model-based
> Ps 1.13Nm/rad steering
- Dg 0.3Nms/rad steering
—05 Tr max1 9.6 Nm torque weight front
Tr,max2 10.2Nm rear motor

-1

resulting driving torques. They are presented for the
classic control in Figure 7 and for the model-based
PD control in Figure 8. Betweeh= 10s and 12s it
Figure 4: Driving velocity of— front and— rear wheel can be seen that the classic control result in signifi-
normalized byr ¢rmax =0.4m/s, steering velocity of cant higher driving torques than the model-based ap-
front and— rear wheel normalized bfrs max=180/s. proach. Moreover, the torques show an opposite sign.
Hence, one motor is accelerating while the other de-
be found for the front whedl= 1 in Figure 5. Sig-  celerates. This is a clear result of the counteraction
nificant differences can again mainly be found at ac- and an arbitrary distribution of the torque demand.
celeration phasese {0,3,16,20}s. The differences  Further investigations show, that this higher demand
can also be seen in the total slip distance (constraintcan be observed over the whole trajectory. As indi-

0 2 4 6 8 101214 16 18 20 22
tins

violation) cator for the energy demand, the quadratic average of
T the torques is used
A= /t VB Bt (33) o 1T o, an
S Tho

It is computed by integrating the left-hand side of S _
Equation (3) and (4). Due to violation they are not For the model-based control this indicatorTig +

zero but equal to some longitudinabng and lateral T2 = 3.039Nm which is 14.75% lower than the
Alaﬂ slip. Along the 2595m long path, the model- 3.565Nm for the classic control. The consequence

based control leads t; + A, = 0.041m (1.58% of is a much lower energy demand for the model-based
total path length) slip distance, whereby classic PD control, and as a resulta much higher uptime.
control leads\; + Ay = 0.137m (5.28% of total path
length) slip distance.
Significant differences can also be noticed in the
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Figure 6: Steering tracking error for the- classic PD and

— model-based controlled front whaek 1.
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Figure 7: Driving torque for the classic DP controk—
Front wheel = 1 and— rear wheel = 2.
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Figure 8: Driving torque for the model-based control-
Front wheel = 1 and— rear wheel = 2.

6 SUMMARY AND OUTLOOK

In this work a model-based dynamic control con-
cept is introduced for redundantly actuated, non-
holonomic and omnidirectional vehicles withcen-
tered orientable standard wheels.

The first part of this paper introduces a framework
for the dynamic modeling of such vehicles, including
friction and inertia effects. It turned out, that the kine-
matic constraints of the vehicle are permanently sin-
gular or can become singular. Therefore the dynam-
ics is modeled with a redundant set of coordinates.
This formulation does not eliminate unknown trac-
tion forces (constraint forces) in the dynamic equa-
tions but is in each configuration, especially in singu-
lar configurations, valid. The elimination of the con-
straint forces is done through projecting the dynamics
equation with a null space projector of the constraints.
This projector is computed in a highly efficient man-
ner by a semi-analytical approach.

The second part uses this model for an augmented
PD-control consisting of an inverse dynamics compo-
nent as well as a stabilizing feedback PD control law.
The distribution of the computed torque among the
different actuators is done through a weighted least
square approach. Whereby wheels with a higher stall
torque, which is the maximum motor torque that does
not result in slippage, during accelerating the chassis
against a mechanical stop, are less weighted. A PD
control is additionally used to asymptotically stabilize
the vehicle along a desired motion. The counteraction
is thereby avoided by using the projected velocity er-
ror instead of the individual wheel velocity errors.

Future work will focus on the online identification
of the load weight and the frictional conditions. This
knowledge can be used to adapt the parameters of the
inverse dynamics as well as the torque balancing law
which improves the robustness of the concept. Ad-
ditionally, the dynamic model will be used to moni-
tor the vehicles state enabling a higher-level logic to
detect faults on the drive units and unexpected colli-
sions.
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