An Approach to Off-talk Detection based on Text Classification within an Automatic Spoken Dialogue System

Oleg Akhtiamov, Roman Sergienko and Wolfgang Minker

Institute of Communications Engineering, Ulm University, Albert Einstein Allee 43, Ulm, Germany

Keywords: Human-human-machine Interaction, Text Processing, Term Weighting, Feature Transformation.

Abstract: This paper describes the problem of the off-talk detection within an automatic spoken dialogue system. The considered corpus contains realistic conversations between two users and an SDS. A two- (on-talk and off-talk) and a three-class (on-talk, problem-related off-talk, and irrelevant off-talk) problem statement are investigated using a speaker-independent approach to cross-validation. A novel off-talk detection approach based on text classification is proposed. Seven different term weighting methods and two classification algorithms are considered. As a dimensionality reduction method, a feature transformation based on term belonging to classes is applied. The comparative analysis of the proposed approach and a baseline one is performed; as a result, the best combinations of the text pre-processing methods and classification algorithms are defined for both problem statements. The novel approach demonstrates significantly better classification effectiveness in comparison with the baseline for the same task.

1 INTRODUCTION

As a rule, the interaction between a human and an automatic spoken dialogue system (SDS) is considered as a human-machine type of conversation. However, this is an ideal case; real SDSs deal with a mixed type of interaction, which may also include human-human conversations, particularly in the situations of collective problem solving, when one user talks to the system directly and to other people at the same time retelling and discussing the information obtained from the system. Such a system is supposed to be selective to react properly to each utterance: to respond immediately, to analyse without a direct response (for instance, for context definition or user image creation), or to ignore. Considering this, we specify three types of users’ talk: the first one is on-talk; it comprises explicit problem-oriented requests to the system. The second type is problem-related off-talk, which includes phrases implicitly addressed to the system, for example, retelling or discussing the obtained information between users. Though such utterances are not intended to be a direct system input, they could be useful for the system adaptation to users’ behaviour. The third type is irrelevant off-talk; this class is useless for the particular task and should be ignored in order not to confuse the system.

The obtained classification problem can be transformed into a text categorization task directly after speech recognition. In the vector space model (Sebastiani, 2002), text categorization is considered as a machine learning problem. The complexity of the text categorization with the vector space model is compounded by the need to extract numerical data from text information before applying machine-learning methods. Therefore, text pre-processing is required and can be performed using term weighting.

At first sight, we obtain an ordinary text classification task. However, off-talk detection faces some special challenges, since off-talk is a complex phenomenon, which is difficult to handle using only lexical information. There are some works on off-talk detection considering lexical (lexical n-gram approach) (Shriberg et al., 2012), acoustic-prosodic (prosodic n-gram approach), and visual (visual focus of attention) features (Batliner et al., 2006). The Bag-of-Words approach (lexical unigram) presented there does not use any advanced term weighting techniques, which could significantly improve classification effectiveness. In this research, we use only lexical information (Bag-of-Words model with advanced term weighting) in order to conclude how representative it can be for off-talk detection. There exist different unsupervised and
supervised term weighting methods. The most well-
known unsupervised term weighting method is TF-
IDF (Salton and Buckley, 1988). The following
supervised term weighting methods are also
considered in the paper: Gain Ratio (Debole and
Sebastiani, 2004), Confident Weights (Soucy and
Mineau, 2005), Second Moment of a Term (Xu and
Li, 2007), Relevance Frequency (Lan et al., 2009),
Term Relevance Ratio (Ko, 2012), and Novel Term
Weighting (Gasanova et al., 2014).

The considered text pre-processing techniques
usually lead to high dimensionality for a text
classification task. Therefore, we apply the Feature
Transformation Method Based on Term Belonging to
Classes for dimensionality reduction (Sergienko et
al., 2016).

As machine learning algorithms, we choose two
approaches, which have demonstrated good results
for the task of natural language call routing
(Sergienko et al., 2016): the method of k Nearest
Neighbours (KNN) (Zhou et al., 2009) and the
Support Vector Machine-based algorithm Fast Large
Margin (SVM-FLM) (Fan et al., 2008). This task and
the current one are quite close to each other in the
view of text classification.

This paper is organized as follows. In Section 2,
we describe two problem statements and a corpus.
Section 3 contains the description of term weighting
and the feature transformation method. In Section 4,
a baseline off-talk detection approach is compared
with the proposed one for the same corpus. Finally,
we provide concluding remarks and directions for
future investigations in Section 5.

2 CORPUS DESCRIPTION

The corpus we have used for our research was created
with a real SDS within the publicly funded German
Smart Web project and contains human-human-
machine interactions (audio and video) in the context
of a visit to the Football World Cup in 2006 (Batliner
et al., 2006). The recordings took place in situations,
which were as realistic as possible. No instructions
regarding off-talk were given. The user was carrying
a mobile phone and was interrupted by another
person. This way, a large amount of off-talk could be
evoked. The user was asking for transport
information, a competition program, which sights
were worth visiting, etc. 2218 segmented turns of 99
different German speakers were recorded. There are
2970 user utterances in total; one utterance includes
all successive sentences belonging to one class within
one turn.

The original corpus has the following labels: the
1st class – on-talk (a normal request), the 2nd one –
reading off-talk (a user reads the system response
from the display aloud), the 3rd class - paraphrasing
off-talk (a user retells others the information from the
display), the 4th one – spontaneous off-talk (other off-
talk, for instance, thinking aloud or interruptions).

We observe two different problem statements: the
first one contains three classes (classes 2 and 3 are
merged into one - problem-related off-talk), the
second statement is a simplified version of the first
one and contains two classes (classes 2–4 are merged
into one – off-talk). We perform a speaker-

independent validation, since it allows us to obtain
more representative results, especially when the real
system has a wide user audience.

We have split the corpus into 15 random subsets
for the cross-validation. After that, we establish a
training and a test set for each subset; different test
sets have no intersection. For each training set, we
have designed a vocabulary of unique words, which
appear in the set. The size of the vocabulary varies
from 1,355 to 1,421 words for different subsets.

3 TEXT PRE-PROCESSING

After the generation of training and test samples, we
performed term weighting. As a rule, term weighting
is a multiplication of two parts: the part based on term
frequency in a document (TF) and the part based on
term frequency in the whole database. The TF-part is
fixed for all considered term weighting methods and
calculated in the following way:

\[
TF_j = \log(tf_j + 1); \quad tf_j = \frac{n_j}{N_j},
\]

where \(n_j\) is the number of times the \(i^{th}\) word occurs
in the \(j^{th}\) document, \(N_j\) is the document size (number of
words in the document).

The second part of term weighting is calculated
once for each word from the vocabulary and does not
depend on an utterance for classification. We
consider seven different methods for the calculation
of the second part of term weighting.

3.1 Inverse Document Frequency (IDF)

IDF is a well-known unsupervised term weighting
method, which was proposed in (Salton and Buckley,
1988). There are some modifications of IDF, and we
use the most popular one:
\[idf_j = \log \frac{|D|}{n_i}, \]

where \(|D|\) is the number of documents in the training set, and \(n_i\) is the number of documents that have the \(j^{th}\) word.

3.2 Gain Ratio (GR)

Gain Ratio (GR) is mainly used in term selection (Yang and Pedersen, 1997). However, it was shown in (Debole and Sebastiani, 2004) that it could also be used for weighting terms, since its value reflects the importance of a term. The definition of GR is as follows:

\[
GR(t_i, c_j) = \frac{\sum_{c \neq c_j} P(t_i, c) \cdot \log \frac{P(t_i, c)}{P(t_i) \cdot P(c)}}{- \sum_{c \neq c_j} P(c) \cdot \log P(c)},
\]

where \(P(t_i, c)\) is the probability estimation that a document contains the term \(t_i\) and belongs to the category \(c_j\); \(P(t_i)\) is the probability estimation that a document contains the term \(t_i\), and \(P(c)\) is the probability estimation that a document belongs to the category \(c\).

Then, the weight of the term \(t_i\) is calculated as the max value between all categories:

\[
GR(t_i) = \max_{c \in C} GR(t_i, c_j),
\]

where \(C\) is a set of all classes.

3.3 Confident Weights (CW)

The method uses the special value \(Maxstr\) as an analogy of IDF.

First of all, the method estimates the probability \(P\) that a document contains the term \(t_i\) within the confidence interval for every category \(c_j\), to get \(P(t_i | c_j)\) and \(P(t_i | \overline{c_j})\) with a confidence interval. Let \(M\) denote the lower bound of \(P(t_i | c_j)\) and \(N\) denote the upper bound of \(P(t_i | \overline{c_j})\). The strength of the term \(t_i\) considering \(c_j\) is defined as follows:

\[
str(t_i, c_j) = \begin{cases}
\log_2 \left(\frac{2M}{M + N} \right) & \text{if } (M > N), \\
0 & \text{otherwise}
\end{cases}
\]

The maximum strength (Maxstr) of the term \(t_i\) is calculated in the following way:

\[
Maxstr(t_i) = \max_{c \in C} (str(t_i, c_j))^2.
\]

where \(C\) is a set of all classes.

3.4 Second Moment of a Term (TM2)

Let \(P(c_j | t)\) be the probability estimation that a document belongs to the category \(c_j\) with the condition that the document contains the term \(t\) and belongs to the category \(c\); \(P(c_j)\) is the probability estimation that a document belongs to the category \(c\) without any conditions. The idea is as follows: the more \(P(c_j | t)\) is different from \(P(c_j)\), the more important the term \(t\) is. Therefore, we can calculate the term weight in the following way:

\[
TM(t_i) = \sum_{j=1}^|C| \left(P(c_j | t) - P(c_j) \right)^2.
\]

3.5 Relevance Frequency (RF)

The RF value is calculated as follows:

\[
rf(t_i, c_j) = \log_2 \left(2 + \frac{a_j}{\max{1, a_j}} \right),
\]

\[
rf(t_i) = \max_{c_j \in C} rf(t_i, c_j),
\]

where \(a_j\) is the number of documents of the category \(c_j\) which contain the term \(t_i\), and \(a_j\) is the number of documents of all the remaining categories which also contain this term.

3.6 Term Relevance Ratio (TRR)

The TRR method uses \(tf\) weights and is calculated as follows:

\[
TRR(t_i, c_j) = \log_2 \left(2 + \frac{P(t_i | c_j)}{P(t_i | \overline{c_j})} \right),
\]

\[
P(t_i | c_j) = \frac{ \sum_{c_j \neq c_j} tf_{i,c_j} }{ \sum_{c_j \neq c_j} \sum_{c_j \neq c_j} tf_{i,c_j} },
\]

\[
TRR(t_i) = \max_{c_j \in C} TRR(t_i, c_j),
\]

where \(c_j\) is the class of a document, \(\overline{c_j}\) is all the other classes of \(c_j\), \(V\) is the vocabulary of the training data, and \(T_c\) is the document set of the class \(c\).
3.7 Novel Term Weighting (NTW)

This method was proposed in (Gasanova et al., 2014). Let \(L \) be the number of classes; \(n \) is the number of documents which belong to the \(j \)th class; \(N_j \) is the number of occurrences of the \(j \)th word in all articles from the \(j \)th class. \(T_j = N_j / n \) is the relative frequency of occurrences of the \(j \)th word in the \(j \)th class; \(R_j = \max_i T_{ij} \); \(S_j = \text{arg} \max_i T_{ij} \) is the class which we assign to the \(j \)th word. The term relevance \(C_j \) is calculated in the following way:

\[
C_j = \frac{1}{\sum_{i=1}^{L} T_{ij}} (R_j - \frac{1}{L-1} \sum_{i=1}^{L} T_{ij}).
\]

3.8 Feature Transformation Method

We propose a feature transformation method based on term belonging to classes (Sergienko et al., 2016). The idea is to assign each term from the vocabulary to the most appropriate class. Such an assignment is performed during the calculation of GR, CW, RF, TRR and NTW. With TF-IDF and TM2, we can also assign one class for each term using the relative frequency of the word in classes:

\[
S_j = \text{arg} \max_{c \in C} \frac{n_c}{N_c},
\]

where \(S_j \) is the most appropriate class for the \(j \)th term, \(c \) is the index of a class, \(C \) is a set of all classes, \(n_c \) is the number of documents of the \(c \)th class which contain the \(j \)th term, \(N_c \) is the number of all documents of the \(c \)th class.

After assigning each word to one class and term weighting, we can calculate the sums of term weights in a document for each class. We can put these sums as new features of the text classification problem. Therefore, such a method reduces the dimensionality significantly; the dimensionality of the classification problem equals the number of classes.

4 OFF-TALK DETECTION APPROACHES

4.1 Baseline Off-talk Detection Approach

The authors of the corpus performed their own research on off-talk detection (Batliner et al., 2006). They processed the audio data using an automatic speech recogniser with manual proofreading and extracted two groups of features: the first one is prosodic features, which evaluate 95 different speech characteristics such as speech rate, pause duration, accents and many others. A detailed overview of prosodic features is given in (Batliner et al., 2003). The second group is part-of-speech features. There are 5 different part-of-speech classes considered (nouns, adjectives, verbs, etc.); one of them is assigned to each word from the vocabulary (Batliner et al., 1999). After that, an \(n \)-gram approach is implemented for both groups of features with \(n=5 \).

As a classification method, the authors used Linear Discriminant classification (LDA) and estimated its performance as unweighted mean recall (\(R \)). They obtained the same two- and three-class problem statement and tested them using the speaker-independent validation (Batliner et al., 2006).

The highest classification performance is reached with all available features: \(R \) equals 0.681 and 0.600 for the two- and three-class task respectively.

4.2 Proposed Off-talk Detection Approach

We implement the proposed approach based on text classification using SVM-FLM (Fan et al., 2008) and KNN (Zhou et al., 2009). These methods show successful results for text classification tasks (Sergienko et al., 2016); are able to solve high-dimensionality problems, and possess moderate resource consumption. There are effective implementations of these algorithms built in the RapidMiner free software package (Shafait et al., 2010), which we use to solve our classification tasks.

As the main criterion of classification effectiveness, we have to use the same estimation based on unweighted mean recall (\(R \)) as the authors did in their research, since it allows us to compare the final results correctly. However, as the main criterion of classification effectiveness during the process of the parametric optimization for the parameter \(k \) in KNN, we use the macro \(F \)-score (Baeza-Yates and Ribeiro-Neto, 1999). It is a more representative performance estimation than unweighted mean recall; in some cases, the recall value can be equal to 1, but in fact, the classifier effectiveness is not equal to 100\%, since the precision value remains low. The macro \(F \)-score does not possess this disadvantage; it is calculated as the geometric mean of mean precision and mean recall:
where \(i \) is the number of a class, \(D_r \) is the set of objects in a test set, which belong to this class, \(D_f \) is the set of objects in the test set classified by the system to this class. We calculate the macro \(F_i \) score assuming \(a = 0.5 \).

The optimal \(k \) value for KNN is specified from the interval \([1, 30]\) for each training set. It is natural that we do not use any information from the test sets during the process of parametric optimization in order to keep the results as representative as possible. Searching for \(k \), we split each training set into a new training and a validating set in order to perform exhaustive search among all possible \(k \) using this pair of sets.

We tested all possible combinations of the term weighting methods (with and without the feature transformation method) and the machine learning algorithms for both classification tasks.

The tables contain unweighted mean recall values. The mark ‘+FT’ means that the feature transformation method is implemented. The best term weighting methods are emphasized and have no statistically significant difference between each other within one column. The variable distributions are close to normal that allows us to use \(t \)-test. The given results are relevant with the confidential probability 0.95.

According to \(t \)-test, SVM-FLM works significantly better than KNN for the task with three classes. For the two-class task, there is no significant difference between the classification algorithms.

5 CONCLUSIONS

The off-talk detection task has been solved with the proposed approach based on text classification, which shows effective results for both problem statements. There is a set of the best term weighting methods with no significant difference in their effectiveness within each problem statement. The highest unweighted mean recall for the two-class task equals 0.910 and is reached with NTW and SVM-FLM, for the three-class task - 0.893 (with RF and SVM-FLM).

The proposed approach outperforms the baseline one: \(R \) equals 0.681 and 0.600 at the two- and three-class task respectively for the baseline approach, while the proposed approach demonstrates the values 0.910 and 0.893 at the same tasks. A possible reason
of this is the assumption that the proposed approach uses more effective data pre-processing methods and machine learning algorithms for off-talk detection. Another possible reason is a conceptual contradiction in the baseline approach; the fact that it uses prosodic features for off-talk detection means that users are supposed to change their normal manner of speech once they start talking to a computer. Such an approach can work now, since modern dialogue systems are still far from perfection, and users have to adapt their behaviour talking to them. However, it does not correspond to the main direction of automatic dialogue system development – to make the interaction between a user and a system as natural as possible.

Any additional data processing (speech recognition, text pre-processing, etc.) causes an information loss. Deep learning neural networks possess some features, which could improve classification effectiveness: due to their ability to work with entities of different abstraction levels, they do not require additional data processing and are able to make the system more effective and flexible. Moreover, the works on off-talk detection (Shriberg et al., 2012) and (Batliner et al., 2006) state that using more than one group of features significantly improves classification effectiveness. The choice of relevant features can also be delegated to a system based on deep learning neural networks. Therefore, as a future direction, we propose the research of a deep learning neural network-based approach to off-talk detection.

REFERENCES

Gasanova, T., Sergienko, R., Akhmedova, S., Semenkin, E., and Minker, W. 2014. Opinion Mining and Topic Categorization with Novel Term Weighting. Proceedings of the 5th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, Association for Computational Linguistics, Baltimore, Maryland, USA, 84–89.