
Secure Data Storage Architecture on Cloud Environments

Tran Thi Xuan Trang1 and Katsuhisa Maruyama2

1Graduate School of Information Science and Engineering, Ritsumeikan University, Kusatsu, Japan
2Department of Computer Science, Ritsumeikan University, Kusatsu, Japan

Keywords: Cloud Data Storage, Data Confidentiality, Data Partitioning, Query Translation, Migration Approach.

Abstract: Securing sensitive customer data outsourced to external servers in cloud computing environments is chal-
lenging. To maintain data confidentiality on untrusted servers, conventional data security techniques usually
employ cryptographic approaches. However, most enterprises are unwilling to employ these approaches if
they require high-performance client devices to cipher the entire data. In this situation, separating out the con-
fidential data is beneficial since only the confidential data are encrypted or stored in trusted servers. Although
this idea has already been proposed, its support is still insufficient. This paper proposes a secure data storage
model in cloud computing environments that is based on the concept of data slicing and presents its proto-
type tool that supports the low-cost migration of existing applications. Our tool provides a structured query
language (SQL) translation mechanism that provides transparent access to partitioned data without changing
the original SQL queries. A simple case study shows how the proposed architecture implements secure data
storage in cloud computing environments.

1 INTRODUCTION

Cloud computing has become popular in many areas
of business over the last few years. Many enterprises
are excited about the potential to reduce information
technology (IT) costs and obtain advantages in scal-
ability, availability, and performance. The service
models of cloud computing are categorized into three
types (Mell and Grance, 2011; Zhang et al., 2010):
Software as a Service (SaaS), Platform as a Service
(PaaS), and Infrastructure as a Service (IaaS). While
SaaS allows enterprise customers to use the provider’s
applications running on a cloud infrastructure, PaaS
and IaaS allows them to develop, run, and manage ap-
plications on the cloud. In any model, the enterprises
can utilize their business applications without build-
ing and maintaining their own infrastructure. Thus,
some of them promote the introduction of cloud com-
puting and the migration of legacy applications to
cloud environments (Menychtas et al., 2013; Tak and
Tang, 2014).

However, these enterprises also face difficulties
deploying their existing applications to cloud envi-
ronments since they must put their sensitive data on
cloud servers (Catteddu and Hogben, 2009; Jansen
and Grance, 2011; Wei et al., 2014; Fernandes et al.,
2014). The salient risk is that attackers or collusive
cloud insiders can easily steal these sensitive data if

the data protection mechanism is vulnerable to vari-
ous kinds of attacks. Therefore, data confidentiality
raises a great concern for enterprises. Most enterprise
managers or developers are unwilling to store sensi-
tive data in cloud storages.

Hybrid cloud (Mell and Grance, 2011), which
mixes private cloud and public cloud services, is a
possible option for enterprises that have already in-
vested in a private virtualization environment. It man-
ages some data (or resources) in-house and places
other data in a public area. For example, an enter-
prise might use a public cloud service, such as Ama-
zon Simple Storage Service (Amazon S3), to store
archived data for backup, but continue to maintain in-
house storage for sensitive data.

Although this strategy is reasonable, another prob-
lem might arise. A primary difficulty of hybrid
cloud deployment is how to minimize changes in
the existing enterprise applications. No matter how
similar the public and private cloud services are,
implementation-level gaps between the original and
revised applications are inevitable, and filling these
gaps is usually expensive. For example, the separa-
tion of sensitive data requires many changes to the
implementation code of the original application when
it is revised on cloud environments using conventional
data storage models. This complicates the migration
of existing enterprise applications to hybrid cloud en-

Trang, T. and Maruyama, K.
Secure Data Storage Architecture on Cloud Environments.
DOI: 10.5220/0005974400390047
In Proceedings of the 11th International Joint Conference on Software Technologies (ICSOFT 2016) - Volume 1: ICSOFT-EA, pages 39-47
ISBN: 978-989-758-194-6
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

39



vironments. All enterprises desire an environment
that optimizes scalability and cost-effectiveness of-
fered by a public cloud service if they could easily
maintain the security of their sensitive data. In other
words, they require a secure data storage model that
emphasizes the protection of data confidentiality and
a mechanism that supports the deployment of their ex-
isting applications based on this model.

This paper proposes a new data storage model
that can protect sensitive data in cloud computing
environments. The model is based on data slicing,
which is the simple concept of separating the sensitive
and non-sensitive data appearing in enterprise appli-
cations. The sensitive data must be stored into secure
storages located on trusted servers, which can then
be encrypted. On the other hand, non-sensitive data
can be stored into public storages located on untrusted
servers. In general, sensitive data is a small portion of
the whole data volume and the sizes of such data are
small. Since a large volume of non-sensitive data can
be stored in public storages that are cheaper than se-
cure storages, enterprises can save data storage costs
while preserving the security level of their data.

Although this new secure storage model is benefi-
cial from an economic perspective, the model, in gen-
eral, requires changes in implementation code with
respect to data access in existing enterprise appli-
cations, as mentioned before. The tasks achieving
these code changes are time-consuming and error-
prone. To avoid such troublesome tasks, we pro-
pose a mechanism that provides transparent access
to data stored in two kinds of partitioned storages
with SQL queries. The importance of transparent ac-
cess was inspired by the research work (Ferretti et al.,
2013). The mechanism automatically translates the
original SQL queries into ones that are compatible
with the new storage model. Therefore, the existing
applications running on private environments can run
on hybrid environments without altering any imple-
mentation code. The original data is automatically
stored into the partitioned storages and can be ac-
cessed from them. The applications do not need to
know that the data are actually partitioned. We imple-
mented this translation mechanism in our prototype
tool. To demonstrate its feasibility, we migrated an
open source application, Plandora, to the cloud envi-
ronment.

In our paper, we:

• Propose a new data storage model that can main-
tain data confidentiality when enterprises migrate
their existing applications to cloud environments.

• Present an SQL translation mechanism that allows
the applications to transparently access the data
stored in the two partitioned storages on trusted

and untrusted servers.
• Show a running implementation that employs

the SQL translation mechanism and supports the
building of the initial database scheme based on
the new model.
The rest of this paper is organized as follows: Sec-

tion 2 introduces related work. Section 3 explains the
proposed data storage model. Section 4 elaborates the
implementation of the model. Section 5 presents a
case study of migration with a tool implementing the
proposed architecture. Section 6 summarizes this pa-
per and outlines our future work.

2 RELATED WORK

Several security issues and challenges on the adoption
of cloud computing have been reported (Catteddu and
Hogben, 2009; Jansen and Grance, 2011; Subashini
and Kavitha, 2011; Ren et al., 2012; Hashizume et al.,
2013; Fernandes et al., 2014). Some of the reports
emphasize data confidentiality for (untrusted) cloud
storage.

The systems DEPSKY (Bessani et al., 2011) and
iDataGuard (Jammalamadaka et al., 2008) guaran-
tee data confidentiality and integrity on multi-tenant
cloud services. The DEPSKY employs a secret shar-
ing scheme to avoid storing clear data in untrusted
clouds. The iDataGuard is a middleware that trans-
parently provides customers with secure file systems.
These systems are both based on data encryption
using cryptographic techniques. Moreover, cloud
database services (Hacigümüs et al., 2002) employ
an encryption facility that can answer queries over
encrypted data (Ferrari, 2009; Weis and Alves-Foss,
2011).

Most existing approaches prevent the disclosure
of sensitive data stored in untrusted storage servers
with proper encryption. On the other hand, a few
approaches exploit fragmentation to avoid data en-
cryption (Aggarwal et al., 2005; Ciriani et al., 2011).
The basic idea standing behind these approaches is to
split data among multiple subsets, each of which is
managed by an independent cloud provider. A small
portion of the data is stored in local trusted storage,
while the major portion of the data is outsourced to
external storage servers. The concept of fragmenta-
tion was also adopted into a metadata based storage
model (Subashini and Kavitha, 2012). In this model,
data has to be segregated and further fragmented into
smaller units until each fragment does not have any
individual value.

Ideally, data encryption is an obvious solution to
protect sensitive data. However, it is not feasible for

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

40



every enterprise since the execution of queries on en-
crypted data still requires the computational overhead
although homomorphic encryption techniques (Gen-
try, 2009; Gomathisankaran et al., 2011; Yu et al.,
2012), which enable processing encrypted data with-
out decrypting it, are available. Therefore, a data frag-
mentation approach that can remove or reduce en-
cryption costs is likely to become an affordable op-
tion to outsource data. Nevertheless, there are not
sufficiently adequate models based on data fragmen-
tation, which achieve both the goals of data confiden-
tiality and transparent migration for existing applica-
tions to cloud environments. A new model that we
propose guards against the disclosure of sensitive data
and helps an existing application migrate the data to
cloud storage without requiring changes to its imple-
mentation code.

3 DATA STORAGE MODEL

In this section, we propose our secure data storage
model and present the overall architecture using this
model.

3.1 Data Slicing

The main idea of the new data storage model is to split
the original data into sensitive and non-sensitive data.
This technique is basically called data slicing (Fer-
retti et al., 2013). The split data are stored into two
independent areas: the (private) local storage and the
(public) cloud storage.

Original:	
				Table	A	(PK,	c1,	c2,	c3)	
				where:		c1	is	sensi8ve	data	column	
																			c2,	c3	are	non-sensi8ve	data	columns	
	
Sliced:	
				Local.A	(PK,	c1,	link_key)	
				Cloud.A	(link_key,	c2,	c3)	

Figure 1: Data splitting example.

Figure 1 depicts an example of the model’s data
slicing. The original table A has a primary key (PK)
and three columns: c1 containing sensitive data and
both c2 and c3 containing non-sensitive data. The
sensitive column c1 should be stored in the trusted
area (in this case, Local.A table) along with PK, while
the non-sensitive columns c2 and c3 can be stored
in the untrusted cloud area (in this case, Cloud.A ta-
ble). These two tables are linked together by a spe-
cial key (link key). In the proposed model, PK is not

Database	Engine	
	
	
	
	
	
	
	
	

Data	Encryp0on	

Data	Slicing	
	
	
	

Small	Data	
Volume	

Database		Link	

Building	
Database	
Structure	

Mapping	
Metadata		

SQL	
Transla0on	

Trusted	area	
(private)	

Applica0on	

Large	Data	
Volume	

Untrusted	area	
(public)	

Figure 2: Overall architecture using our data storage model.

used to link the two partitioned tables since data slic-
ing would be complicated if PK was a combination of
many columns.

3.2 Architecture

Figure 2 shows the overall architecture adopting our
secure data storage model on cloud computing envi-
ronments.

Consider an explanatory application that has sev-
eral functions to access enterprise data consisting of
both sensitive and non-sensitive data. The application
runs on either the trusted area or the untrusted area
when it guarantees data confidentiality inside of itself.
We are concerned with the confidentiality of the sen-
sitive data. In this architecture, it is significant that all
the sensitive data is always stored in the trusted area’s
private data storage. On the other hand, non-sensitive
data can be stored in the untrusted area’s public data
storage.

To attain this secure data storage architecture, the
database engine contains three modules: Data Slic-
ing, Data Encryption, and Database Link. All data
received from the application is sliced based on the
attributes of individual data. The Data Slicing mod-
ule splits the received data into data in the sensitive
columns (labelled with “sensitive”) and data in the
non-labelled column, and separately passes them to
the next modules. The data are encrypted and de-
crypted if needed by Data Encryption. Database Link
is responsible for executing distributed SQL queries.

The Data Slicing module is explained in detail in
the next three sections.

Secure Data Storage Architecture on Cloud Environments

41



Set	Property	to	
column	or	table:		

Sensi4ve?	
Encryp4on?	

1.Read	 Database	
schema	as	
SQL	Script	

2.Generate	 3.	Execute	

Local	server	
Slicing	wizard	

Original	
database	
schema	

Mapping		
Metadata	

Private	
database	

Linked	Server	
Object	

Sensi4ve	data	

Non-sensi4ve	
data	

Figure 3: Database schema setup process.

3.2.1 Building Database Structure

Building Database Structure is used to set up the
database schema for slicing data. It reads the original
database schema and provides a series of steps to set
sensitive and encryption properties for columns and
tables. It behaves as a setup assistant that instructs
database administrators (owners) on how to configure
their database properties, as shown in Figure 3.

Based on a database administrator’s setting,
Building Database Structure generates and executes
SQL scripts to build a schema for Mapping Metadata,
a private database, and a public database. While gen-
erating SQL scripts for the private database schema,
Building Database Structure also determines which
columns need to be encrypted and encrypts data in
those columns using Data Encryption.

The public database is connected to the private
database through Linked Server Object on a local
server. Distributed queries can be run against the
Linked server and the queries can join tables from
more than one data source.

3.2.2 Mapping Metadata

Mapping Metadata is a meta-table that contains the
mapping information of the partitioned tables, and the
sensitive and encrypted column settings. The two last
attributes in the meta-table are col type to distinguish
between the link key and other columns and col order
to maintain the column order in the original table, as
shown in Figure 4.

3.2.3 SQL Translation

SQL Translation automatically translates SQL state-
ments from the application into statements that can
access data stored in two different storage areas.
This means that SQL Translation allows users to ac-
cess partitioned data transparently. SQL Translation
parses the user’s SQL statements and gets mapping
names in the meta-table. Then, it converts the SQL
statement into a new one with a JOIN clause between

Figure 4: Mapping Metadata for slicing data.

Database	

Data	Slicing	

SQL	
Transla/on	

Execute	

Execute	
SELECT	*	FROM	Local.A	INNER	JOIN	Cloud.A	
																	ON		Local.A.link_key	=	Cloud.A	.link_key	

Applica/on	

SELECT	*	FROM	A	

Figure 5: SQL translation example.

two databases through the link key (see Figure 5). Fi-
nally, the new SQL statement can be executed to re-
trieve data from the private and public storages just as
the old one can.

SQL Translation also checks the encryption prop-
erty of all columns and generates SQL scripts to en-
crypt or decrypt data for the corresponding columns.
Based on the generated scripts, Database Engine en-
crypts and decrypts the data. The popular database
servers support several cryptographic algorithms, in-
cluding data encryption standard (DES), Triple DES,
Rivest Cipher (RC2), 128-bit advanced encryption

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

42



Applica'on	

JDBC		Interface	

SQL-JDBC	
Driver	

Meta	
data	

Driver	Connec5on	Statement	

Select		
Transla5on	

Update	
Transla5on	

Tables	

A	temporary	database	

defined-trigger	

SP_INSERT	 SP_UPDATE	 SP_DELETE	

Insert,	Update,	Delete	

Linked	Server	Object	

Select	

APIs	

Local	Storage	 Cloud	Storage	

Cloud-JDBC	
layer	
	

Database	Engine	
layer	
	

Applica=on	
layer	
	

Table	
Transla5on	

Expression	
Transla5on	

Insert		
Transla5on	

Delete		
Transla5on	

Column	
Transla5on	

SQL	Transla'on	

JSQL	Parser	

Columns	 Expressions	

SQLServer	Database	Engine	

Cloud-JDBC	Driver	

Figure 6: Detail architecture of the proposed model.

standard (AES), and 256-bit AES.

4 IMPLEMENTATION

We describe the detail architecture of the proposed
model in this section. As shown in Figure 6, the ar-
chitecture essentially consists of three layers: the Ap-
plication layer, the Cloud-JDBC (Java Database Con-

nectivity Interface) layer, and the Database Engine
layer.

The Cloud-JDBC layer is composed of a JDBC
interface, Cloud-JDBC Driver, SQL Translation, and
SQL-JDBC Driver. The Database Engine layer con-
tains several programmable objects (triggers and store
procedures) and a Linked Server Object.

Secure Data Storage Architecture on Cloud Environments

43



SELECT	 FROM	 WHERE	 GROUP	BY	 ORDER	BY	HAVING	

EXPs	

Columns	

JOIN	

Columns	

Sub	SELECT	

EXPs	

Sub	SELECT	

Columns	

EXPs	

Columns	

Columns	Columns	

Mapping	
Columns	

Tables	

Mapping	Tables	

Mapping	
Columns	Columns	

is	replaced	

is	replaced	
JOIN	clauses	between	
Mapping	Tables	Tables	

Figure 7: Mechanism of SELECT translation.

4.1 Cloud-JDBC Driver

Cloud-JDBC Driver is extended from the JDBC type
4 Driver to implicitly integrate SQL Translation into
migrated applications. This integration permits no
changes at the application logic level. This driver
connects to the SQL Server in the same way as the
JDBC driver. The only difference is the URL of con-
nection that is changed from “jdbc:sqlserver:” to
“jdbc:cloudsqlserver:”. Cloud-JDBC Driver is
packaged as a Java jar file and added into the migrated
application.

4.2 SQL Translation

Java SQL (JSQL) Parser module is a parser of SQL
statements, using JSqlParser 1. This is called by SQL
Translation to translate SELECT, UPDATE, INSERT,
and DELETE statements. The translations for SE-
LECT and UPDATE are explained in the next two sec-
tions. The translations for INSERT and DELETE state-
ments are eliminated here since those are similar to
that for the UPDATE statement.

(1) SELECT Statement Translation

The Visitor design pattern is used to translate a SE-
LECT statement. Figure 7 shows the mechanism of
SELECT translation. The main syntax of a SELECT
statement is as follows.

SELECT columns FROM tables
WHERE expressions GROUP BY columns
HAVING expressions ORDER BY columns

The FROM clause is parsed to gather all data
source information (including tables, columns, map-
ping columns, mapping tables, and aliases) based on

1JSqlParser translate SQL statements into a hierarchy of
Java classes (http://jsqlparser.sourceforge.net/).

Mapping Metadata. We use this data source as a dic-
tionary for translation.

Both replacing the corresponding column names
and inserting JOIN clauses between partitioned ta-
bles translates a SELECT statement. The SELECT,
WHERE, HAVING, and ORDER BY clauses comprise
the list of columns and expressions. In fact, each ex-
pression is a tree of columns and values. If the tree
node is a column, the mapping column in the data
source will replace it. Furthermore, the original ta-
bles are replaced by JOIN clauses between mapping
tables. The sub-SECLECT clause is translated into a
call by itself, recursively.

In addition, so that the return set of translated
queries continues to have the same result name
as the original queries, the tree-part column name
(Local.A.c1) is written as an alias, like the original
column c1.

(2) UPDATE Statement Translation

A temporary database is used to implicitly trans-
late UPDATE, INSERT, and DELETE statements.
This database has the same schema as the original
database, except for two columns, link key and Recor-
dActionType, which are added to each table. The
RecordActionType column has three values: U’, ‘I’,
and ‘D’ for update, insertion, and deletion, respec-
tively.

Figure 8 shows the procedure of the translation
for an UPDATE statement. SQL Translation trans-
lates this UPDATE statement into an INSERT INTO
statement. The INSERT INTO statement inserts data
into the temporary blank table A from both the Lo-
cal.A table and the Cloud.A table. The criteria of the
INSERT INTO statement is the same as that in the
WHERE clause of the UPDATE statement. For the
updated values of columns in a SET clause, the auto-
generated unique numeric link key and the RecordAc-

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

44



Local.A	

1.	INSERT	INTO	 2.	UPDATE	data	

3.	DELETE	all	record	Temporary		table	A	

Cloud.A	2.	UPDATE	data	

1.	INSERT	INTO	

Figure 8: Procedure of UPDATE translation.

tionType having the U’ value are also added into the
SELECT clause of the INSERT INTO statement.

Running the INSERT INTO statement raises the
author-defined-trigger, which is responsible for call-
ing the corresponding stored procedures based on the
RecordActionType column’s values. In this case, the
trigger will call the sp UPDATE stored procedure to
update both the Local.A table and Cloud.A table with
data selected from the temporary table A, and delete
all data in A.

5 CASE STUDY

To demonstrate the feasibility of the proposed archi-
tecture, we developed a prototype tool to implement
it. With this tool, we migrated the Plandora 2 to the
hybrid cloud environment to check whether it runs
correctly. This means that the migrated Plandora re-
turns the same result as the original Plandora when
users select, update, insert, and delete some data.

5.1 Setup and Deployment

In this study, we specified information (provider
name, server name, user name, password, and
database name) to connect to the original database.
Next, we chose the places for storages of the private
and public data. Then, we created a table with the at-
tributes (identification number, username, password,
name, email, phone number, etc.) and stored data of
fictitious persons. Finally, we marked the attributes
that store sensitive data. The current version of the
tool does not support data encryption.

After this setting up, the tool automatically con-
structs SQL scripts to create a Meta-table, a tem-
porary blank database, local and cloud database

2Plandora is an open source tool to manage the software
development process (http://www.plandora.org/).

schemata, and stored procedures and triggers for IN-
SERT/UPDATE/DELETE statements. Figure 9 shows
Mapping Metadata of one of the tables in the Plan-
dora database. The project table is split into two ta-
bles saved in two database schemata, Local Plandora
and SERVER LINK.

We deployed the Plandora to the cloud environ-
ment as follows: (1) add the Java jar file of Cloud-
JDBC Driver that includes SQL Translation into the
Plandora project; (2) build the database schemata
in both the local and cloud storages by running the
SQL scripts generated by the tool; and (3) change
the connection URL from “jdbc:sqlserver:” to
“jdbc:cloudsqlserver:”. In the deployment, there
is no change in the implementation code of Plandora.

Figure 10 shows an actual translation by SQL
Translation for the SELECT statement in the tool. Ac-
cess to the project table consists of the accesses to the
two tables, Local Plandora..project (an alias of the lo-
cal project) and SERVER LINK...project (an alias of
the cloud project). The original SELECT statement
retrieves data from four tables. On the other hand, the
translated SELECT statement has three INNER JOINs
in the FROM clause. Both statements output the same
result, indicating that the translation is correct.

5.2 Experimental Results

Table 1 shows the experimental results for several
SQL translations using Plandora. In the experiment,
we prepared all SQL patterns from the full syntax of
SQL data manipulation language for selecting, updat-
ing, inserting, and deleting data in the database. In
Table 1, “Pass” represents the number of times the
same result was obtained and “Total” represents the
total number of trials. “NA” denotes no appearance in
Plandora.

The experimental results reveal that the proposed
SQL translation mechanism deals appropriately with
many of the 20 prepared SQL query patterns. In 14 of
the 15 patterns, except for “NA”, their “Pass / Total”
ratios exceed 95%.

In more detail, several test cases report errors in
patterns No. 1 and No. 3. We confirmed that the er-
rors in pattern No. 1 all derive from the inconsistent
use of a word. The word “value” is a column name
in the Plandora database, but it is a reserved word in
JSqlParser. Therefore, JSqlParser failed to parse the
“value” column. In pattern No. 3, the SELECT DIS-
TINCT produced a “the text data type cannot be se-
lected as distinct because it is not comparable” error
in some cases. This error might result from a differ-
ence between database servers. The real Plandora is
designed to run in the MySQL database server, while

Secure Data Storage Architecture on Cloud Environments

45



Figure 9: Mapping Metadata of Plandora database.

SELECT	p.id,	p.name,	a.descrip3on,	a.crea3on_date,	
p.es3mated_closure_date,	p.project_status_id,	p.parent_id,		
ps.name	AS	PROJECT_STATUS_NAME,		
p.can_alloc,	p.repository_url,	p.repository_class,		
p.repository_user,	p.repository_pass,	p.allow_billable,	
ps.state_machine_order	
FROM	project	p,	planning	a,	project_status	ps,	leader	e		
WHERE	p.id	=	a.id	AND	ps.id	=	p.project_status_id	AND	
(p.can_alloc	is	null	OR	p.can_alloc='1')		AND	
p.id	=	e.project_id	AND	p.id	<>	'0‘		
ORDER	BY	p.name	

SELECT	Cloud_project.id,	
Local_project.name,	
Local_planning.descrip3on,	
Local_planning.crea3on_date,	
Local_project.es3mated_closure_date,	
Local_project.project_status_id,	Cloud_project.parent_id,		
Local_project_status.name	AS	PROJECT_STATUS_NAME,	
Cloud_project.can_alloc,	Local_project.repository_url,	
Local_project.repository_class,	Local_project.repository_user,	
Local_project.repository_pass,	Cloud_project.allow_billable,	
Cloud_project_status.state_machine_order	
FROM	SERVER_LINK...project	AS	Cloud_project	
INNER	JOIN	Local_Plandora..project	AS	Local_project	
ON	Cloud_project.link_key	=	Local_project.link_key,	
SERVER_LINK...planning	AS	Cloud_planning	
INNER	JOIN	Local_Plandora..planning	AS	Local_planning	
ON	Cloud_planning.link_key	=	Local_planning.link_key,	
Local_Plandora..project_status	AS	Local_project_status	
INNER	JOIN	SERVER_LINK...project_status	AS	Cloud_project_status	
ON	Local_project_status.link_key=	Cloud_project_status.link_key,	
SERVER_LINK...leader	AS	Cloud_leader	
WHERE	Cloud_project.id	=	Cloud_planning.id	AND	
Local_project_status.id	=	Local_project.project_status_id	AND	
(Cloud_project.can_alloc	IS	NULL	OR		
Cloud_project.can_alloc	=	'1')	AND		
Cloud_project.id	=	Cloud_leader.project_id	AND	
Cloud_project.id	<>	'0'	
ORDER	BY	Local_project.name	ASC	

Translated	
SELECT	statement	

Original	
SELECT	statement	

Figure 10: SELECT translation example.

we run it in the Microsoft SQL Server. Unfortunately,
several data types converted from MySQL to SQL
Server are incompatible.

Table 1: Experimental results for SQL translation.

No. SQL query patterns Pass / Total

1 SELECT select list FROM table source 482 / 500

2 SELECT TOP · · · NA

3 SELECT DISTINCT 76 / 100

4 SELECT INTO new table NA

5 WHERE search condition 500 / 500

6 GROUP BY expression 78 / 78

7 HAVING search condition 55 / 55

8 ORDER BY order expression 46 / 46

9 OVER clause NA

10 OPTION clause NA

11 WITH clause NA

12 Sub-query 200 / 200

13 SQL Aliases 20 / 20

14 SQL Expressions 70 / 70

15 SQL Operators 50 / 50

16 INSERT INTO table or view VALUES clause 18 / 18

17 SELECT INTO statement 25 / 25

18 INSERT INTO SELECT statement 200 / 200

19 UPDATE statement 50 / 50

20 DELETE statement 50 / 50

6 CONCLUSION

In this paper, we proposed an architectural model
that guarantees data confidentiality while providing
transparent migration of existing applications to cloud
environments. Our proposed architecture success-
fully protects data confidentiality by employing a data
slicing technique. Moreover, the running tool uses
an SQL translation mechanism to attain the required
level of transparency.

Our future work will address several issues. The
proposed model only aims the guarantee of data con-
fidentiality. Concerns about data integrity and avail-
ability remain as unsolved issues. For example, how

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

46



the model protects unauthorized modification of data
stored in public storages? How it preserves the con-
sistency of data stored in public and private storages
when the failure of the connection to a cloud storage
server occurs? These are popular questions but their
solutions are not trivial.

With respect to data confidentiality of the model,
we are expanding it to other relational database man-
agement systems, such as MySQL, PostgreSQL, Or-
acle, and BD2. We also plan to evaluate the security
level and performance of the proposed architecture.

ACKNOWLEDGEMENTS

This work was partially sponsored by the Grant-in-
Aid for Scientific Research (15H02685) from the
Japan Society for the Promotion of Science (JSPS).

REFERENCES

Aggarwal, G., Bawa, M., Ganesan, P., Garcia-Molina, H.,
Kenthapadi, K., Motwani, R., Srivastava, U., Thomas,
D., and Xu, Y. (2005). Two can keep a secret: A dis-
tributed architecture for secure database services. In
2nd Biennial Conference on Innovative Data Systems
Research (CIDR 2005).

Bessani, A., Correia, M., Quaresma, B., Andr’e, F., and
Sousa, P. (2011). DEPSKY: Dependable and secure
storage in a cloud-of-clouds. In 6th Conference on
Computer Systems (EuroSys’11), pages 31–46.

Catteddu, D. and Hogben, G. (2009). Cloud computing:
Benefits, risks and recommendations for information
security. Technical report.

Ciriani, V., di Vimercati, S. D. C., Foresti, S., Jajodia, S.,
Paraboschi, S., and Samarati, P. (2011). Selective data
outsourcing for enforcing privacy. Journal of Com-
puter Security, 19(3):531–566.

Fernandes, D. A., Soares, L. F., ao V. Gomes, J., Freire,
M. M., and Inácio, P. R. (2014). Security issues in
cloud environments: A survey. International Journal
of Information Security, 13(2):113–170.

Ferrari, E. (2009). Database as a service: Challenges and
solutions for privacy and security. In Asia-Pacific Ser-
vices Computing Conference (APSCC 2009), pages
46–51.

Ferretti, L., Colajanni, M., Marchetti, M., and Scaruffi,
A. E. (2013). Transparent access on encrypted data
distributed over multiple cloud infrastructures. In
4th International Conference on Cloud Computing,
GRIDs, and Virtualization, pages 201–207.

Gentry, C. (2009). Fully homomorphic encryption using
ideal lattices. In 41st Annual ACM Symposium on The-
ory of Computing (STOC’09), pages 169–178.

Gomathisankaran, M., Tyagi, A., and Namuduri, K. (2011).
HORNS: A homomorphic encryption scheme for

cloud computing using residue number system. In
45th Annual Conference on Information Sciences and
Systems (CISS), pages 1–5.

Hacigümüs, H., Iyer, B., and Mehrotra, S. (2002). Providing
database as a service. In 18th International Confer-
ence on Data Engineering (ICDE’02), pages 29–38.

Hashizume, K., Rosado, D. G., Fernndez-Medina, E., and
Fernandez, E. B. (2013). An analysis of security is-
sues for cloud computing. Journal of Internet Services
and Applications, 4(1):1–13.

Jammalamadaka, R. C., Gamboni, R., Mehrotra, S., Sea-
mons, K. E., and Venkatasubramanian, N. (2008).
iDataGuard: Middleware providing a secure network
drive interface to untrusted internet data storage. In
11th International Conference on Extending Database
Technology (EDBT’08), pages 36–41.

Jansen, W. and Grance, T. (2011). Guidelines on security
and privacy in public cloud computing. Technical Re-
port SP 800-144.

Mell, P. and Grance, T. (2011). The nist definition of cloud
computing. Technical Report SP 800-145.

Menychtas, A., Santzaridou, C., Kousiouris, G., Var-
varigou, T., Orue-Echevarria, L., Alonso, J., Gorrono-
goitia, J., Bruneliere, H., Strauss, O., Senkova, T., Pel-
lens, B., and Stuer, P. (2013). ARTIST methodology
and framework: A novel approach for the migration
of legacy software on the cloud. In 15th International
Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC), pages 424–431.

Ren, K., Wang, C., and Wang, Q. (2012). Security chal-
lenges for the public cloud. IEEE Internet Computing,
16(1):69–73.

Subashini, S. and Kavitha, V. (2011). A survey on security
issues in service delivery models of cloud comput-
ing. Journal of Networkand Computer Applications,
34(1):1–11.

Subashini, S. and Kavitha, V. (2012). A metadata based
storage model for securing data in cloud environment.
American Journal of Applied Sciences, 9(9):1407–
1414.

Tak, B. C. and Tang, C. (2014). Appcloak: Rapid migra-
tion of legacy applications into cloud. In International
Conference on Cloud Computing, pages 810–817.

Wei, L., Zhu, H., Cao, Z., Dong, X., Jia, W., Chen, Y., and
Vasilakos, A. V. (2014). Security and privacy for stor-
age and computation in cloud computing. Information
Sciences, 258:371–386.

Weis, J. and Alves-Foss, J. (2011). Securing database as
a service: Issues and compromises. IEEE Security
Privacy, 9(6):49–55.

Yu, A., Sathanur, A. V., and Jandhyala, V. (2012). A partial
homomorphic encryption scheme for secure design
automation on public clouds. In 21st Conference on
Electrical Performance of Electronic Packaging and
Systems, pages 177–180.

Zhang, Q., Cheng, L., and Boutaba, R. (2010). Cloud com-
puting: State-of-the-art and research challenges. Jour-
nal of Internet Services and Applications, 1(1):7–18.

Secure Data Storage Architecture on Cloud Environments

47


