
Object-relational Mapping Revised - A Guideline Review and
Consolidation

Martin Lorenz1, Günther Hesse1 and Jan-Peer Rudolph2

1Hasso-Plattner-Institut, University of Potsdam, August-Bebel-Str. 88, Potsdam, Germany
2LZN Laser Zentrum Nord GmbH, Am Schleusengraben 14, Hamburg, Germany

Keywords: Object-relational Mapping, O/R Middleware, Enterprise Patterns, Data Model Design.

Abstract: Object-relational mapping (ORM) is a mechanism to link classes of an object-oriented (OO) programming
language to tables of a relational database management system (RDBMS). When designing a mapping for
an application’s domain model, different strategies exist to map associations and inheritance relationships to
database tables. Each strategy has a different impact on the application’s quality characteristics. Developers
need to understand the impact of a mapping strategy to make informed decisions. In the absence of cost models
to quantify the impact, guidelines and best practices have been developed to allow differentiated considerations
of strategies. However, looking closer at these guidelines, two major flaws become apparent - incompleteness
and inconsistency.
In this paper, a comprehensive literature study is presented, which includes an analysis of guidelines and
best practices from industry and academia. We propose a consolidation approach, which identifies relevant
aspects of mapping strategies that impact a system’s quality characteristics. The approach derives a multi-level
organization, which describes the relation between mapping strategy aspects and quality characteristics of a
system. The identified mapping aspects and the organization can serve as a framework to improve existing
guidelines and to resolve inconsistencies.

1 INTRODUCTION

Using relational database management systems to
persist objects of an OO domain model is a com-
mon approach. Object-relational (O/R) mapping rep-
resents a mechanism to bridge the semantic gap be-
tween OO programming languages and RDBMS. Due
to fundamentally different concepts of relational al-
gebra and the OO programming paradigm, a number
of challenges exist, when mapping objects to tables.
A particularly interesting challenge is the mapping of
class inheritance structures to database tables. From a
functional point of view, multiple correct approaches
exist that map objects of a class hierarchy to database
tables. These different approaches are commonly re-
ferred to as mapping strategies. Each strategy has a
different impact on the application’s non-functional
characteristics, i.e., its quality. For the remainder of
this paper, the term non-functional characteristics and
quality characteristics are used synonymously. The
semantics of the different strategies have been defined
and documented in a number of publications (Ambler,
2003; Fowler, 2002; Keller, 1997; Holder et al., 2008)

and are widely accepted. The challenge for a devel-
oper is to decide what mapping strategy is optimal
with respect to a set of non-functional system char-
acteristics, e.g., maintainability, efficiency, usability.
Today, there exist many ORM frameworks, such as
Hibernate1, Doctrine2 or SQLAlchemy3, which pro-
vide implementations of mapping functionality for
various OO programming languages, but they do not
choose a mapping strategy for class inheritance struc-
tures. In general, a framework is preconfigured to ap-
ply a single mapping strategy to all inheritance hierar-
chies, defined in the domain model. It then provides
configuration options that developers may use to con-
trol the application of mapping strategies for different
inheritance hierarchies in the domain modal. A map-
ping framework does not provide any intelligence or
automation approach that would suggest a mapping
strategy for a particular hierarchy. It is the developer
that has to decide what mapping strategy fits best to

1http://hibernate.org/
2http://www.doctrine-project.org/projects/orm.html
3http://www.sqlalchemy.org/

Lorenz, M., Hesse, G. and Rudolph, J-P.
Object-relational Mapping Revised - A Guideline Review and Consolidation.
DOI: 10.5220/0005974201570168
In Proceedings of the 11th International Joint Conference on Software Technologies (ICSOFT 2016) - Volume 1: ICSOFT-EA, pages 157-168
ISBN: 978-989-758-194-6
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

157



the desired non-functional characteristics of the sys-
tem. In the absence of cost models to quantify the im-
pact of a mapping strategy, developers rely on guide-
lines and best practices in their decision making pro-
cess. However, looking closer at these guidelines, two
flaws become apparent - incompleteness and incon-
sistency.

In this paper, we present a literature study, which
compares and consolidates best practices and guide-
lines that are supposed to aid developers in the de-
cision making process. The selection of documents
comprises of academic publications, text books and
technical documentations of vendors of O/R mapping
frameworks. Our analysis reveals that the aspects of
the mapping process, addressed by the different au-
thors, vary greatly. The individual selection of map-
ping aspects is arbitrary and depends largely on the
author’s background and the scope of the document.
This presents a problem for software developers, who
seek for an answer to the question what mapping strat-
egy to implement. Based on our analysis, we propose
a consolidation approach to identify inconsistencies
and missing parts, to allow a reasonable comparison
of existing works. We provide a comprehensive eval-
uation that elaborates on the identified insufficiencies
and provides reasonable explanations, why they can
be observed. One result of our consolidation is a com-
prehensive set of mapping aspects. This set of aspects
can be applied to a number of purposes. First, it can
serve as a frame of reference for evaluations, discus-
sions or comparisons of O/R mapping strategies. Sec-
ond, it can help software developers understand the
impact of mapping strategy aspects on the system’s
quality. This allows to make distinctive decisions re-
garding the use of a mapping strategy. Furthermore,
it can serve as a reference for further research in the
area of ORM concepts.

The remainder of this paper is structured as fol-
lows: Section 2 explains our document selection pro-
cess. The consolidation approach is described in Sec-
tion 3. The results of the consolidation are presented
in Section 4. Section 5 contains the evaluation of our
results. Section 6 summarizes and concludes the pa-
per and Section 7 gives an outlook to future work.

2 PAPER SELECTION PROCESS

A vital part of our literature study is the selection of
relevant documents. In Section 2.1, we describe our
search approach and the selection criteria that have
been applied to identify a set of relevant documents.
Section 2.2, gives a brief introduction to the selected
documents.

2.1 The Search Process

For the identification of potentially relevant docu-
ments, we followed the systematic literature review
(SLR) strategy, proposed by Kitchenham and Char-
ters (Kitchenham and Charters, 2007). We started
our document selection process by searching for pub-
lications about non-functional characteristics of in-
heritance mapping strategies. The initial search was
conducted using ACM’s digital library, the online
archive of the digital library of IEEE Computer Soci-
ety, Google Scholar, and Microsoft Academic Search.
We included the terms: “object”, “relational”, “map-
ping”, and “non-functional characteristics”, which led
us to a number of potentially relevant publications.
Based on references and citations, we employed a
forward/backward reference search to identify further
documents. For a detailed analysis, we selected those
documents that contain explicit discussions about the
impact of mapping strategies on system quality char-
acteristics. Holder et al. (Holder et al., 2008) de-
scribe the most structured analysis of quality char-
acteristics in the context of object relational map-
pings. Ambler (Ambler, 2003), Fowler (Fowler,
2002), Keller (Keller, 1997) and Philippi (Philippi,
2005) provide information about the behavior of in-
heritance mapping strategies. These five documents
represent the core of our literature study. Addition-
ally to research papers and textbooks, we decided to
look into technical documentations of O/R mapping
frameworks, e.g., Hibernate. We believe, a lot of soft-
ware developers start looking for guidance regarding
their mapping design in such documentations. Mostly
using Google, we searched for ORM tools for various
object-oriented programming languages. A brief in-
troduction to the selected documents is given in Sec-
tion 2.2.

2.2 Chosen Documents

We started out, by looking at the textbooks of
Fowler (Fowler, 2002) and Ambler (Ambler, 2003).
Both are focused on the conceptual level and ex-
plain the semantics of the three basic strategies,
namely Single-Table Inheritance, Table-per-Class
Inheritance and Table-per-Concrete-Class Inheri-
tance (Fowler, 2002). Since the terminology is not
consistent in the literature, the strategies are referred
to by different names in some publications, more on
this follows in Section 3.1. Fowler gives a short rec-
ommendation for use and an implementation exam-
ple for each strategy. Ambler explains the strategies
based on an example hierarchy and lists advantages
and disadvantages.

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

158



Philippi (Philippi, 2005) suggests a model driven
approach to automatically generate object-relational
mappings based on non-functional software require-
ments. Therefore, the different inheritance mapping
strategies get a fixed rating with respect to their un-
derstandability, maintainability, storage space con-
sumption and performance. Based on trade levels,
which express the requirements of the user, a strategy
is chosen accordingly. Thereby, Philippi (Philippi,
2005) extends previous approaches of automatic map-
ping generation. He builds on the idea of Keller et
al. (Keller et al., 1993), which only supports one in-
heritance mapping strategy for the entire class hierar-
chy. Hybrid designs are not considered. Philippi’s
rating of the strategies has the three levels positive
(+), moderate (o) and negative (-). Especially for un-
derstandability and maintainability, the reasoning or
metrics, which build the basis for the rating, are not
clearly described. The number of joins builds the
measure for performance, and the number of NULL
values and redundancy for storage space. Additional
influencing factors like inheritance depth or occurring
query patterns are not considered.

Holder et al. (Holder et al., 2008) suggest a met-
ric suite for object-relational mappings. Based on a
number of software quality characteristics that are in-
fluenced by underlying object-relational mappings the
authors suggest four metrics. In their future work,
the authors consider a normalization of the metrics
to enable an automated selection of mapping strate-
gies. However, a cost model, based on these metrics,
has not yet been presented. Holder is more precise
than Philippi in the consideration of the influenced
non-functional characteristics. Especially the men-
tioned quality characteristics are a good starting point
for the analysis of the non-functional requirements in
Section 3.2.

Keller (Keller, 1997) describes several patterns to
map objects to tables on a structural level. This in-
cludes an explanation of the three basic inheritance
mapping strategies with an example. In addition,
Keller considers the consequences of the chosen strat-
egy on the characteristics of an application, for exam-
ple query performance and maintainability.

The examination of ORM tool or framework doc-
umentations shows how the industry deals with the
topic of strategy selection. We analyzed 18 cur-
rent ORM tools with respect to the support of the
three well-known inheritance strategies. In general
the tool documentations rarely give recommenda-
tions for use or information about the impact of the
strategies on non-functional software characteristics
like performance or maintainability. The reference
of OpenJPA (Apache Software Foundation, 2013)

lists some advantages and disadvantages per strategy,
which mainly relate to performance and space con-
sumption. Apache Torque’s (Apache Software Foun-
dation, 2012) and Propel’s (Propel Community, 2015)
documentation make short statements about the per-
formance of the strategies. The reference of Doc-
trine (Doctrine Team, 2015) contains considerations
about the impact of the two implemented strategies on
performance, design-time and the database schema.
In general, one can say that technical documenta-
tions of O/R mapping frameworks focus on explain-
ing functionality and configuration. The impact and
consequences of choosing a particular mapping strat-
egy are widely discarded by the analyzed documenta-
tions.

3 THE CONSOLIDATION
APPROACH

As introduced in Section 1, the aim of this paper is to
identify inconsistencies and incompleteness in exist-
ing guidelines and best practices for choosing an op-
timal mapping strategy. To achieve this goal, we use
the method of consolidation as a process to compare
and combine the information and discussions from the
different sources.

We identified two challenges in this process. The
first is a lack of a standardized terminology. This
is problematic, because it is difficult to compare ar-
gumentations and discussions from different authors,
when they do not use a common vocabulary and def-
initions. The second challenge is the different levels
of abstraction that are used to discuss aspects and im-
pact of a mapping strategy. A high level of abstraction
leaves room for interpretation. This is problematic,
because the risk of misunderstandings or misinterpre-
tation is high. To address these two challenges, we
propose a three-step consolidation process. The first
step is a consolidation of terminology. The second
step is a consolidation of mapping aspects. The third
step proposes an organization of mapping aspects that
allows to understand the relationship between func-
tional requirements and non-functional system char-
acteristics. It also visualizes the different levels of ab-
straction involved. That way, we are able to follow
the argumentation and reasoning of different authors
and we reduce the room for interpretation.

3.1 Step 1: Terminology Consolidation

Analyzing the documents presented in Section 2, it
becomes obvious that there exists no commonly ac-
cepted terminology. Across all papers, we observe

Object-relational Mapping Revised - A Guideline Review and Consolidation

159



a variety of synonyms that are used to describe the
same concepts. We identified this fact as a prob-
lem, because ambiguity is a possible source of mis-
understandings and eventually may lead to inconsis-
tencies. To perform a comprehensive and thorough
consolidation, we need to define a basic set of terms,
which represent a core set of vocabulary. We are con-
vinced that all authors have considered their vocab-
ulary carefully, to support their argumentations and
reasoning. However, we observed that most authors
omit the introduction of semantics regarding their
key vocabulary. By giving a semantic definition for
terms that we consider key to understanding our ar-
guments, we want to reduce the risk of ambiguity
and we allow to relate argumentations from other au-
thors to our work. Fortunately, there exists a stan-
dard (ISO/IEC 9075) for the Structured Query Lan-
guage (SQL) (ISO, 2011), which provides a compre-
hensive glossary for database artifacts and concepts.
The most current version of that standard is ISO/IEC
9075:2011. Any database related terminology used in
this document is based on that standard.

• O/R Mapping - or short ORM is an umbrella
term that describes the concepts and processes of
linking classes of an OO programming language
to tables of an RDBMS. It resembles conceptual
considerations rather than practical implementa-
tions. Often the term is used synonymously for
O/R middleware implementations such as Hiber-
nate. In our discussions, we refer to ORM only
when we mean conceptual consideration.

• O/R Middleware - is a technical implementa-
tion of the process of linking classes of an OO
programming language to tables of an RDBMS.
We refer to O/R middleware, when we talk about
the manifestation of mapping concepts or strate-
gies in coding artifacts. This includes full-fletched
frameworks, such a Hibernate or Doctrine as well
as custom coding that implements O/R mapping
functionality.

• Entity - is a conceptual component of the applica-
tion. It is represented as a class definition that cap-
tures the entity’s attributes, which are relevant for
the application. An example for an entity could be
a customer or a product.

• Object Model - is the collection of all class def-
initions of the respective application. A synonym
would be domain modal or business modal. It
comprises, but is not limited to all entities the ap-
plication considers.

• Data Model - is the SQL database schema, which
is used to persist objects of the object model.

• Mapping Strategy - is a concrete design deci-
sion how to map an inheritance relationship be-
tween two or more classes to one or more rela-
tional database table(s). A single strategy does
not necessarily need to be applied to the com-
plete hierarchy. Within the tree of classes of an
inheritance hierarchy, each branch can be imple-
mented using a different strategy. In that, we talk
about a hybrid approach. Figure 1 illustrates such
hybrid approach for a hierarchy of three classes,
where the relationship between Employee and Ex-
ternalEmployee is implemented using the Single-
Table Strategy and the relationship between Em-
ployee and InternalEmployee using the Table-per-
Class Strategy.

• Mapping Specification - is the overall mapping
design for a complete inheritance hierarchy. What
strategy is implemented for which branch of the
hierarchy is defined by the mapping specification.
Figure 1 explains the relationship between map-
ping strategy and mapping specification.

• Single-Table Strategy - this strategy maps all
classes of a branch from an inheritance hierarchy,
which follows this strategy, to the same relational
table. It requires an additional relational field in
the shared table, which indicates the class of each
row. Single Table Inheritance is also known as
One Inheritance Tree - One Table (Keller, 1997)
or Union Superclass (Holder et al., 2008). For the
remainder of this paper, we abbreviate it with ST
(Single Table).

• Table-per-Class Strategy - this strategy imple-
ments a one-to-one mapping between classes and
tables. The corresponding table of a class con-
tains a relational field for each non-inherited class
attribute. Thus, object persistence is achieved by
distributing object data over multiple tables. In or-
der to link these tables, all tables share the same
primary key. In addition, the primary keys are
also foreign keys that mimic the inheritance re-
lationships of the object schema [9]. Each row in
a table then, maps to objects in that tables corre-
sponding class and subclasses. It is also known as
One Class One Table (Keller, 1997), Joined Table
Inheritance (Apache Software Foundation, 2013)
or Joined Subclass (Holder et al., 2008). For the
remainder of this paper, we abbreviate it with TPC
(Table-per-Class).

• Table-per-Concrete-Class Strategy - this map-
ping strategy only maps each concrete class to a
table. Thereby, all inherited and non-inherited at-
tributes of a class are mapped to the same table.
Each table then only contains instances of its cor-

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

160



responding concrete class. The strategy is also
known as One Inheritance Path One Table (Keller,
1997) or Union Subclass (Holder et al., 2008).
Philippi (Philippi, 2005) presents several variants
of the strategy. We focus on the most common
form, which is referred to as One flattened ta-
ble for each concrete class. Some ORM doc-
umentations (e.g. OpenJPA) use the name Ta-
ble Per Class Mapping (Apache Software Foun-
dation, 2013), which can easily be taken for Class
Table Inheritance. For the remainder of this paper,
we abbreviate it with TPCC (Table-per-Concrete-
Class).

Figure 1: Example of classes used in section 3.2.

3.2 Step 2: Mapping Aspect
Consolidation

With a clear set of vocabulary, we are now able to
consolidate the mapping aspects (MA) discussed in
the analyzed set of documents. In the first part of this
step, we collect all MA from the analyzed literature to
guarantee that our list of MA is complete with respect
to these documents. A large part of the collected MA
reflects functional system requirements. The follow-
ing enumeration lists the collected requirements and
explains their semantics. For a better understanding,
we provide examples, based on the class inheritance
structure, depicted in Figure 1. For reason of com-
pactness, we will not interpret the semantics for every
mapping strategy. We believe our descriptions to be
detailed enough to derive the respective differences
for each strategy.
• MA1 - Create new object: A new object has to

be persisted into the database. The characteris-
tic “new” means that the object refers to an en-
tity, whose logical identity has not yet been stored.
All attributes of the object have to be persisted in
the respective columns of the table(s), the object’s
class is mapped to. The identity of the object is
directly related to the primary key, the database
assigns to that object. An example would be the

storage of a new employee with the employee
number E-2132 in the database.

• MA2 - Read an object: Reading an object, rep-
resents the materialization of a single object from
the database. In this context, the object is accessed
using the key attribute(s), which relate to the log-
ical identity of the object and the entity it repre-
sents. An example would be the retrieval of the
employee with the employee number E-2132.

• MA3 - Update object: Updating an object is the
process of modifying all or just number of a se-
lected attributes for a specific object. The object
is accessed via its identity or primary key respec-
tively. An example would be an update of the
lastname of employee with employee number E-
2132.

• MA4 - Delete object: Deleting an object results
in the removal of all records and attributes that
are linked to the identity of the object. An exam-
ple would be the deletion of the employee with
employee number E-2132.

• MA5 - Polymorphic read: The “is-a”-relationship
that constitutes inheritance hierarchies is transi-
tive in nature. That means that a query on a
class that has subclasses needs to know whether
or not it should include its subclasses. Following
that line of thought, a polymorphic query includes
considers all records of class that it was executed
on, including all of its subclasses. An example for
a polymorphic read would be a query that lists all
employees where the lastname starts with the let-
ter “L”. All employees in the context of our exam-
ple means all internal and all external employees.

• MA6 - Non-polymorphic read: In contrast to the
polymorphic read, the non-polymorphic variant
is restricted only to records that are of the type,
the query was executed on. It does not consider
records of any subclasses.

• MA7 - Create new class attribute: A type of
change in the object model might be that a class
gets a new attribute. Looking at our example in
Figure 1, this could mean that we want to store
the middle name for all our employees. Conse-
quently, the class definition for the type Employee
is changed. That changed needs to be propagated
to the data model as well.

• MA8 - Update attribute data type: An update of
the attribute data type means that the data type of
the table column that stores a particular attribute
is changed. The reason for that might be tech-
nical (data base optimizations) or logical (salary
is changed from floating point number to double

Object-relational Mapping Revised - A Guideline Review and Consolidation

161



precision floating point number to increase preci-
sion).

• MA9 - Push attribute up: During the refactoring
process of an application, it might happen that one
or more attributes of a class are pushed to its su-
perclass. Looking at our example in Figure 1, t
could be that bonuses are now available for inter-
nal an external employees. In that case, Bonus
would become an attribute of the employee class.

• MA10 - Push attribute down: Similar to MA8, it
can happen that an attribute is pushed to a spe-
cialized class. In our example, it could be that, for
privacy reasons, the Birthdate is stored for inter-
nal employees only.

• MA11 - Delete class attribute: MA11 can be con-
sidered as the reverse operation to MA7.

• MA12 - Create new class from scratch: Appli-
cation systems evolve and new functionality is
added. In case new entities will be introduced to
support that new functionality, new classes have
to be added to the object model and consequently
need to be mapped to the data model.

• MA13 - Create new class via splitting: Refactor-
ing may result in the splitting of a single entity
into two or more specialized entities. That means,
that an existing class is replaced by two or more
classes. The objects of the existing class need
to be distributed across the newly created classes,
depending on their new role.

• MA14 - Delete class: Similar to MA12 and MA13
a refactoring may trigger the deletion of a class
from the object model. Depending of the specific
semantic of that refactoring, objects of the deleted
class may be erased or moved to other classes.

Subsequently, we added MA, which represent rele-
vant functionality that has not been addressed directly
in any of the analyzed documents. These MA are
derived from the authors’ experience with the imple-
mentation of O/R middleware. MA15 and MA16 re-
sult from refactoring approaches that consolidate two
or more classes of the object model. Two different
semantics can be found when consolidating classes.
• MA15 - Merge classes via pushing up: This hap-

pens, when the consolidation is done by moving
all attributes of a class to its superclass. Objects
of the subclass need to be added to the superclass.

• MA16 - Merge classes via moving horizontally:
From a functional point of view, MA16 is very
similar to MA15. However, there is an important
difference. Where MA15 requires only an change
and movement of object of the subclass, MA16
requires the adaptation of objects of both classes.

Additionally to these functional mapping aspects, we
collected a set of non-functional requirements from
the analyzed documents

• MA17 - Space consumption: the required storage
space of the database tables including indexes

• MA18 - Mapping conformance: expresses the re-
lational schema’s resemblance of the object model

• MA19 - Query complexity: the complexity to for-
mulate queries

MA1 through MA19 represent a comprehensive
set that covers relevant mapping aspects, which
should be addressed by a document that intends to
provide guidelines to understand the impact of a map-
ping strategy.

We do not claim this list to be complete. We would
like to see it as a starting point for further discussion
and invite researchers to add new aspects to that list.

3.3 Step 3: Requirements Organization

The requirements organization proposed in this pa-
per is inspired by a paper from Holder et al. (Holder
et al., 2008), where an approach towards a metric suite
for O/R mappings is proposed. Their approach is
based upon the ISO/IEC 9126 (ISO, 2001) standard
for software quality characteristics. The ISO/IEC
9126 (ISO, 2001) standard is meanwhile superseded
by the ISO/IEC 25010 (ISO, 2010). Its main contri-
bution is a mapping from high level non-functional
quality characteristics down to lower level character-
istics. Figure 2 depicts their approach. Not all of the

Figure 2: O/R Mapping Characteristics (Holder et al.,
2008).

characteristics defined in (Holder et al., 2008) are ap-
plicable to inheritance relationships, e.g., constraint
assurance, redundancy. For a comprehensive discus-
sion about the considered quality characteristics, we
refer to (Holder et al., 2008). Holder et al.’s approach

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

162



has two advantages. First, it allows the identifica-
tion of different abstraction levels and secondly, it
describes a relationship from non-functional system
characteristics down to lower level mapping strategy
aspects. Because we observed arbitrary switches be-
tween different levels of abstraction across and even
within the analyzed documents, we propose a number
of extensions to the existing approach. The main pur-
pose of these extensions is to resolve possible misun-
derstandings or misinterpretations, which result from
imprecise definitions or abstractions. Sections 3.3.1
through 3.3.3 elaborate on our proposed extensions.

3.3.1 Efficiency

Efficiency can be subdivided into Time behavior and
Resource utilization. Holder et al. map Resource uti-
lization to Additional null values, which is often used
synonymously for storage space consumption. Doc-
uments that broached the issue of null values always
related it to memory consumption, that is why we de-
cided to replace Additional null values with Memory
consumption. Time behavior is an abstraction of the
query performance of the database, regarding the cho-
sen data model. Holder et al. chose Polymorphic,
Non-polymorphic queries, and DB insert and updates
as appropriate subdivisions of Time behavior. We
believe this subdivision to be sufficient, but to pre-
vent any misunderstandings, we chose a more precise
and elaborate naming. We subdivide Time behavior
into the CRUD operations Insert, Lookup, Update,
and Delete and the Set operations polymorphic and
non-polymorphic read. From a database perspective,
this categorization is more suited, because it allows a
more precise distinction of the actual mapping aspects
discussed.

3.3.2 Maintainability

Following ISO/IEC 25010 (ISO, 2010), Maintain-
ability can be subdivided into Changeability, Stabil-
ity, and Analysability. We disregard Stability, since
there are no inheritance mapping related aspects that
impact this characteristic. For a detailed discus-
sions on that topic, we refer to (Holder et al., 2008).
Changeability aggregates any system behavior that is
related to change. Change in this context means a
structural adaptation of the domain model and its ef-
fects on both O/R middleware and data model. Holder
et al. propose two characteristics - Change isola-
tion and Change propagation. These two character-
istics are a good example for vague definition and
loose semantics that we criticize. Holder et al. de-
fine Change propagation “as the extent to which it is
necessary to adapt the relational schema and the O/R

mappings to changes in the object model” (Holder
et al., 2008). Change isolation on the other hand is
defined as “the need to modify tables for adding or
deleting classes” (Holder et al., 2008). The deletion
of a class is a change in the object model, which raises
the question why this aspect is considered to be part of
Change propagation. We decided to adapt Holder’s
definition to make it more concrete. Change prop-
agation reflects operations, which change the struc-
ture of a class, e.g., adding or deleting an attribute.
Change isolation reflects all operations that change
the structure of the inheritance hierarchy, neglecting
the structure of the individual classes, e.g., adding or
deleting a class. The resulting mapping aspects are
derived from a simple enumeration of object model
changes, which can occur in an OO programming
language. The last subdivision of Maintainability is
Analysability. Holder redefines this as Mapping un-
derstandability and further into Mapping uniformity
and Schema correspondence. Mapping uniformity in-
dicates the degree of hybridness, which reflects the
variation of mapping strategies used for the hierarchy.
It refers to the overall mapping specification and is
not applicable to individual mapping strategies. That
is why we do not regard it for further considerations.
Schema correspondence reflects the object model’s
resemblance in the relational schema.

3.3.3 Usability

Usability is translated into Operability and is rede-
fined by Holder to Ad-hoc queries. In its essence,
Usability reflects the complexity to formulate queries
for a particular strategy. Working with relational
databases requires a fairly sophisticated under-
standing of relational algebra. This presents an
increased complexity for a developer. Even though
an ORM middleware is able to hide a good part of the
complexity of SQL, there are very few systems that
are able to hide the underlying relational database
completely. Depending on the chosen strategy, the
complexity to formulate efficient database queries
varies. The aspect Query complexity reflects that.

With the structure depicted in Table 1, a developer
can directly see, which mapping aspect impacts what
non-functional characteristic of the system. With re-
spect to our literature analysis, this structure allows
to compare arguments and discussion points on dif-
ferent levels of abstraction. We will show that this is
beneficial, because we are able to present reasonable
explanations why some of the inconsistencies can be
observed. It also helps authors of guidelines to struc-
ture and organize their documents, so developers have
a more precise understanding of the guidelines scope

Object-relational Mapping Revised - A Guideline Review and Consolidation

163



Table 1: Mapping Aspects Organization based on ISO/IEC 25010 (ISO, 2010).

ISO/IEC 25010
Characteristics

ISO/IEC 25010
Sub-characteristics

Refined Characteristics Mapping Aspects

Efficiency
Time behavior

CRUD operations

MA1 - Insert
MA2 - Lookup
MA3 - Update
MA4 - Delete

Set operations
MA5 - Polymorphic read
MA6 - Non-polymorphic read

Resource utilisation MA17 - Space consumption

Maintainability
Changeability

Change propagation

MA7 - Create a new attribute
MA8 - Update attribute data type
MA9 - Push attribute up
MA10 - Push attribute down
MA11 - Delete an attribute

Change isolation

MA12 - Create a new class from scratch
MA13 - Create a new class via splitting
MA14 - Delete a class
MA15 - Merge classes via pushing up
MA16 - Merge classes horizontally

Analysability MA18 - Schema correspondence
Usability Operability MA19 - Query complexity

and intention.

4 CONSOLIDATION RESULTS

The consolidation approach proposed in Section 3
was applied for each of the three strategies - Single-
Table, Table-per-Class, and Table-per-Concrete-
Class. Tables 2, 3, and 4 depict our results. The
selected documents were analyzed with regard to the
mapping aspects identified in Section 3. For each
document, we tried to identify discussion points that
make a statement regarding the different mapping as-
pects. A (+) indicates a positive statement, meaning
that the authors assign a positive impact of the map-
ping strategy to the particular mapping aspect. A (-)
indicates a negative statement. We used (+/-) to in-
dicate that the author assigned both a positive and a
negative effect to the mapping aspect. This happens,
when an author leads an argumentation on an abstrac-
tion level, which contains a number of lower level
mapping aspects, e.g., Change isolation. On some of
the lower level aspects, the strategy has a positive and
on some it has a negative effect. If the author did not
clarify the exact mapping aspect, but chose to focus
the discussion on a more abstract level, it is not clear
to the reader what the author’s actual intention was.

As mentioned before, a high level of abstraction
leaves room for interpretation. We tried to resolve
imprecise discussions to the best of our knowledge
and understanding, to map all statements of the ana-
lyzed documents to our mapping aspects. Basis for

any interpretation are the mapping aspect semantics
defined in Section 3.1. If a document contains a state-
ment regarding a mapping aspect, we record the ref-
erence and the location of that statement within the
document. Columns two through five refer to the se-
lected publications and textbooks. Column six, la-
beled ORM tools, contains results derived from the
analysis of technical documentations of ORM frame-
works. In general, the technical documentations that
we looked at focus on functionality. In most cases,
the discussion of inheritance mapping strategies, with
regard to the impact on non-functional system charac-
teristics is very brief or not done at all. For that reason
and for constraints to layout and space, we decided to
summarize the results in one column.

5 EVALUATION

The results of the consolidation approach presented in
Section 4 shows that there exist a number of inconsis-
tencies and missing parts. In this section, we elabo-
rate on the results of the consolidation approach. Fur-
thermore, it contains reasonable explanations to why
inconsistencies may occur.

5.1 Incompleteness

Incompleteness, i.e., the omission of relevant map-
ping aspects in the discussion of mapping strategies,
can be identified by the empty cells in the result ta-
bles (Table 2, Table 3, Table 4). For each empty cells,

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

164



Table 2: Discussion Single Table.

(Keller, 1997) (Fowler, 2002) (Ambler, 2003) (Philippi, 2005) ORM tools
MA1 + p. 12 l. 4 +
MA2 + p. 12 l. 4 +/- p. 279 l. 15 / p. 279 l. 27 + p. 240 l. 11 + +
MA3 + p. 12 l. 4 +
MA4 + p. 12 l. 4 +
MA5 + p. 12 l. 6 +/- p. 279 l. 15 / p. 279 l. 27 + p. 240 l. 8 + +
MA6 +/- p. 279 l. 15 / p. 279 l. 27 + p. 240 l. 11 + +
MA7 + p. 13 l. 1 - +/-
MA8 + p. 13 l. 1 - +
MA9 + p. 13 l. 1 + p. 279 l. 16 - +
MA10 + p. 13 l. 1 + p. 279 l. 16 - +
MA11 + p. 13 l. 1 - +
MA12 + p. 13 l. 1 + p. 240 l. 3 - +/-
MA13 + p. 13 l. 1 + p. 240 l. 3 - +/-
MA14 + p. 13 l .1 - +
MA15 + p. 13 l. 1
MA16 + p.13 l. 1
MA17 - p. 12 l. 10 - p. 279 l. 21 - p. 240 l. 11 - -
MA18 +/- p. 279 l. 14 / p. 279 l. 19 - +
MA19 + p. 13 l. 4 + p. 240 l. 13

Table 3: Discussion Table per Class.

(Keller, 1997) (Fowler, 2002) (Ambler, 2003) (Philippi, 2005) ORM tools
MA1 - p. 14 l. 6 - p. 242 l. 7 -
MA2 - p. 14 l. 6 - p. 286 l. 26, p. 286 l. 30 - p. 242 l. 7 - -
MA3 - p. 14 l. 6 - p. 242 l. 7 -
MA4 - p. 14 l. 6 - p. 242 l. 7
MA5 + p. 15 l. 1 - p. 286 l. 26, p. 286 l. 30 + p. 242 l. 5 - -
MA6 - p. 286 l. 26, p. 286 l. 30 - -
MA7 + p. 15 l. 7 + p. 242 l. 10 + +
MA8 + p. 15 l. 7 + p. 242 l. 10 + +
MA9 + p. 15 l. 7 - p. 286 l. 28 +
MA10 + p. 15 l. 7 - p.286 l. 28 +
MA11 + p. 15 l. 7 + p. 242 l. 10 + +
MA12 + p. 15 l. 7 + p. 242 l. 10 + +
MA13 + p. 15 l. 7 + p. 242 l. 10 + +
MA14 + p. 15 l. 7 +
MA15
MA16
MA17 + p. 15 l. 5 + p. 286 l. 21 + p. 242 l. 15 + +
MA18 + p. 286 l. 23 + p. 242 l. 3 +
MA19 - p. 15 l. 9 - p. 286 l. 32

it was not possible to find a passage in the document
that discusses this mapping aspect. Consequently, a
software developer, who uses this document as a re-
source to get information about the consequences of
implementing a selected mapping strategy, would not
find information regarding this particular aspect.

We note that the effort to understand and interpret
existing literature is considerate and not trivial. We
assume that it is not realistic that software develop-
ers would naturally consider such detailed examina-
tion. Omitting this effort, due to time or complexity
reasons, would result in a lot more blank cells in the

table. That is why we consider our effort to define
semantics and resolve abstract discussions as an im-
portant contribution, which is valuable for software
developers and guideline authors.

5.2 Inconsistencies

The inconsistencies become apparent, when compar-
ing individual predicates (+, -, +/-) within each row.
Rows that contain a positive statement as well as a
negative statement show that there must be an incon-
sistent argumentation regarding the impact of that par-

Object-relational Mapping Revised - A Guideline Review and Consolidation

165



Table 4: Discussion Table per Concrete Class.

(Keller, 1997) (Fowler, 2002) (Ambler, 2003) (Philippi, 2005) ORM tools
MA1 + p. 16 l. 10 - p. 295 l. 17 +
MA2 + p. 16 l. 10 + p. 295 l. 14 + p. 241 l. 7 + +
MA3 + p. 16 l. 10 +
MA4 + p. 16 l. 10 +
MA5 - p. 17 l. 1 - p. 296 l. 7 + -
MA6 + p. 295 l. 13 + +
MA7 - p. 17 l. 7 - p. 296 l. 5 - p. 241 l. 3 -
MA8 - p. 17 l. 7 - p. 296 l. 5 - p. 241 l. 3 -
MA9 - p. 296 l. 1 -
MA10 - p. 296 l. 1 -
MA11 - p. 17 l. 7 - p. 296 l. 5 - p. 241 l. 3 -
MA12 - p. 17 l. 8 - +
MA13 - p. 17 l. 8 - +
MA14 -
MA15
MA16
MA17 + p. 17 l. 4 +
MA18 +/- p. 295 l. 10 / p. 295 l. 18 +
MA19 +/- p. 17 l. 13 / p. 17 l. 11 + p. 241 l. 3

ticular mapping aspect. We observed two types of in-
consistencies, which have different root causes. The
first type of inconsistency results from different levels
of abstraction and is discussed in Section 5.2.1. The
second type is caused by ambiguity and imprecise se-
mantics and is discussed in Section 5.2.2.

5.2.1 Inconsistencies through Abstraction

An example for contradicting opinions on different
abstraction levels is MA12 - create new class from
scratch - for the Single Table strategy in Table 2. An
overview of the different abstraction levels and the
corresponding discussions is depicted in Table 5.

Keller comes to a positive rating (Keller, 1997).
He argues that the simplicity of the mapping allows
an easy evolution. Ambler also comes to a positive
rating. He argues that the creation of a new class re-
quires merely the addition of new columns to the ta-
ble (Ambler, 2003). Ambler’s reason is on a lower
level than this of Keller, but both come to the same rat-
ing. Philippi’s evaluation of this point is negative. He
argues that maintainability of the Single Table strat-
egy is difficult for complex object models (Philippi,
2005). A more detailed reasoning is not mentioned.
The documentation of Doctrine ORM argues that the
addition of new columns also impacts existing index
structures (Doctrine Team, 2015). Torque (Apache
Software Foundation, 2012) evaluates maintainabil-
ity positive, without giving any reason regarding this
decision. Philippi and the Torque documentation dis-
cuss maintainability on the highest level of abstrac-
tion. They come to a contradicting rating. Ambler and

Doctrine lead the discussion on a lower level. They
mention the concrete use case of creating a new class,
but they also are not of the same opinion. Whereas
Ambler argues that the addition of new columns is
simple. Doctrine remarks possible problems in the
adaptation of existing indices. Both authors mention
different aspects and consequently come to different
ratings. Keller argues on the level of modifiability
with a positive judgment.

Summarizing, it becomes clear that on different
levels the authors come to divergent ratings. We be-
lieve that this observation is a clear indicator for miss-
ing standards and understanding, regarding abstrac-
tion levels and mapping aspects.

5.2.2 Inconsistencies through Missing Semantics

The evaluation of MA12 in Section 5.2.1 showed that
argumentations on different levels of abstraction may
lead to different results. A second important observa-
tion is inconsistency, caused by missing or imprecise
semantics. An example for that is MA5 - Polymor-
phic read for the Table-per-Class strategy in Table 3.
Fowler (Fowler, 2002) and Philippi (Philippi, 2005)
argue that the Table-per-Class strategy is problematic
due to the high cost of joins, which need to be exe-
cuted to reconstruct a complete object. Keller (Keller,
1997) and Ambler (Ambler, 2003) argue that a Poly-
morphic read needs only one table access to identify
the requested objects, because all objects have also an
entry in their superclass tables. All authors discuss the
use case of a Polymorphic read, but they consider dif-
ferent aspects of this complex operation. In that case,

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

166



Table 5: Example for Inconsistencies due to Abstraction (Table 2: MA12 - New class from scratch)

ISO/IEC 25010
Characteristics

ISO/IEC 25010
Sub-characteristics

Refined
Characteristics

Mapping
Aspects

. . .

Maintainability
- Philippi (Philippi, 2005)
+ Torque (Apache Software Foundation, 2012)

Changeability
+ Keller (Keller, 1997)

Change
propagation

. . .

Change
isolation

Create a new class
from scratch
+ Ambler (Ambler, 2003)
- Doctrine (Doctrine Team, 2015)
. . .

Analysability Schema correspondence
. . .

a positive or negative judgment is merely a reflection
of the author’s interpretation of what a Polymorphic
read actually consists of and what part of that has a
relevant impact. To resolve such inconsistencies, we
need detailed semantics and a quantification approach
to clarify and measure the impact of that operation in
different strategies.

6 CONCLUSION

The goal of this paper is to identify inconsistencies
and incompleteness in existing guidelines and best
practices for O/R inheritance mapping strategies. We
described a systematic approach to identify and select
literature, containing guidelines and best practices for
O/R mapping strategies. We proposed a consolidation
approach to compare and combine the information
and discussions from the selected documents. The re-
sult of that approach is twofold. First, we derive a
comprehensive set of 19 mapping aspects. This set
merges the individual aspects identified in the ana-
lyzed literature and adds two new aspects, which are
relevant, but have not been found in any of the ana-
lyzed documents. Second, the consolidation contains
a proposal for a hierarchical structure of mapping as-
pects from high-level quality characteristics of the ap-
plication, i.e., efficiency, maintainability, and usabil-
ity to lower level features of O/R middleware. Our
evaluation shows that none of the analyzed documents
provides a comprehensive discussion of all 19 map-
ping aspects. This is problematic for developers, who
need to understand the impact of a mapping strategy
on their application’s quality characteristics. Further-
more, the evaluation shows that there are inconsisten-
cies across the literature. Due to missing or imprecise
semantics and arbitrary abstractions, different authors
come to inconsistent guidelines and best practices.

7 OUTLOOK AND FUTURE
WORK

Our literature study and consolidation revealed incon-
sistencies and missing parts in existing guidelines and
best practices for O/R inheritance mapping strategies.
The reasons for that are complex, but we see the root
cause of that in missing standards and imprecise def-
inition of concepts. This becomes obvious by just
looking at the different naming conventions for map-
ping strategies. Our analysis shows that the structures
and relations between a system’s quality characteris-
tics and aspects of O/R mapping strategies are com-
plex. Disregarding that complexity makes it difficult
for software developers, to understand the impact of
their architectural designs. In the future, we see two
possible directions.

First, there should be an active discussion about
the derived set of mapping aspects and the proposed
organization of non-functional quality characteristics
and mapping strategy aspects. We would like to see
an active involvement of practitioners with experience
in the development of O/R mapping layers to validate
and possibly extend our proposed set of relevant map-
ping aspects. Furthermore, there may also be valid
reasons to adapt the organization in depth or width.
The contribution of this paper can be a first step to-
wards a discussion for a frame of reference or even
a standard, which can be used by scientists and prac-
titioners to revise existing or develop new guidelines
for O/R mapping strategies. Comprehensive and con-
sistent guidelines are key to efficient and informed ar-
chitectural decisions, when implementing O/R map-
ping layers.

The second direction that we would like to follow
is the development of a quantification approach to ac-
tually measure the impact of a mapping strategy on
the system’s quality characteristics. During our litera-
ture study, none of the analyzed documents contained
any cost model or empirical evidence that would sub-

Object-relational Mapping Revised - A Guideline Review and Consolidation

167



stantiate the presented discussions. A quantification
approach would be a valid and less vague replacement
for informal guidelines and best practices. We plan to
use the mapping aspects, defined in this paper as a
starting point to conduct an empirical study and even-
tually develop a cost model. Such a cost model could
be the basis for an automated strategy selection that
allows to optimize an application towards a set of pri-
oritized quality characteristics.

REFERENCES

(2001). Iso/iec 9126-1:2001 software engineering – product
quality – part 1: Quality model.

(2010). Iso/iec 25010:2011 systems and software engi-
neering – systems and software quality requirements
and evaluation (square) – system and software quality
models.

(2011). Iso/iec 9075:2011 information technology -
database languages - sql.

Ambler, S. (2003). Agile Database Techniques: Effective
Strategies for the Agile Software Developer, chapter
14 - Mapping Objects to Relational Databases, pages
231–244. John Wiley & Sons, Inc., New York, NY,
USA.

Apache Software Foundation (2012). Torque inheritance
guide. [Accessed: June 22, 2015].

Apache Software Foundation (2013). Apache openjpa 1.2
user’s guide. [Accessed: June 22, 2015].

Doctrine Team (2015). Doctrine 2 orm 2 documentation.
[Accessed: June 22, 2015].

Fowler, M. (2002). Patterns of Enterprise Application Ar-
chitecture. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA.

Holder, S., Buchan, J., and MacDonell, S. G. (2008). To-
wards a metrics suite for object-relational mappings.
In Proc. of the 1st Int. Workshop on Model-Based Soft-
ware and Data Integration (MBSDI), pages 43–54,
Berlin, Germany.

Keller, A. M., Jensen, R., and Agarwal, S. (1993). Per-
sistence software: Bridging object-oriented program-
ming and relational databases. In Proc. of the ACM
SIGMOD Int. Conf. on Management of Data, pages
523–528, New York, NY, USA.

Keller, W. (1997). Mapping objects to tables - a pattern
language. In Proc. of the European Conf. on Pat-
tern Languages of Programming Conf. (EuroPLOP),
Berlin, Germany.

Kitchenham, B. and Charters, S. (2007). Guidelines for
performing Systematic Literature Reviews in Soft-
ware Engineering. Technical Report EBSE 2007-001,
Keele University and Durham University Joint Report.

Philippi, S. (2005). Model driven generation and testing of
object-relational mappings. J. Syst. Softw., 77:193–
207.

Propel Community (2015). Propel documentation. [Ac-
cessed: June 22, 2015].

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

168


