
Test-Data Quality as a Success Factor for End-to-End Testing
An Approach to Formalisation and Evaluation

Yury Chernov
SIX Group Services AG, Selnaustrasse 30, Zurich, Switzerland

Keywords: Data Quality, Test-Data, End-to-End Testing, Data Quality Factors, Test-Data Quality Modelling.

Abstract: Test-data quality can be decisive in the success of end-to-end testing of complicated multi-component and
distributed systems. The proper metrics allows to compare different data sets and to evaluate their quality.
The typical data quality factors should be, on the one hand, enriched with the dimensions specific for the
testing, and, on the other hand many requirements to the production system data quality become not
relevant. The proposed formal model is based to great extent on the common sense and practical experience,
and not over-formalised. The implementation requires quite an effort, but once established can be very
useful.

1 INTRODUCTION

The aim of end-to-end testing is to verify the
complete business functionality of a system starting
from entry points and including the outgoing
information to end-users. The functionality is
defined by the requirements and corresponding use-
cases. The end-to-end testing takes place on special
test systems. Besides technical implementation of a
test system one of the major points is the test-data.
The quality of the test-data must ensure the
testability and the business-relevant test coverage.

The definition and evaluation of the test-data
quality is the topic of the current paper. In order to
define the quality of the test-data we summarise the
parameters of the data quality in general and then
include specific points of the testing.

The idealistic aim would be to fully formalise the
evaluation of the data-quality in order to enable a
proper metrics and a quantitate comparison of one
data-set to another. However, this aim is practically
not reachable, or can be only partly reached.
Therefore, our intention is to find a reasonable
approach, suitable to the evaluation and helpful in
finding the ways to improve the test-data. And the
major question remains: how we can formally define
the test-data quality.

The present paper is based on the testing
experience by SIX Swiss Exchange (SSE)
(http://www.six-swiss-exchange.com), where the
requirements to the reliability and stability are very

high. That is why the question of the test-data
quality is extremely important.

2 DATA QUALITY DIMENSIONS

Although the presented discussion is rather generic:
the rational and models are applicable to a wide
range of data-intensive systems, the influence of the
specific system under test, that is SSE, cannot be
ignored. We will first discuss the system under the
test especially in the context of the end-to-end
testing and the standard data quality dimensions, and
then introduce the test-data specifics reflected in the
model.

2.1 System Under Test

SSE is highly complicated multi-component system.
It includes a dozen of components running on
different platforms, with different data bases
(Oracle, SQL Server, MySql, etc.) and
communication principles, protocols and technical
means. The static or reference data that is defined in
the dimension tables (Kimball, 2013) and dynamic
or trading data (fact tables) arrives into the system
through different interfaces starting from web- and
application-based manual input and uploads, and
including fast algorithmic-trading interfaces, where
the time is differentiated in nanoseconds. The end-
to-end test system should reproduce this landscape

Chernov, Y.
Test-Data Quality as a Success Factor for End-to-End Testing - An Approach to Formalisation and Evaluation.
DOI: 10.5220/0005971700950101
In Proceedings of the 5th International Conference on Data Management Technologies and Applications (DATA 2016), pages 95-101
ISBN: 978-989-758-193-9
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

95

practically one to one.
The major specific of the system from the data

point of view is that the data consumers (banks and
other trading organisations) are to great extend data
creators, since they issue the products that are traded
on SSE. They are as well, as system customers, the
major source of functional requirements. That is a
very important point: we can refer to (Redman,
2013) who emphasised: “I’ve noted repeatedly the
importance of connecting data customers and data
creators. One difficulty is that customers often speak
in vague, confused, task-specific terms, while data
creators need hard, tangible specifications on which
to define and improve their processes.” However,
we should not forget that this was stated for the real
production data and we are investigating the data
aspects in the end-to-end test system.

The data can be analysed from different points of
view, which they use to call dimensions. The data
quality approach is not homogeneous. It changes
from dimension to dimension, since different aspects
come in the foreground of the analysis. Therefore, it
is important to discuss them, at least to point them
out.

The information circulated in SSE includes the
static data (issued products, participant information,
technical connection data, billing parameters etc.)
and dynamic data (trading information, calculated
indices, statistical evaluations etc.). Both types of
data come from the up-stream components and are
integrated in the downstream components (data
warehouse, monitoring and supervision tools, and
information distribution utilities). The third data type
is the information generated by the components
themselves (information products), which is based
on the incoming static and dynamic data. Of course
that relates more to the downstream components, for
instance, the spreads of the order books, or some
daily statistic reports.

The data arrives into the system (incoming
information), is stored and processed and distributed
further to customers. The quality of these portions
can be different. The problems and defects in
incoming data can be partly corrected by the
software that these data reads, verifies and stores.

The same process takes place for the outgoing
data. When a certain data field is not populated for
certain tuples, it may be set to an agreed value by the
export routines.

But when the software itself has bugs (the testing
actually is done to detect them), it can reduce the
quality of the stored data by introducing the data
problems.

From the point of view of the source the data can

be external, that is comes from external sources
outside of the systems (ex. issued financial
instruments, indices form foreign stock exchanges,
currency rates etc.), or internal. Internal data is
produced either by the software that processes,
consolidates and converts the data, or by internal
users that have the role to enrich and maintain the
data.

The character of the data can be business-
relevant or pure technical one. The technical data
can include, for instance, network configuration and
user access paths. The quality of this data should be
extremely high; otherwise, the system will simply
not work properly.

Besides, the data relates to different objects in
the system. The quality might be interesting for
separate objects and even sub-objects. For instance,
one of the objects is securities
(products/instruments) listed on the stock exchange.
As sub-objects we can consider different types, like
shares, bonds, derivatives etc.

The summary of the data characteristics in SSE
is presented in Tab. 1. Of course the data can be
viewed from some additional aspects as well.
However, we define those ones that are more
relevant for the data quality modelling.

Table 1: Data Characteristics.

Data Dimension Dimension Refinement

Type
Static
Dynamic
Generated

Information
Incoming
Stored
Outgoing

Source
External
Internal

Character
Business
Technical

Store
Temporal
Long-term

Object

Products/Instruments
Participants
On-book trading data
Off-book trading data
………………………

The existing production SSE is reflected in end-
to-end test environment. The major test environment
includes 14 components: reference data repositories,
trading engine, off-book trading component,
monitoring system, data warehouse, data distribution
system etc. It covers a big portion of real production
functionality. It is never 100%, but it can be close to
that.

DATA 2016 - 5th International Conference on Data Management Technologies and Applications

96

2.2 Different Test Levels

In the current paper we focus our attention on the
functional end-to-end testing. In the SSE landscape
different test phases are implemented. Major of them
are component and integration testing, which take
place before the software is shipped to the end-to-
end testing. The requirements on the test-data are
different for different test phases.

The business relevance has lower priority for the
component testing, but rather the combinatorics of
possible data configurations is important. The aim of
the component testing is to check all technically
possible scenarios. That is done with synthetic data.
This data is not coming from the up-streams
components, but is stored in the specially prepared
files. The testing is mostly automated. Especially the
regression testing is appropriate, when the same
input files feed the test components with different
software versions and the results are compared.

For the integration testing the interface variants
and protocol configurations are in focus. Here not
only one separate component, but typically pares of
components are serving as testees. However, the
principle approach to the test-data is like in the
component testing. The data can be just synthetic
one. The closeness to the real production data is not
very important. Important is to cover all possible
protocol branches and all possible file
configurations, when the communication between
components is implemented through files. The last is
typical for the reference data.

For the end-to-end testing the data must support
all business functions and not necessary all
technically possible variations. To fulfil that the data
should be close to the real production one and also
cover future needs, which are technically possible,
but not activated yet. Therefore, the data is often a
combination of production and synthetic portions.

2.3 Data Quality Factors

The traditional data quality factors or dimensions are
defined in many publications (Redman, 2013;
Batini, 2006; Rainardi, 2008). They are mainly
oriented on the data warehouse concept, which is
quite appropriate for us as well.

When we are speaking about the data quality we
should not forget two aspects or objects, namely data
model and data set. Usually they mean the last, when
discussing the data quality. In the current work we
are doing that as well, because from the testing point
of view in general and the end-to-end testing in
particular the data set is the major point of interest.

The data model belongs primarily to the design.
However, often only during the testing you detect
the model problems and the feedback can be still
very useful.

Below in Tab. 2 we list the principle quality
factors. The list is rather generic and covers both
data models and data sets. That is why these factors
serve as a good basis for more precise and practical
definition when implementing them to the test
quality evaluation.

Table 2: Data Quality Factors.

Data Quality Factor Explanation

Correctness

Accuracy: data are correct
(data formats, defaults, initial
load, NULLs etc.).
Precision: data are adequately
specific.
Granularity: data are
sufficiently detailed.

Completeness

Completeness: all data are
available.
No Gaps: all needed values are
present.
State: data are in usable state.

Consistency No conflicting data.
Conformity Conformity with critical rules.

Integrity

Identity: unique keys are
defined.
Referential Integrity.
Cardinality: relationship
constrains are present.
Dependency: functional
constrains are present.
Uniqueness: no duplicate data.

Validity

Values are within required
range.
No Null values in Non-NULL
fields.

Timeliness

Currency: data are up to date.
Repetition: data include enough
history.
Continuity: no historical gaps.
Sequentially: data are logically
sequenced.

Data Comprehension

Data match business; data are
understandable; data are easy
to view; data are structured in
logical sequence; data are fit-
to-tool (easily
imported/exported).

We are discussing these factors below. But first
of all describe specifics of requirements to the test-
data that define its quality.

Test-Data Quality as a Success Factor for End-to-End Testing - An Approach to Formalisation and Evaluation

97

2.3.1 Test-Data Quality

The data quality factors reflect the general data
quality aspects. The test-data and especially the test-
data for the end-to-end testing have its specifics:

 it should cover all real production cases and
configurations

 it should properly reflect the real production data
relations and stochastic distributions

 it should support possible future functionality
that is not used currently in the production
system, but is possible technically

 it should quantitatively reflect the requirements
for non-functional testing, that is over the current
production volumes.

These specifics do not influence the general
approach, however, they definitely important for the
evaluation in the model presented below.

The test-data quality has one additional
characteristic. Namely, how good the data covers all
needs of the planned test activity, that is how good it
for the execution of all planned test cases. Finally
that is the crucial thing about the test-data.

The test coverage is usually derived from
business and technical use cases and requirements.
Each use case is typically transferred into several
test requirements. When you manage to build a pure
hierarchal test planning system then each test
requirement is covered by several test cases. In
practise you may have more complicated relations –
many-to-many, when one test case supports several
test requirements. Besides, every test case may have
several configurations.

The quality factor reflects how good this
complicated structure is supported by the test-data,
so, that every test case could be executed with all its
configurations. This criterion complements the set of
quality factors.

2.3.2 Correctness

The data accuracy is easily formalised both for the
interfaces and in the data store. They check formats,
default values, initial load values against system
specifications, empty fields. We are speaking about
pure technical checks. More business-oriented
verification is done along the data comprehension
dimension.

Precision for a data entity should be the same all
over the system. It makes no sense to store a field
with, say, six decimal places, when the data source
delivers it with only four positions after decimal
point. The check of the precision aspect is
complicated, since the same variables might have

different names in different components (see the
consistency dimension) and the proper analysis
requires a big analytical rather than formal effort.

The granularity is business-defined and is
covered in the data model level.

For SSE the major focus lays on default values,
initial load for new versions and migrations, and
NULLs. The NULL-values are traditionally the
source of many problems. They often play an
important role in the integration between
components when one component designed by an
outsourcing company, say in India, allows NULLs
for specific field, and the next component that has
been purchased from a provider in Australia expects
no NULLs on the interface. Often such problems
happen. Generally NULL can note either non
existing value, or existing but unknown (not
provided by the data source), or when you do not
know, whether the value exists.

2.3.3 Completeness

The data completeness is as well easily checked on
the database level. It is better when you have the
statistical reference from the real production. The
source of the data in the test system is mainly test
automation scripts. They should be configured in
such a way that at least the data relations (not always
volumes) remain production-like.

On the table level we should verify that there are
no empty tables. For instance, in the current SSE
data warehouse test system there are 36 empty tables
out of totally 187. However, some of them relate to
the functions, which are not tested in the end-to-end
system, others are not populated any more, but still
kept in production for historic reporting. There are
some tables that have been introduced, however, not
used in production, since the corresponding business
functionality is not yet activated.

On the record level – check for empty, not-
populated fields. Here we should verify not simply
NULLs, but those fields that are filled in some
components, but empty in other.

From the dynamic point of view it should be
controlled that there is data for all days (in SSE
context) or other relevant time entities. For instance,
in the current test data warehouse there is data from
01.06.2015 till 01.05.2016, that is, 335 calendar days
(2016 is a leap-year). That corresponds to 231
business days (minus weekends and bank holidays).
In the data warehouse there are 220 loaded days, i.e.
11 days are missing for some reasons.

From the object point of view – all objects (like
legal entities, participants or trading users by SSE)
should include required data.

DATA 2016 - 5th International Conference on Data Management Technologies and Applications

98

For the end-to-end test purposes it is necessary
that the data is complete and has no gaps during the
test cycles. Between the test cycles some data gaps
are acceptable. However, we are trying to avoid that
by scheduling the execution of automatic scripts
every day. Besides, the data gaps can be added on
purpose - to test, how the system copes with them.

2.3.4 Consistency

Formally conflicts may occur when the same data in
different tables is imported from different sources. If
their values are not the same, we can speak about
conflicting data.

Another aspect of this problem is different names
for the actually same data entities. Often that
happens when the data entities are in different
components. The optimal way is to build the data
name maps. The formalisation of these maps enables
the automation of the data consistency checks.

In SSE there are rather many disagreements in
data field names due to historically development of
components by different software suppliers.

2.3.5 Conformity

Data rules are implemented either in the database or
on the application level - in GUIs or interfaces. The
important point here is to check the historical data.
A new implemented rule will not allow new non-
conform data. However, the old one that had been
entered into the system before can include non-
conform values. Often the conformity errors are
detected when a user tries to change these old data
entities.

In SSE only for reference data components the
conformity aspect of the quality is relevant, because
trading components often receive just the current
data (for the current business day). So even when
they do have some conformity problem, the root
cause is in the reference data components. The
verification can be technically easily done on the
databases. The difficulty is to consistently formalise
all business rules, which are often implemented on
the interface level, in terms of the database entities.

2.3.6 Integrity

That relates mainly to the data-model. Of course if
the referential integrity, cardinality and dependency
are not defined on the database level then they are
the point for the formal verification on the data-set
level. But the most interesting here could be the
historical development of data-sets, when they grew
incrementally from version to version with the data

model changes. In this case the referential integrity
and cardinality of the historic data could be broken.

The verification is analogous to the consistency
dimension. The integrity rules are technical ones and
formulated on the database level.

2.3.7 Validity

Validity in out context is about the data ranges.
There are two types of required range. The first is
the technical one, which is defined on the database
level. These ranges should be checked, like in the
case of integrity, only for historical data. The second
type is business-relevant ranges. This means that
technically the values outside the range are possible,
but they are not meaningful from the business point
of view. These ranges could be very interesting for
the evaluation of the data quality of the end-to-end
testing. For the component testing, especially non-
functional one, the extreme values are needed.

The evaluation becomes complicated, since some
rules have been changed. So the validation should be
estimated based on the rules valid for the specific
period.

2.3.8 Timeliness

The authors of (Batini, 2006) defined the currency
formally as the age of the data unit plus difference
between the delivery time (the time the information
product is delivered to the customer) and the input
time (the time the data unit is obtained).

Volatility is the length of time data remains
valid.

Timeliness, which is measured from 0 (bad) to 1
(good), equals 1 minus relation of the currency to
the volatility. However, this formal approach is not
always relevant.

In the SSE end-to-end test system the new data is
generated daily by means of automated scripts. The
quality check includes the verification the daily
process that is that all tables are populated in all
components. By this we guaranty no historical gaps.

From time to time (two-three times a year) the
test environment is set-up from scratch as a copy of
production system. This copy includes just the
reference data, so the system starts its live from zero.
However, some applications like billing or statistical
evaluations require much historical data. Therefore,
the test environment must “live” for some time,
before all tests can be executed.

2.3.9 Data Comprehension

The data comprehension dimension is least

Test-Data Quality as a Success Factor for End-to-End Testing - An Approach to Formalisation and Evaluation

99

formalised. Actually it can be evaluated only on the
bases of end-user opinions. For the testing this
dimension is probably not very interesting, unless
the data comprehension requirements are more
formally formulated.

3 DATA QUALITY MODEL

Above we presented just some explanations to the
data quality factors. Let us abstract from the formal
definition of them and assume that they can be
evaluated somehow by experts or with special
procedures. For instance, one of the aspects of
completeness could be the number of not populated
fields and the number of empty tables in a database.
For us is important to compare different data sets to
each other and not the formal quantitative definition
of the quality level. This comparison might involve
two variants of data sets for the same system under
the testing or two states of the same data set at
different points of time, the last can reflect, for
instance, two different projects.

There are three known approaches to the
definition of data quality dimensions: theoretical
(Wand, 1996), empirical (Wang, 1996) and intuitive
(Redman, 1996). We are trying to combine them in a
simple model.

We define the quality model as a primitive
weighted sum of the factor levels:

ݍ ൌ෍ ܽ௜ ∙ ௜ݔ
௡

௜
 (1)

Where

xi is the level of factor i,
ai is the weight of the factor i,
n – total number of factors

In our case n = 8 (Tab. 2), and x1 reflects the level of
correctness, x2 – the level of completeness, etc. The
model (1) is very generic, the exact definition the
levels and the weights is application specific.

In order to provide compatibility, the test-data
quality models must be mapped on the same scale.
The most appropriate seems the normalised scale.
Therefore, we can state that both xi and q are defined
on the scale of 0 to 1. The weights ai should be
defined accordingly to ensure the proper value range
for q.

The definition of ai is rather complicated. The
only reasonable way seems to be an expert
evaluation. However more formal procedures could
be thinkable as well.

3.1 Structure-based Approach

As it was mentioned above, the SSE system includes
many non-homogeneous components. The first
approach to the data quality evaluation is to evaluate
the quality levels for every component and then to
aggregate them with a product function:

ܳܵ ൌෑ ௝ܾ

௠

௝
∙ ௝ (2)ݍ

Where qj is the quality level of j-th component,
estimated by (1); bj is the weight of the j-th
component.

We should use the product function rather than a
weighted sum, because the quality is hardly defined
by a bottleneck component. Therefore, when the
data quality of an up-stream component is poor, the
high quality of a down-stream one cannot improve
the total value.

3.2 Object-based Approach

Basic model (1) & (2) may be implemented not
exclusively to the whole data structure, but only for
selected objects as well. In our application we can
take for instance just traded securities or only billing
relevant data entities. This approach of course
requires a proper analysis of the data and very
precise business know-how. In other words it cannot
be realised just formally, as it is in principle possible
with the structure-based approach.

3.3 Use-case-based Approach

This approach we call “use-case-based”, but
practically it is based on the test cases and their
configurations. We assume that the above described
chain use case –> test case –> test case configuration
(test instance) covers all the needed requirements to
the end-to-end testing. Of course that is not always
the case and strongly depends on the quality of the
test specifications and plans. However, in SSE that
should be assumable. In general, if the coverage of
the system functionality by the testware is not good,
then the test-data quality cannot add a lot.

We can detect, whether the test-data set supports
a test instance, either by trying to execute it or just
ask an expert (tester). By the end we have binary
value: true or false. Let us call this variable “test
instance quality indicator” and denote it through tij
for the j-th instance of the i-th test case. The test-
data quality may be modelled by the following
expression:

DATA 2016 - 5th International Conference on Data Management Technologies and Applications

100

ܷܳ ൌ
∑ ܿ௜௝ ∙ ௜௝ݐ
்,௞
௜,௝

∑ ܿ௜௝
்,௞
௜,௝

 (3)

Where T is the number of test cases, k - number of
configurations, and cij is the corresponding weight of
the test case. Number of configurations is normally
individual for every test case; therefore, we should
actually speak about ki.

The evaluation with the model (3) is usually
effort and time consuming. However, once done, it
could be very useful. It presents a different view on
the test-data quality. For instance, as we already
mentioned above, the data warehouse in the end-to-
end test system of SSE has 36 empty tables out of
totally 187, although they are populated in the
production system. That has rather strong influence
on the data quality evaluation according to (1)-(2).
However, all of end-to-end test cases can be
executed, and the value of QU from (3) could be
high.

4 CONCLUSIONS

The dimensions that are typical for the data quality
analysis can be applied to the test-data for the end-
to-end testing as well. They provide useful
information. However, from the one hand, the
typical dimensions should be enriched with the
specific for the test-data factors. From the other
hand, not all requirements, which are important for
the real productive data, are relevant for the test-
data. Therefore, the corresponding model should be
based not only on the formal approach, but on the
common sense and empirics as well.

The practical results require a big effort.
However, once established and implemented in
terms of models (1) - (3), the procedure can be very
effective in evaluation of the test-data quality.

Very challenging task is the design of a more
formal model for the proper definition of the weights
in (1), (2), and (3). Till know they are defined
intuitive or partly by experts and are not very
differentiated. The proper approach seems to be the
combination of expert estimation with several
simulations of the test data.

REFERENCES

Batini, C., Scannapieco, M., 2006. Data Quality:
Concepts, Methodologies and Techniques, Springer.
Berlin.

Kimball, R., Ross, M. 2013. The Data Warehouse Toolkit:
The Definitive Guide to Dimensional Modeling.
Wiley, 3rd Ed.

Rainardi, V., 2008. Building a Data Warehouse: With
Examples in SQL Server, Apress. New York.

Redman, T.C., 1996. Data Quality for the Information
Age. Artech House.

Redman, T.C., 2013. Data Quality Management Past,
Present, and Future: Towards a management System
for Data. In. Handbook of Data Quality: Research and
Practice (Ed. Sadig, S.), Springer.

Wand, Y., Wang, R.Y. 1996. Anchoring Data Quality
Dimensions in Onto-logical Foundation.
Communication of the ACM, 39, 11.

Wang, R.Y., Strong, D.M. 1996. Beyond Accuracy: What
Data Quality Means to Data Consumers. Journal of
Management Information Systems 12, 4.

Test-Data Quality as a Success Factor for End-to-End Testing - An Approach to Formalisation and Evaluation

101

