
Towards Access Control for Isolated Applications

Kirill Belyaev and Indrakshi Ray
Computer Science Department, Colorado State University, Fort Collins, U.S.A

Keywords: Access Control, Service and Systems Design, Inter-application Communication.

Abstract: With the advancements in contemporary multi-core CPU architectures, it is now possible for a server operating
system (OS), such as Linux, to handle a large number of concurrent application services on a single server
instance. Individual application components of such services may run in different isolated runtime environ-
ments, such as chrooted jails or application containers, and may need access to system resources and the ability
to collaborate and coordinate with each other in a regulated and secure manner. We propose an access control
framework for policy formulation, management, and enforcement that allows access to OS resources and also
permits controlled collaboration and coordination for service components running in disjoint containerized
environments under a single Linux OS server instance. The framework consists of two models and the policy
formulation is based on the concept of policy classes for ease of administration and enforcement. The policy
classes are managed and enforced through a Linux Policy Machine (LPM) that acts as the centralized reference
monitor and provides a uniform interface for accessing system resources and requesting application data and
control objects. We present the details of our framework and also discuss the preliminary implementation to
demonstrate the feasibility of our approach.

1 INTRODUCTION

The advancements in contemporary multi-core CPU
architectures have greatly improved the ability of
modern server operating systems (OS) such as Linux
to deploy a large number of concurrent application
services on a single server instance. The emergence of
application containers (Docker Developers, 2016), in-
troduction of support for kernel namespaces (Manual,
2016) allows a set of loosely coupled service compo-
nents to be executed in isolation from each other and
also from the main operating system. This enables ap-
plication service providers to lower their total cost of
ownership by deploying large numbers of application
services on a single server instance and possibly min-
imize horizontal scaling of applications across multi-
ple nodes.

In conventional UNIX or Linux OS, applications
can be deployed in isolated (containerized) environ-
ments, such as chrooted jails. Such isolated envi-
ronments limit the access of the applications beyond
some designated directory tree and have the potential
to offer enhanced security and performance. How-
ever, no mechanism is provided for controlled com-
munication and sharing of data objects between iso-
lated applications across such environments. A new
type of access control is needed for such isolated ap-

plications for controlling access to OS resources, for
regulating the access requests to the application data
and control objects used for inter-application commu-
nication between service components.

For instance, consider a real-world service deploy-
ment scenario taken from the actual telecom service
provider (n–Logic Ltd., 2016). A Linux server has
three applications, namely, Squid Web Cache Server,
Squid Log Analyzer, and HTTP Web Server, deployed
in three separate isolated environments (chrooted jail
directories), each under a distinct unprivileged user
identifier (UID). Combined all three applications rep-
resent individual components of a single service –
ISP web caching that caches Internet HTTP traffic of
a large customer base to minimize the utilization of
ISP’s Internet backbone. Squid Web Cache Server
component needs access to network socket I/O re-
sources and some advanced networking capabilities
of the Linux kernel in order to operate. However, we
cannot allow this component to run under a super-user
to obtain unrestricted root privileges. Allowing root
access to an application opens possibilities for system
security breaches and can even compromise the entire
OS.

A new mechanism of access control needs to be
enforced for such a component to run under unpriv-
ileged UID but still be able to access necessary OS

Belyaev, K. and Ray, I.
Towards Access Control for Isolated Applications.
DOI: 10.5220/0005970001710182
In Proceedings of the 13th International Joint Conference on e-Business and Telecommunications (ICETE 2016) - Volume 4: SECRYPT, pages 171-182
ISBN: 978-989-758-196-0
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

171



resources. Squid Web Cache Server component gen-
erates daily operational cache logs in its respective
runtime environment. Squid Log Analyzer component
needs to perform data analytics on those operational
log files on a daily basis. It then creates analytical
results in the form of HTML files that need to be ac-
cessible by the HTTP Web Server component to be
available through the web browser for administrative
personnel. In such a case, there is a need to access
and share data objects across the applications in dis-
joint containerized environments. Note that, there are
no shared data objects by which such communication
can take place. Usual Inter-Process Communication
(IPC) primitives such as message queues, memory-
mapped files and shared memory may cause unautho-
rized access or illegal information flow. In fact, IPC
could be disabled to minimize such security breaches.
Moreover, legacy byte-level constructs, such as IPC,
often do not fit under the development framework of
modern applications that operate at the granularity of
higher-level message objects. In such enterprise en-
vironments, a novel paradigm is needed for efficient
and secure communication among isolated processes.
Such coordination and sharing of data must take place
in a controlled manner. Here again, an access control
mechanism is needed that will allow this to happen.

We introduce a new framework referred to as
Linux Policy Machine (and shorten it to just LPM
in the rest of the paper) to address the identified
challenges. Our LPM allows the management and
enforcement of access to OS resources for individ-
ual applications and it also allows regulated inter-
application communication.

We propose the notion of capabilities policy
classes, each of which is associated with a set of ca-
pabilities. The capabilities policy classes differ from
each other on the basis of capabilities they possess.
Each application is placed in at most one capabilities
policy class. The OS resources the application can ac-
cess depends on the capabilities associated with that
class. We have implemented and tested this concept
on applications deployed under unprivileged (non-
root) user entities in isolated (containerized) environ-
ments. This implementation forms a component of
our LPM framework.

We also propose the concept of communicative
policy classes for communication of applications
that belong to different isolated environments. We
adapt the generative communication paradigm in-
troduced by Linda programming model (Gelernter,
1985) which uses the concept of tuple spaces for pro-
cess communication. However, the traditional tuple
spaces lack any security features and also have opera-
tional limitations. We enhance the original paradigm

and also provide rules such that only applications be-
longing to the same communicative policy class can
communicate using this approach. The communica-
tion between applications is mediated through a com-
ponent of the LPM which is allowed limited access to
an application’s tuple space. Consider, for example, a
described web caching data service that is partitioned
into three components, each in a separate chrooted jail
for security purposes. Our LPM allows a regulated
way of coordinating and collaborating among com-
ponents using tuple spaces. Note that, such coordina-
tion and collaboration will be allowed even if each of
the components executes under different system UIDs
and even group identifier (GID).

Our uniform framework provides a coherent busi-
ness logic interface available to administrative per-
sonnel to manage access control for an application
both at the level of OS resources and at the level of
inter-application interaction. Such a centralized LPM
construct that is resident in user-space acts as a refer-
ence monitor for a set of administered data services
deployed on a single Linux server instance. We in-
corporate the access control modelling and decision
control in user-space with robust and expressive per-
sistence layer. This allows high interoperability and
usage of the framework on any general-purpose Linux
OS without a requirement for custom kernel patching
(Krohn et al., 2007).

The rest of the paper is organized as follows.
Section 2 gives a detailed overview of the model to
manage capabilities using policy classes abstraction.
Section 3 describes the proposed model for inter-
application communication across isolated environ-
ments. Section 4 describes the design of the inter-
application communication architecture. Section 5
demonstrates the feasibility of our approach by de-
scribing the initial prototype. Section 6 covers some
related works. Section 7 concludes the paper.

2 CAPABILITIES POLICY CLASS

Our unified access control framework is designed
for server-oriented applications deployed in isolated
(containerized) environments dedicated to a single
application or a small set of them in a security
constrained manner. Most common examples in-
clude various system and user oriented services such
as HTTP web and application servers, DNS server,
NTP server, various relational database and key-value
servers etc. The applications in these environments
often need access to OS resources. In this section, we
discuss how to confer such rights to the applications
based on the principle of least privilege. We also dis-

SECRYPT 2016 - International Conference on Security and Cryptography

172



cuss how applications having the access to the same
resources are grouped into capabilities policy classes
for ease of management and enforcement of the priv-
ileges. Such a model implemented as a component
of a Linux Policy Machine makes the management
and tracking of application-level capabilities feasible
at the Linux endpoints.

In the Linux environments, the application run-
time access control to the underlying OS resources
has been traditionally regulated by root privileges
which provides all permissions on system and user
resources. The applications regulated by root privi-
leges run with a special user identifier (UID = 0) that
allows them to bypass access control checks. How-
ever, giving root permissions to an application vio-
lates the principle of least privilege and can be mis-
used. Subsequently, in Linux kernels starting from
version 2.1, the root privilege was partitioned into
disjoint capabilities (Linux Developers, 2016). In-
stead of providing “root” or “non-root” access, ca-
pabilities provide more fine-grained access control –
full root permissions no longer need to be granted to
processes accessing some OS resources. For exam-
ple, a web server daemon needs to listen to port 80.
Instead of giving this daemon all root permissions,
we can set a capability on the web server binary, like
CAP NET BIND SERVICE using which it can open up
port 80 (and 443 for HTTPS) and listen to it, like
intended. The new emerging concept of Linux ap-
plication containers such as Docker service (Docker
Developers, 2016) heavily leverages the Linux capa-
bilities model. Despite the incorporation of capabili-
ties in mainstream Linux and application containers,
capabilities management in user-space is challenging
and is yet to be addressed (Hallyn and Morgan, 2008).

Linux capabilities also may provide access to
filesystem operations, such as, read/write on data
objects. For example, CAP DAC OVERRIDE ca-
pability gives full read and write access to all
files and devices on the system. The capabil-
ity CAP DAC READ SEARCH allows an application
process to bypass the file read permission checks
and directory read and execute permissions checks
for any file or directory in the system. Cur-
rently, there are over 32 capabilities that can be ap-
plied to processes and executable files. Examples
include CAP AUDIT CONTROL, CAP DAC OVERRIDE,
CAP IPC LOCK, CAP NET ADMIN etc. Capabilities
such as CAP DAC OVERRIDE bestow excessive access
rights upon an application. In order to minimize the
damage that could be caused by embedding possibly
malicious code sections into applications, we provide
only the smallest set of capabilities to an application
that is needed to accomplish its functions. Such a task

Figure 1: Capabilities Policy Classes.

has to be assessed manually.
Towards this end, we introduce the notion of a ca-

pabilities policy class that is associated with a set of
Linux capabilities. Each capabilities policy class can
have one or more applications. The applications in
such a policy class have all the capabilities associated
with this class and can therefore access the same set
of OS resources as illustrated in Figure 1. Each ap-
plication can belong to at most one capabilities policy
class, but a class can have multiple applications. Note
that, two distinct capabilities policy classes will be as-
sociated with different sets of capabilities.

For each new application we first identify the set
of capabilities needed for the execution of its func-
tions. We then check to identify if there is any ca-
pabilities policy class that has the exact same set of
capabilities. If so, we assign this new application
to that class. Otherwise, we create a new capabil-
ities policy class. When the application is deleted,
we remove the application from the capabilities pol-
icy class. When the functionality of the application
changes and it needs a different set of capabilities than
the class in which it belongs, the application is re-
moved from the capabilities policy class and placed in
a different one. When a policy class contains a single
application and the capabilities needed by the appli-
cation change, then we may add/remove capabilities
from this policy class.

In order to support the above activities, the fol-
lowing high-level operations are supported by our ca-
pabilities policy class model: (i) create a capabili-
ties policy class, (ii) add/remove capabilities to/from
a policy class, (iii) show capabilities in a policy class,
(iv) add/remove applications to/from a capabilities
policy class, and (v) show/count applications in a ca-
pabilities policy class. Our current implementation of
the LPM supports all of the above operations. The
sample usage of the model is illustrated in Section 5.

3 COMMUNICATIVE POLICY
CLASS

Often a group of applications may provide a service

Towards Access Control for Isolated Applications

173



and the individual applications that constitute this
group are deployed in isolation as individual service
components. Executing the individual service com-
ponents in isolated containers has its benefits. If a
single containerized application runtime is compro-
mised by the attacker, the attack surface is limited in
its scope to a single component. This theoretically
limits the possibility of disrupting the entire data ser-
vice. Moreover, such an approach also simplifies the
management and provision of service components.

In this model, the individual isolated service com-
ponents may need to coordinate and collaborate to
provide the service and the various service compo-
nents may not have access to a common centralized
database management system or a key-value store for
the purpose of communication. A simple example
will help illustrate this case. The e-greetings service
is composed of three service components each run-
ning in a separate isolated environment. The service
sends personalized greeting e-cards to the e-mail ad-
dresses of the recipients. Components have only the
minimum privileges needed to accomplish their tasks
and are deployed under separate unprivileged UIDs.
Due to isolation properties, those applications cannot
write data objects to a shared storage area of the server
OS such as /var directory to simplify their interac-
tion. First component is the HTTP web server that
provides the web interface for the service users to fill
out the greetings card form where a user can choose
a specific card image and specify the recipient e-mail
address. Four key attributes of the individual greet-
ings order are written into a separate order text file
– greetings message, sender’s and recipient’s e-mail
addresses and the absolute URL to the location of the
postcard image file. Second component is the e-mail
assembling agent (mailman) that processes the order
file to prepare the greetings e-mail message. Third
component of the service is the actual Mail Trans-
fer Agent (MTA) that is responsible for sending the
individual e-card e-mail message to the greetings re-
cipient. Thus, the mailman component requires con-
trolled access to the order file prepared by the web
server component to create the e-mail message and
the mail sending component, in turn, requires con-
trolled access to individual mail message object.

In order to address the requirements of such ap-
plications, we introduce the notion of a communica-
tive policy class that consists of a group of applica-
tions (service components) that reside in different iso-
lated environments and need to collaborate and/or co-
ordinate with each other in order to provide a service
offering. Our notion of communicative policy class
is different from the conventional notion of UNIX
groups. In the conventional groups, the privileges as-

Figure 2: Flow control of isolated service components

signed to a group are applied uniformly to all mem-
bers of that group. In this case, we allow controlled
sharing of private data objects among members of
the communicative policy class via object replication.
Such a sharing can be very fine-grained and it may be
unidirectional – an isolated application can request a
replica of data object belonging to another isolated
application but not the other way around. Some ap-
plications may require bidirectional access requests
where both applications can request replicas of re-
spective data objects. Such types of possible informa-
tion flow are depicted in Figure 2 where green arrow
denotes the granted request for a replicated data ob-
ject in the direction of an arrow, while red one with
a cross signifies the forbidden request. Implement-
ing such rules may be non-trivial as isolated environ-
ments are non-traversable due to isolation properties.
This necessitates proposing alternative communica-
tion constructs.

For instance, we can apply communicative pol-
icy class concept to applications deployed in stan-
dard chrooted jail that is a variant of isolated (con-
tainerized) runtime environment. Jail directory is as-
signed a distinct UID to utilize existing Linux Dis-
cretionary Acces Control (DAC) mechanism. A ch-
root on UNIX/Linux operating systems is an opera-
tion that changes the apparent root directory for the
current running process and its children. A program
that is run in such a modified environment cannot
name (and therefore normally cannot access) files out-
side the designated directory tree. The usage of com-
municative policy classes for various sets of “jailed”
applications will naturally allow them to interoperate
in a seamless manner without a need to leverage or
alter traditional DAC scheme of UNIX groups.

The access control policies of a communicative
policy class specify how the individual applications
in such a class can request a replica of each others’
data objects. Note that, the individual applications
in the class may have different Linux capabilities –

SECRYPT 2016 - International Conference on Security and Cryptography

174



therefore, the applications may belong to the same
communicative policy class but to different capabili-
ties policy classes. Only applications within the same
communicative class can communicate and therefore
communication across different communicative pol-
icy classes is forbidden. Such a regulation is well-
suited for multiple data services hosted on a single
server instance. The assignment of individual data
service to a separate policy class facilitates the fine-
grained specification of communication policies be-
tween various isolated service components.

The construct of communicative policy class is de-
signed to support the following communication pat-
terns among the applications in a single class.

(i) coordination – often applications acting as a
single data service do not require direct access to mu-
tual data objects or their replicas but rather need an
exchange of messages to perform coordinated invo-
cation or maintain collective service component. For
instance, one possible deployment scheme for the de-
scribed e-greetings data service might add the layer
of coordination logic to the interaction between the
components. For example, if the web component of
the service experiences excessive load from user re-
quests and generates massive amounts of order files
in a single directory, it can optionally send the coor-
dination message to the mailman component to indi-
cate that the request interval for the order files has to
be decreased from the default 30 seconds to 5 sec-
onds. Optionally, additional coordinative information
may be incorporated in the message such as availabil-
ity of alternative web server for load-balancing pur-
poses. If the mailman component is capable of re-
ceiving and processing such coordination messages, it
can, in turn, adjust its e-mail message preparation in-
tervals. Consequently, it can coordinate with the mail
sending component to indicate faster request times for
the assembled e-mail message objects.

Coordination across mutually isolated environ-
ments is problematic. However, if applications belong
to a single communicative policy class, it enables the
exchange of coordination messages without reliance
on usual UNIX IPC mechanisms that may be unavail-
able under security constrained conditions.

(ii) collaboration – components acting as a sin-
gle data service may need to access mutual data or
runtime file objects to collaborate and perform joint
or codependent measurements or calculations as il-
lustrated in the e-greetings example and the descrip-
tion of the web caching service presented in Section
1. Empowering an application with the ability to ob-
tain a replica of a data object that belongs to another
application in the same communicative policy class
makes such collaboration possible.

The following high-level (business logic) oper-
ations are supported by our communicative policy
class model as a component of our LPM: (i) cre-
ate a communicative policy class (ii) add/remove
applications to/from a communicative policy class
(iii) show/count applications in a communicative pol-
icy class (iv) add/remove explicit permission for an
application to request a replica of a filesystem data
object(s) to/from a communicative policy class (v) en-
able/disable application coordination with other ap-
plication(s) in a communicative policy class.

4 COMMUNICATION
ARCHITECTURE

We now discuss the proposed enforcement architec-
ture for communicative policy class model.

4.1 IPC Constraints

In general, applications that need to communicate
across machine boundaries use TCP/IP level commu-
nication primitives such as sockets. However, that is
unnecessary for individual applications located on a
single server instance (Minsky et al., 2000). Applica-
tions that need to communicate on a modern UNIX-
like OS may use UNIX domain sockets or similar
constructs. However, socket level communication is
usually complex and requires the development and
integration of dedicated network server functional-
ity into an application. Modern data service com-
ponents also prefer information-oriented communica-
tion at the level of objects (Cabri et al., 2000). The ne-
cessity of adequate authentication primitives to prove
application identity may also be non-trivial. More-
over, as illustrated in Section 3, many localized appli-
cations may require to communicate across isolated
environments but may not need access to the network
I/O mechanisms. Thus, more privileges must be con-
ferred to these applications just for the purpose of col-
laboration or coordination, which violates our princi-
ple of least privilege.

Reliance on kernel-space UNIX IPC primitives
may also be problematic. First, such an IPC may be
unavailable for security reasons in order to avoid po-
tential malicious inter-application exchange on a sin-
gle server instance that hosts a large number of iso-
lated application services. In other words, IPC may
be disabled on the level of OS kernel (Johnson and
Troan, 2004). Second, modern applications often re-
quire more advanced, higher-level message-oriented
communication that is not offered by the legacy byte-
level IPC constructs. Third, UNIX IPC is bound to

Towards Access Control for Isolated Applications

175



UID/GID access control associations that does not
provide fine-grained control at the level of individual
applications (Johnson and Troan, 2004). Therefore
kernel-space IPC mechanisms do not offer regulated
way of inter-application interaction.

The usage of system-wide user-space IPC frame-
works such as D-Bus (Havoc Pennington, 2016) may
also be problematic. D-Bus is the IPC and Remote
Procedure Call (RPC) mechanism that primarily al-
lows communication between GUI desktop applica-
tions (such as within KDE desktop environment) con-
currently running on the same machine. D-Bus offers
a relatively high-level message-oriented communica-
tion between applications on the same machine. How-
ever, it is not designed to transmit data objects such
as logs. Although it is a widely accepted standard for
desktop applications, D-Bus may not fit the require-
ments of modern server-based data services. In fact,
the main design objective of D-Bus is not message
passing but rather process lifecycle tracking and ser-
vice discovery (Havoc Pennington, 2016). Moreover,
applications have to connect to D-Bus daemon using
UNIX domain sockets or TCP sockets. Before the
flow of messages begins, two applications must also
authenticate themselves which adds extra complex-
ity layer to the communication. However, the more
pressing problem is the possibility that user-space D-
Bus daemon in line with kernel-space IPC may be dis-
abled on the server node for security reasons. More-
over, system-wide communication resources such as
global UNIX domain socket for the D-Bus daemon
may be inaccessible for applications running in iso-
lated environments.

4.2 Tuple Space Paradigm

In order to address the complexities introduced in 4.1,
we propose an alternative approach that can be clas-
sified as a special case of generative communication
paradigm introduced by Linda programming model
(Gelernter, 1985). In this approach, processes com-
municate indirectly by placing tuples in a tuple space,
from which other processes can read or remove them.
Tuples do not have an address but rather are acces-
sible by matching on content therefore being a type
of content-addressable associative memory (Minsky
et al., 2000). This programming model allows decou-
pled interaction between processes separated in time
and space: communicating processes need not know
each other’s identity, nor have a dedicated connection
established between them (Vitek et al., 2003).

The lack of any protection mechanism in the ba-
sic model (Vitek et al., 2003; Minsky et al., 2000)
makes the single global shared tuple space unsuit-

able for interaction and coordination among untrusted
components. There is also the danger of possible tu-
ple collisions – as the number of tuples that belongs
to a large set of divergent applications in a tuple space
increases, there is an increasing chance of acciden-
tal matching of a tuple that was requested by another
application. Moreover, the traditional in-memory im-
plementation of tuple space makes it unsuitable in our
current work due to a wide array of possible security
attacks and memory utilization overheads. Therefore,
we adapt the tuple space model that will satisfy our
requirements for secure and reliable communication
between applications within a single communicative
policy class. Note that, in this adaptation the content-
based nature of retrieval from a tuple space will neces-
sitate content-based access control approaches (Min-
sky et al., 2000).

Another problem identified with the RAM-based
tuple spaces is that it is suitable mainly for a single
application with multiple threads that share the same
memory address space. In such a simplified deploy-
ment scenario, a global tuple space is easily accessi-
ble by consumer and producer threads within a single
application. However in the context of our current
work we deal with separate data service applications
that do not share the same address space in memory
which makes such a solution unsuitable (Cabri et al.,
2000). For instance, two isolated service components
written in Java cannot access mutual tuple spaces be-
cause each component is deployed in a separate Java
Virtual Machine (JVM) instance.

We propose a tuple space calculus that is com-
pliant with the base model introduced in (Gelernter,
1985) but is applied on dedicated tuple spaces of in-
dividual applications instead of a global space. Our
tuple space calculus comprises the following opera-
tions: (i) create tuple space operation, (ii) delete tu-
ple space operation – deletes tuple space only if it is
empty, (iii) read operation – returns the value of indi-
vidual tuple without affecting the contents of a tuple
space, (iv) append operation – adds a tuple without
affecting existing tuples in a tuple space, and (v) take
operation – returns a tuple while removing it from a
tuple space. We adhere to the immutability property –
tuples are immutable and applications can either ap-
pend or remove tuples in a tuple space without chang-
ing contents of individual tuples.

Tuple space is proposed as a persistent filesys-
tem abstraction with its calculus performed via tu-
ple space library employed by the applications and
the LPM. Therefore, this part of the proposed unified
framework is not transparent and the applications may
need to be modified in order to utilize the tuple space
communication. However, in certain cases that may

SECRYPT 2016 - International Conference on Security and Cryptography

176



not be necessary. For instance, if applications require
only limited collaboration, such as periodic requests
for replicas of data objects (the case for daily logs), a
separate data requester application that employs a tu-
ple space library can handle such a task without the
need to modify the existing application such as a log
analyzer.

An application is allowed to perform all the de-
scribed operations in its tuple space while LPM is re-
stricted to read and append operations only. Note that
the take operation is the only manner in which tuples
get deleted from a tuple space because the delete tu-
ple space operation is allowed only on an empty tuple
space.

The LPM plays a mediating role in the commu-
nication between applications. The communication
takes place through two types of tuples: control tu-
ples and content tuples. Control tuples can carry mes-
sages for coordination or requests for sharing. Con-
tent tuples are the mechanism by which data gets
shared across applications (service components). The
LPM periodically checks for control tuples in the tu-
ple spaces for applications registered in its database.
We have two different types of communication be-
tween a pair of applications. The first case is where
the two applications do not share any data but must
communicate with each other in order to coordinate
activities or computation. The second case is where
an application shares its data with another one.

The structure of the tuples is shown in Figure 3.
Control tuples are placed by an application into its
tuple space for the purpose of coordination or for re-
questing data from other applications. A control tuple
has the following fields: (i) Source ID – indicates an
absolute path of the application that acts as an appli-
cation ID of the communication requester. (ii) Des-
tination ID – indicates an absolute path of the ap-
plication that acts as an application ID of the com-
munication recipient. (iii) Type – indicates whether
it is a collaborative or coordinative communication.
(iv) Message – contains the collaborative/coordinative
information. For collaboration it is the request for an
absolute path of data object. Coordination message
may be opaque as other entities may be oblivious of
this inter-application communication. It may even be
encrypted to ensure the security and privacy of inter-
application coordination efforts. XML or JSON are
possible formats that can be used for the representa-
tion of coordination messages. LPM merely shuttles
the coordination tuples between respective applica-
tions’ spaces and is not aware of their semantics. Con-
tent tuples are used for sharing data objects across ap-
plications and they have the following fields: (i) Des-
tination ID – indicates the ID of recipient application

Figure 3: Tuples Structure.

that is an absolute path of an application. (ii) Se-
quence Number – indicates the sequence number of
a data object chunk that is transported. ASCII objects
in the form of chunks are the primary target of inter-
application collaboration. (iii) Payload – contains the
chunk of a data object. Content tuples are placed by
the LPM reference monitor into corresponding tuple
space of the requesting application that needs to re-
ceive content. Note that content tuples are designed
for collaboration only. Coordination is performed ex-
clusively through control tuples.

4.3 Security Aspects

We focus on the confidentiality, integrity, and avail-
ability issues with respect to tuple space implemen-
tation. Only members of the same communicative
policy class can coordinate and/or share data. Ex-
tra protection mechanisms are also incorporated for
each application’s tuple space. The applications in the
same isolated environment have a directory structure
within the filesystem for their individual tuple spaces.
Each application creates its own tuple space in this
directory structure. Only the individual application
can perform all the operations, namely, create tuple
space, delete tuple space, read, append, and take. The
LPM can only perform read and append operations on
the tuple space. Thus, no one other than the applica-
tion itself can remove anything from its tuple space.
Moreover, the confidentiality and integrity are guar-
anteed by preventing other applications from directly
accessing its tuple space. The directory structure in
the filesystem allocated to a given application at any
point of time is contingent upon the needs of the ap-
plication, its priority, and its past behavior. Note that,
from the confidentiality standpoint a malicious appli-
cation cannot request a replica of a data object that
belongs to another application deployed in the sepa-
rate isolated runtime environment unless it is regis-
tered in the policy database containing communica-

Towards Access Control for Isolated Applications

177



tive policies classes of the LPM and has the appropri-
ate privileges. Removing it from the associated com-
municative policy class will disable the collaboration
with other applications. Unrestricted inter-application
communication is avoided through the notion of trust
between applications that is implicit for components
of a single data service. Such components should be
logically placed in the same communicative policy
class as indicated in Section 3.

To further support isolation properties in con-
tainerized runtime environments such as application
containers the runtime is expected to host only a sin-
gle application (service component). For instance,
in the isolated runtime environment such as a chroot
jail the chroot directory is populated with all required
program files, configuration files, device nodes and
shared libraries that are required for the successful
service component execution. To prevent the compro-
mise of a tuple space, application’s shared libraries (if
present) have to be properly audited before inclusion
in the runtime environment.

Applications may misbehave and cause Denial-
of-Service (DOS) attacks by exhausting system re-
sources. Fair scheduling mechanism (Belyaev and
Ray, 2015) must be implemented to ensure that the
LPM serves all the applications in a fair manner.
Moreover, the tuple space library mechanism has to
implement schemes that prevent an application from
using all the allocated filesystem space in the direc-
tory structure of the isolated environment. We an-
ticipate that the LPM must write only a single con-
tent tuple at a given time and the application has to
take the tuple before a new one is written in its tu-
ple space. Such a strategy avoids overconsumption of
filesystem space, alleviates disk access loads, and also
serves as an acknowledgement mechanism before the
next chunk of the replicated data object is written.

5 IMPLEMENTATION AND
DEPLOYMENT

We have implemented the prototype of a model for
Linux capabilities management using policy classes.
The model is a component of the LPM that supports
policy classes abstraction where applications are as-
signed to various policy classes depending on the cat-
egorization criteria. LPM acts as a centralized en-
forcement point and reference monitor for the appli-
cations running on the Linux server instance. The uni-
fied framework uses the embedded SQLite database
library to store and manage policy classes abstrac-
tions and their policies. The usage of embedded
database facility eliminates the dependency on a sep-

Figure 4: Linux Policy Machine (LPM) Architecture.

Figure 5: Database Schema of Persistence Layer.

arate database server that is prone to potential avail-
ability downtimes and security breaches. The LPM
implemented in Java Standard Edition (SE) is de-
ployed at Linux server endpoints. Figure 4 illustrates
the components of the LPM. These are described be-
low.
[User Interface Layer:] This layer provides oper-

ator with command-line interface (CLI) to issue
commands to manage the framework.

[Parser Layer:] This layer parses the user input
from the CLI shell and forwards the parsed input
to the underlying layers for execution.

[Enforcer Layer:] This layer enforces the capabil-
ities on the given application using Linux Lib-
Cap (Linux Programmer’s Manual, 2016) library
and grants/denies access to OS resources depend-
ing on the capabilities policy class associated with
the application. The layer also integrates a tuple
space controller (Minsky et al., 2000) responsible
for tuple space operations for the enforcement of
collaboration and coordination of applications in
a single communicative policy class.

[Persistence Layer:] This layer provides the Cre-
ate/Read/Update/Delete (CRUD) functionality to
manage records using embedded database facili-
ties. The schema of the embedded database for
storing framework policies appears in Figure 5.

SECRYPT 2016 - International Conference on Security and Cryptography

178



The following commands illustrate the use of ca-
pabilities policy class model:
• SHOW CAPABILITIES
• SHOW POLICY CLASSES
• CREATE POLICY CLASS P1

network applications policy class
• ADD POLICY CLASS POLICY P1 CAP NET BIND

SERVICE
• ADD POLICY CLASS POLICY P1 CAP CHOWN
• MOVE APP TO POLICY CLASS

/home/containers/web-container-100/bin/httpd P1
• REMOVE POLICY CLASS POLICY P1

CAP CHOWN
• SHOW POLICY CLASS POLICIES P1
• SHOW POLICY CLASS APPS P1

The deployment of unified framework in the real-
world settings requires a thorough performance eval-
uation. The model for capabilities policy classes does
not incur any significant performance overheads for
the unified framework. This is because its enforce-
ment is based on the calls to the LibCap library (Linux
Programmer’s Manual, 2016) that essentially updates
the filesystem capabilities metadata information for
a process. Such operations do not incur the perfor-
mance overheads because library mediations do not
require extra disk I/O aside from the I/O load of the
base system (Badger et al., 1996). There is also no
additional memory utilization required aside from the
RAM consumption by the LPM itself.

However the situation is quite different for the
model of communicative policy classes. The en-
forcement is based on the anticipated tuple space
paradigm that is known to be quite resource intensive
(Minsky et al., 2000). The performance overheads
for a memory-resident global shared tuple space are
well known and include memory consumption over-
heads, efficiency problems with tuple matching at
high speeds and search complexity with a large num-
ber of divergent tuples present in a single space con-
tinuum (Vitek et al., 2003). Those properties essen-
tially pose a limit on a number of tuple objects in a
given tuple space (Vitek et al., 2003; Minsky et al.,
2000; Gelernter, 1985). Taking that into consideration
as discussed in Section 4, the design of our tuple space
implementation is reliant on the alternative strategy
of the persistent filesystem-based solution with per-
sonal tuple spaces per application. Performance-wise,
we rely on OS/hardware filesystem/disk caching (po-
tentially leveraging fast flash-based storage) and the
fact that tuple space communication in this work is
oriented towards infrequent (semi-daily) replication
of medium-sized data objects (not exceeding several
Gigabytes) for a finite set of services deployed on
a single server instance. Therefore we anticipate to
conduct explicit performance benchmarks as part of
the implementation evaluation of our tuple space en-

forcement sub-layer. It includes the benchmarking
of various tuple space operations proposed in Sec-
tion 4 with the measurements of disk/flash I/O, CPU
and RAM utilization for the LPM with integrated tu-
ple space controller. We also plan to measure perfor-
mance degradation with various sizes of data objects
replicated through the LPM reference monitor.

The initial prototype is publicly available through
GitHub repository (Belyaev, 2016). We have de-
ployed the LPM on the latest Fedora Server distri-
bution with applications located in directories under
distinct UIDs. We successfully tested the function-
ality of policy classes model of managing Linux ca-
pabilities as described in Section 2. Specifically, we
have created several distinct policy classes for these
application categories: (i) general-purpose applica-
tions that do not require any specialized capabilities,
(ii) system-level sysadmin management utilities in-
volving filesystem and related privileges, and (iii) ap-
plications that require access to the OS network stack.
For instance HTTP Web and Cache servers have been
deployed under unprivileged UIDs in chrooted jails
with necessary network access capabilities delegated
to their binaries by placing the applications in the net-
work applications policy class using LPM’s CLI man-
agement interface.

6 RELATED WORK

Traditionally, Linux environments supported DAC
which allows read, write, and execute permissions for
three categories of users, namely, owners, groups, and
all others for managing access to files and directories
in the user-space. Another type of supported access
control is based on the Mandatory Access Control
(MAC) designed to enforce system policies: system
administrators specify policies which are checked via
run-time hooks inserted into many places in the oper-
ating system’s kernel. For managing access to system
resources, typically superuser privileges are needed.
Each file in the system is annotated with a numerical
ownership UID. Applications needing access to sys-
tem resources temporarily acquire the privilege of the
superuser. The superuser is assigned UID = 0 – a pro-
cess executing with this UID can bypass all access
control rules. This simple model violates the princi-
ple of least privilege.

Researchers have proposed Domain and Type En-
forcement (DTE) (Hallyn and Kearns, 2000; Badger
et al., 1996) for Linux and UNIX environments. Type
enforcement views a system as a collection of active
entities (subjects) and a collection of passive entities
(objects) (Badger et al., 1996). DTE is designed to

Towards Access Control for Isolated Applications

179



provide MAC to protect a system from subverted su-
peruser processes as the access control is based on
enforceable rule sets. The DTE model, unlike the
other Linux approaches, avoids the concept of users
and only concentrates on applications (Badger et al.,
1996). Our work, like DTE, also concentrates on ac-
cess control requirements of applications and their in-
teraction. We also express policies in a human read-
able form. However, our LPM is entirely resident
in user-space in contrast to DTE that offers kernel
level solution. Moreover, we target the access con-
trol requirements necessary for the manageable de-
ployment of large numbers of localized isolated ap-
plication services under unprivileged UIDs in isolated
environments, such as chrooted jails and application
containers. Such environments were outside the scope
of DTE.

Security-Enhanced Linux (SELinux) (Loscocco,
2001; Spencer et al., 1999) allows for the specifi-
cation and enforcement of MAC policies at the ker-
nel level. SELinux uses the Linux Security Modules
(LSM) (Wright et al., 2002) hooks in the kernel to im-
plement its policy. The SELinux architecture is based
on the Generalized Framework for Access Control
(GFAC) proposed by Abrams (Abrams et al., 1990)
and LaPadula (LaPadula, 1995) and supports multiple
security models. In SELinux the policy server makes
access control decisions and the object managers are
responsible for enforcing access control decisions. It
provides a policy description language for expressing
various types of policies. SELinux supports the con-
cepts of roles and users but is not intended for en-
forcing policies at the level of individual applications.
Policy description and configuration in SELinux is
non-trivial because of the relationships between mul-
tiple models of SELinux and consequently it is a little
challenging to use (Xu et al., 2014). Our work com-
plements the efforts of SELinux in that it provides ac-
cess control for isolated applications in user-space.

The Rule Set Based Access Control (RSBAC) (Ott
and Fischer-Hübner, 2001) attempts to bring more ad-
vanced access control model to Linux based server
systems. RSBAC is an open source security exten-
sion for current Linux kernels. The kernel based patch
provides high level of security to the Linux kernel and
operating environment. All RSBAC framework com-
ponents are hard-linked into the custom-built Linux
kernel. RSBAC supports divergent security policies
implemented as modules in a single framework. How-
ever, the framework does not have a mature represen-
tation format to provide a unified way of modeling
and expressing the policies for all the diverse policy
modules that the framework claims to support. This
limits its wide-spread adaptability. In contrast to RS-

BAC, our work provides domain-specific expressive
policy formulation framework and is implemented in
user-space that allows it to be deployed on any Linux
server system.

The Grsecurity package (GrSecurity Developers,
2016) is a composition of Linux kernel patches com-
bined with a small set of control programs. The pack-
age aims to harden known vulnerabilities in the Linux
system while paying special attention to privilege es-
calation and root exploits. The set of patches provides
protection mechanisms for file systems, executables
and networks. It does this by placing additional logic
on the Linux kernel and also alters the kernel’s own
mechanisms to comply with the desired behaviour.
Grsecurity does not follow any formal model of se-
curity and access control, but emerged as a composi-
tion of countermeasures against several known weak-
nesses, vulnerabilities, or concrete attacks. Conse-
quently, analysis of the security properties of the var-
ious mechanisms is non-trivial.

Application-defined decentralized access control
(DCAC) for Linux has been recently proposed by Xu
et al. (Xu et al., 2014) that allows ordinary users to
perform administrative operations enabling isolation
and privilege separation for applications. In DCAC
applications control their privileges with a mechanism
implemented and enforced by the operating system,
but without centralized policy enforcement and ad-
ministration. DCAC is configurable on a per-user ba-
sis only (Xu et al., 2014). The objective of DCAC is
decentralization with facilitation of data sharing be-
tween users in a multi-user environment. Our work
is designed for a different deployment domain – pro-
vision of access control framework for isolated appli-
cations where access control has to be managed and
enforced by the centralized user-space reference mon-
itor at the granularity of individual applications using
expressive high-level policy language without a need
to modify OS kernel.

In the realm of enterprise computing applications
running on top of Microsoft Windows Server infras-
tructure the aim is to provide data services (DSs) to
its users. Examples of such services are email, work-
flow management, and calendar management. NIST
Policy Machine (PM) (Ferraiolo et al., 2014) was pro-
posed so that a single access control framework can
control and manage the individual capabilities of the
different DSs. Each DS operates in its own environ-
ment which has its unique rules for specifying and
analyzing access control. The PM tries to provide an
enterprise operating environment for multi-user base
in which policies can be specified and enforced in
a uniform manner. The PM follows the attribute-
based access control model and can express a wide

SECRYPT 2016 - International Conference on Security and Cryptography

180



range of policies that arise in enterprise applications
and also provides the mechanism for enforcing such
policies. Our research efforts are similar to NIST
PM (Ferraiolo et al., 2014) since it offers the policy
management and mediation of data services through
a centralized reference monitor. However, our ac-
cess control goals are different. We do not attempt to
model user-level policies as done by NIST PM. Our
framework, on the other hand, provides the mecha-
nism exclusively for controlled inter-application col-
laboration and coordination of localized service com-
ponents across Linux-based isolated runtime environ-
ments that also regulates access to system resources
based on the principle of least privilege. Note that,
the importance of such a mechanism that is not cur-
rently present in NIST PM is acknowledged by its re-
searchers (Ferraiolo et al., 2014).

In the mobile devices environment Android In-
tents (Chin et al., 2011) offers message passing in-
frastructure for sandboxed applications; this is sim-
ilar in objectives to our tuple space communication
paradigm proposed for the enforcement of regulated
inter-application communication for isolated service
components using our model of communicative pol-
icy classes. Under the Android security model,
each application runs in its own process with a low-
privilege user ID (UID), and applications can only ac-
cess their own files by default. That is similar to our
deployment scheme. Our notion of capabilites policy
classes is similar to Android permissions that are also
based on the principle of least privilege. Permissions
are labels, attached to application to declare which
sensitive resources it wants to access. However, An-
droid permissions are granted at the user’s discretion
(Armando et al., 2015). Our server-oriented central-
ized framework deterministically enforces capabili-
ties and information flow accesses between isolated
service components without consent of such compo-
nents based on the concept of policy classes. De-
spite their default isolation, Android applications can
optionally communicate via message passing. How-
ever, communication can become an attack vector
since the Intent messages can be vulnerable to pas-
sive eavesdropping or active denial of service attacks
(Chin et al., 2011). We eliminate such a possibil-
ity in our proposed communication architecture due
to the virtue of tuple space communication that of-
fers connectionless inter-application communication
as discussed in Section 4. Malicious applications can-
not infer on or intercept the inter-application traffic of
other services deployed on the same server instance
because communication is performed via isolated tu-
ple spaces on a filesystem. Moreover, message spoof-
ing is also precluded by our architecture since the en-

forcement of message passing is conducted via the
centralized LPM reference monitor that regulates the
delivery of messages according to its policies store.

Our work also bears resemblance to the Law-
Governed Interactions (LGI) proposed by Minsky et
al. (Minsky et al., 2000; Minsky and Ungureanu,
1998) which allows an open group of distributed ac-
tive entities to interact with each other under a spec-
ified policy called the law of the group. The inter-
application communication in our work is proposed
in the same manner via the tuple space using the
tuple space controller integrated in our centralized
LPM reference monitor that has complete control
over inter-application interaction (Minsky and Un-
gureanu, 1998; Cremonini et al., 2000).

7 CONCLUSION AND FUTURE
WORK

We have demonstrated how a Linux Policy Machine
(LPM) can be developed for the Linux environment
that provides access control specification and enforce-
ment for applications running in isolated environ-
ments. The beauty of our system lies in provid-
ing a uniform business logic interface to manage ac-
cess control at both the kernel and application lev-
els. We proposed the notion of policy classes to man-
age policies pertaining to accessing system and ap-
plication level resources and demonstrated how inter-
application communication can take place through tu-
ple spaces. The initial prototype demonstrates the fea-
sibility of our approach.

A lot of work remains to be done. We are in the
process of developing the tuple space library and the
tuple space controller necessary for the enforcement
of communicative policy class model. Also the Parser
and Persistence Layers have to be extended to support
formulation of policies for communicative model. We
also plan to extend this work for distributed settings
(Belyaev and Ray, 2015; Singh et al., 2014) where
service policies are managed, formulated and updated
in a centralized location, and then distributed and en-
forced at remote LPM nodes.

ACKNOWLEDGEMENTS

This work was supported in part by a grant from NIST
under award no. 70NANB15H264 and by grants from
NSF under award no. CNS 1619641 and IIP 1540041.

Towards Access Control for Isolated Applications

181



REFERENCES

Abrams, M., Eggers, K., LaPadula, L., and Olson, I. (1990).
Generalized Framework for Access Control: An In-
formal Description. In Proceedings of NCSC.

Armando, A., Carbone, R., Costa, G., and Merlo, A. (2015).
Android Permissions Unleashed. In Proceedings of
IEEE CSF, pages 320–333. IEEE.

Badger, L., Sterne, D. F., Sherman, D. L., Walker, K. M.,
and Haghighat, S. A. (1996). A Domain and Type
Enforcement UNIX Prototype. Computing Systems,
9(1):47–83.

Belyaev, K. (2016). Linux Policy Machine (LPM)
– Managing the Application-Level OS Re-
source Control in the Linux Environment.
https://github.com/kirillbelyaev/tinypm/tree/LPM.
accessed 12-March-2016.

Belyaev, K. and Ray, I. (2015). Towards Efficient Dissem-
ination and Filtering of XML Data Streams. In Pro-
ceedings of IEEE DASC.

Cabri, G., Leonardi, L., and Zambonelli, F. (2000). XML
Dataspaces for Mobile Agent Coordination. In Pro-
ceedings of ACM SAC, pages 181–188. ACM.

Chin, E., Felt, A. P., Greenwood, K., and Wagner, D.
(2011). Analyzing inter-application communication
in Android. In Proceedings of ACM MobiSys, pages
239–252. ACM.

Cremonini, M., Omicini, A., and Zambonelli, F. (2000).
Coordination and access control in open distributed
agent systems: The TuCSoN approach. In Coordina-
tion Languages and Models, pages 99–114. Springer.

Docker Developers (2016). What is Docker?
https://www.docker.com/what-docker/. accessed
12-March-2016.

Ferraiolo, D., Gavrila, S., and Jansen, W. (2014). On the
Unification of Access Control and Data Services. In
Proceedings of IEEE IRI, pages 450–457. IEEE.

Gelernter, D. (1985). Generative Communication in Linda.
ACM TOPLAS, 7(1):80–112.

GrSecurity Developers (2016). What is GrSecurity?
https://grsecurity.net. accessed 12-March-2016.

Hallyn, S. and Kearns, P. (2000). Domain and Type En-
forcement for Linux. In Proceedings of ALS, pages
247–260.

Hallyn, S. E. and Morgan, A. G. (2008). Linux Capabilities:
Making them Work. In Proceedings of OLS, page 163.

Havoc Pennington, Red Hat, I. (2016). D-Bus
Specification. https://dbus.freedesktop.org/doc/dbus-
specification.html. accessed 12-March-2016.

Johnson, M. K. and Troan, E. W. (2004). Linux Application
Development. Addison-Wesley Professional.

Krohn, M., Yip, A., Brodsky, M., Cliffer, N., Kaashoek,
M. F., Kohler, E., and Morris, R. (2007). Informa-
tion flow control for standard OS abstractions. ACM
SIGOPS OSR, 41(6):321–334.

LaPadula, L. (1995). Rule-Set Modeling of Trusted Com-
puter System. In M., A., S., J., and H., P., editors,
Information Security: An Integrated Collection of Es-
says. IEEE Computer Society Press.

Linux Developers (2016). Linux Program-
mer’s Manual. http://man7.org/linux/man-
pages/man7/capabilities.7.html. accessed 12-
March-2016.

Linux Programmer’s Manual (2016). LIBCAP Manual.
http://man7.org/linux/man-pages/man3/libcap.3.html.
accessed 12-March-2016.

Loscocco, P. (2001). Integrating Flexible Support for Secu-
rity Policies into the Linux Operating System. In Pro-
ceedings of USENIX ATC, FREENIX Track, page 29.

Manual, L. P. (2016). Kernel Namespaces.
http://man7.org/linux/man-pages/man7/namespaces.
7.html. accessed 12-March-2016.

Minsky, N. H., Minsky, Y. M., and Ungureanu, V. (2000).
Making Tuple Spaces Safe for Heterogeneous Dis-
tributed Systems. In Proceedings of ACM SAC, pages
218–226.

Minsky, N. H. and Ungureanu, V. (1998). Unified support
for heterogeneous security policies in distributed sys-
tems. In Proc. of USENIX SS, pages 131–142.

n–Logic Ltd. (2016). n-Logic Web Caching Service
Provider. http://n-logic.weebly.com/. accessed 12-
March-2016.

Ott, A. and Fischer-Hübner, S. (2001). The Rule Set Based
Access Control (RSBAC) Framework for Linux. In
Proceedings of ILK.

Singh, J., Bacon, J., and Eyers, D. (2014). Policy enforce-
ment within emerging distributed, event-based sys-
tems. In Proceedings of ACM DEBS, pages 246–255.
ACM.

Spencer, R., Smalley, S., Loscocco, P., Hibler, M., Ander-
sen, D., and Lepreau, J. (1999). The Flask Security
Architecture: System Support for Diverse Security
Policies. In Proceedings of USENIX SS.

Vitek, J., Bryce, C., and Oriol, M. (2003). Coordinating
Processes with Secure Spaces. Science of Computer
Programming, 46(1):163–193.

Wright, C., Cowan, C., Smalley, S., Morris, J., and Kroah-
Hartman, G. (2002). Linux Security Modules: Gen-
eral security support for the Linux kernel. In Proceed-
ings of USENIX SS, pages 17–31.

Xu, Y., Dunn, A. M., Hofmann, O. S., Lee, M. Z., Mehdi,
S. A., and Witchel, E. (2014). Application-Defined
Decentralized Access Control. In Proceedings of
USENIX ATC, pages 395–408.

SECRYPT 2016 - International Conference on Security and Cryptography

182


