
User-friendly Manual Transfer of Authenticated Online Banking
Transaction Data

A Case Study that Applies the What You Enter Is What You Sign Transaction
Authorization Information Scheme

Sven Kiljan1,2,3, Harald Vranken1,3 and Marko van Eekelen1,3

1Faculty of Management, Science & Technology - Department of Computer Science, Open Universiteit,
P. O. Box 2960, 6401DL Heerlen, The Netherlands

2Economy & Management - Lectureship Cybersafety, NHL Hogeschool,
P. O. Box 1080, 8900CB Leeuwarden, The Netherlands

3Faculty of Science - Digital Security, Radboud University, P. O. Box 9010, 6500GL Nijmegen, The Netherlands

Keywords: Online Banking, Security, Authentication, Trusted, Information, Transfer, Human Interaction.

Abstract: Online banking relies on user-owned home computers and mobile devices, all vulnerable to man-in-the-middle
attacks which are used to steal money from bank accounts. Banks mitigate this by letting users verify infor-
mation that originates from these untrusted devices. This is not user-friendly since the user has to process the
same information twice. It also makes the user an unnecessary critical factor and risk in the security process.
This paper concerns a case study of an information scheme which allows the user to enter critical information
in a trusted device, which adds data necessary for the recipient to verify its integrity and authenticity. The
output of the device is a code that contains the information and the additional verification data, which the
user enters in the computer used for online banking. With this, the bank receives the information in a secure
manner without requiring an additional check by the user, since the data is protected from the moment the user
entered it in the trusted device. This proposal shows that mundane tasks for the user in online banking can be
automated, which improves both security and usability.

1 INTRODUCTION

Security and usability are often seen as opposites. It
is easy to sacrifice one in order to improve the other,
but hard to improve one without affecting the other
negatively. The work in this paper has the main goal
to, in a very specific area, improve usability and (in-
directly) security. This area is the secure creation of
financial transactions by users in online banking.

Home computers are vulnerable to Man-in-the-
Browser (MitB) attacks (Curran and Dougan, 2012).
Smartphones and tablets are not exempt from mal-
ware attacks either (Felt et al., 2011) and are also
vulnerable to MitB attacks if a browser is used to ac-
cess a (mobile) bank site. User-owned are not trusted
by banks since adversaries can use them to intervene
in the communication flow between user and bank.
Banks often rely on small devices given to their cus-
tomers to have a trusted environment at the user’s side
(Poll and de Ruiter, 2013; Kiljan et al., 2014a). These
devices are used for user authentication (using one-

time passwords or challenge-response authentication)
and for transaction verification.

The used information scheme in which users ver-
ify transaction data is known as What You See Is
What You Sign (WYSIWYS), of which an overview
is shown by Figure 1. WYSIWYS lets users verify
transaction information in a trusted environment that
a bank received previously from an untrusted environ-
ment. In step 1, the user enters transaction data in the
computer used for online banking, which sends it to
the bank using the Internet in step 2. Verification of
whether the user and not an adversary provided the
transaction information through the untrusted envi-
ronment happens in step 3. The most important trans-
action information and a one-time password (OTP)
are returned over a secure channel to the bank authen-
tication device in possession of the user. The user ei-
ther confirms or denies whether the data received in
step 4 is the same as what was entered in step 1. A
confirmation is given by repeating steps 1 and 2 with
the OTP. The transaction information received in step

Kiljan, S., Vranken, H. and Eekelen, M.
User-friendly Manual Transfer of Authenticated Online Banking Transaction Data - A Case Study that Applies the What You Enter Is What You Sign Transaction Authorization Information
Scheme.
DOI: 10.5220/0005965102590270
In Proceedings of the 13th International Joint Conference on e-Business and Telecommunications (ICETE 2016) - Volume 4: SECRYPT, pages 259-270
ISBN: 978-989-758-196-0
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

259

x
x

x
x

x x x
x

xx

x
x x

x
x

x

Local trusted

environment

Remote trusted

environment

Untrusted

environment

1
2

3

4

User

Interaction legend

Untrusted

Trusted

Figure 1: The information flow between environments with
the What You See Is What You Sign authentication infor-
mation scheme.

4 is what the user sees, and the user effectively signs
the data when he or she sends the OTP back to the
bank.1 Note that only the user is capable of provid-
ing the OTP (effectively the signature) since it is not
known by the untrusted environment. Returning the
OTP through the untrusted environment is therefore
not insecure. An aspect of WYSIWYS that is neither
secure nor user-friendly is that the user is required to
verify the same information twice: once upon entry
(step 1) and once when it is returned (step 4). Users
are quite unreliable in comparing numbers (AlZomai
et al., 2008), and mistakes (genuine due to simply not
seeing changed numbers, or abusive due to laziness)
can be expected. We proposed an alternative informa-
tion scheme named What You Enter Is What You Sign
(WYEIWYS) (Kiljan et al., 2014b). With WYEI-
WYS, transaction data is entered immediately in a
trusted environment before it is forwarded to the bank
in a secure manner, which makes the second verifica-
tion that WYSIWYS has unnecessary. Our original
proposal misses an implementation which describes
how the critical transaction data entered by the user is
transferred from a trusted environment to an untrusted
environment that will forward it to the bank. We sug-
gested the use of a connection between the trusted au-
thentication device and the untrusted computer used
for online banking. Such a connection is troublesome.
For security, it widens the attack surface of the trusted
environment since it will be more exposed to the un-
trusted environment. In addition, online banking can
be done with a plethora of different devices. The au-
thentication device might not be capable of creating

1This is unlike the use of the verb ‘sign’ in cryptography,
where it refers to the use of asymmetrical encryption to sign
a message with a private key, where the signature can be
used to verify a messages authenticity, integrity and non-
repudiation. Our definition of ‘signature’ for this paper is
data which warrants the authenticity and integrity of other
data, but not its non-repudiation.

a connection to the computer used for online banking
due to the lack of a compatible interface.

x
x

x
x

x x x
x

xx

x
xx

x
x

x

Local trusted

environment

Remote trusted

environment

Untrusted

environment

-Authenticity

-Integrity

-Availability -Authenticity

-Integrity

1

2 3 4

User

Figure 2: An overview of the path the transaction data fol-
lows (trusted from the very first step), and the information
security principles for which each environment is responsi-
ble.

The challenge therefore is to apply WYEIWYS in
a way that both increases usability and security (com-
pared to WYSIWYS). We propose the use of a code
to be transcribed by the user, which we refer to as a
Message Code (MC). See Figure 2 for an overview. In
step 1, the user starts with entering the critical trans-
action data in a trusted authentication device, which
‘signs’ it by adding data (the signature) that warrants
authenticity and integrity. Both the data and the signa-
ture are converted to an MC. The MC is read (step 2)
and transcribed into the untrusted environment (step
3), which forwards the data to a remote trusted en-
vironment (step 4). Integrity and authenticity of the
data is protected as it passes through the untrusted en-
vironment.

The one-way information flow of reading a code
from a display and writing it on another device physi-
cally and logically separates the local trusted environ-
ment from the untrusted environment, reducing the
attack surface of the former. Since a connection be-
tween devices is not necessary, compatibility issues
are non-existent as any untrusted user-owned device
can be used.

Our contribution is an analysis and a case study
of a process that allows users to transcribe a message
and data which verifies the integrity and authenticity
of the message together using a single code. In Sec-
tion 2, the steps and methods that can be used to gen-
erate an MC in a user-friendly and secure manner are
analyzed. The case study for an implementation of an
MC to secure financial transaction online banking is
described in Section 3. Furthermore, in Section 4 we
reflect back on the case study, limitations of our work
and possible further research. Section 5 closes with
our concluding remarks.

SECRYPT 2016 - International Conference on Security and Cryptography

260

2 ANALYSIS OF GENERATING
AND VERIFYING AN MC

There are scenarios in which it is necessary for a ser-
vice provider to know whether a specific user pro-
vides a certain piece of information, and that the in-
formation was not altered along the way (either acci-
dentally or by an adversary). The amount of resources
spend on this depends on the value of the information
and how often the information flow occurs. For ex-
ample, if an individual needs to register for a service
that needs certainty about the user’s identity, it is not
enough to just assume that the named individual is
actually the one he or she claims to be. If such a reg-
istration is only done once, it would be worthwhile
to have the user visit a branch office of the service
provider and provide identification documents, such
as a passport. In this scenario, the branch office and
the person assisting the user (both under control of the
service provider) and the passport (provided by the
government) ascertain the identity of the individual.

However, such physical interaction is unwanted
if it concerns valuable information that the user
sends more often to the service provider. An exam-
ple is given by online banking. Users expect that
they can make transactions anywhere at anytime. A
trusted (from the perspective of the bank) environ-
ment is required that lets users provide information
securely. There are two distinct trusted environments:
the local trusted environment available to the user,
and the infrastructure of the service provider. Be-
tween these environments is a large untrusted envi-
ronment, where Man-in-the-Middle (MitM) attacks
occur. These attacks do not only occur on the In-
ternet (against which SSL/TLS can provide adequate
protection), but also on users’ computers. An exam-
ple are Man-in-the-Browser (MitB) attacks, through
which an adversary retrieves authentication creden-
tials or silently changes information between user and
service provider (Curran and Dougan, 2012). If users’
devices cannot be trusted, the most obvious approach
would be to provide each user a device that hosts a lo-
cal trusted environment. Users should be able to use
this device to provide required information in a secure
manner.

Weigold and Hiltgen proposed several online
banking transaction authentication methods (Weigold
and Hiltgen, 2011). For one of their proposals, the
user enters the same transaction details in an untrusted
computer used for online banking and in a trusted de-
vice, provided by the bank and in possession of the
user. The trusted device generates a one-time pass-
word (OTP), which the user enters on the untrusted
computer used for online banking. The OTP from

their proposal is created based on the information en-
tered on the trusted device, and protects the informa-
tion entered on the untrusted device. The information,
entered twice by the user, should be equal to corre-
spond with a valid TAC.

What we propose and analyze further in this sec-
tion is the use of a Message Code (MC). An MC not
only contains the information required to verify the
integrity and authenticity of a message, but also the
message itself.

Sender Recipient

Create message Read message

↓ ↑
Compress Decompress

↓ ↑
Sign Verify

↓ ↑
Encode Decode

↓ ↑

Trusted

Message Code Message Code

↓ ↑
Untrusted → Transfer→

Figure 3: An overview of the process required to create a
Message Code.

Figure 3 shows two trusted environments, and the
actions required to send and receive a message se-
curely using an MC. It is assumed that each party is
the only one which can control its own trusted en-
vironment. The paired intermediate steps related to
the processing of the message by both parties are ex-
plained in more detail.

2.1 (De)compression Algorithms

If applied correctly, compression reduces the size of
messages. A message will be part of the MC. Reduc-
ing its size would imply a reduction in the MC’s size,
which is beneficial when the user has to transfer the
information later.

Table 1 shows an overview of the effect that the
Deflate2 general-purpose compression algorithm has
on random text of different sizes. For such small
pieces of data a general-purpose compression algo-
rithm can have either a positive or a negative effect,
and is therefore unreliable. In the most optimal cir-
cumstance (in very specific cases of having 8 charac-

2RFC 1951 - DEFLATE Compressed
Data Format Specification version 1.3:
https://tools.ietf.org/html/rfc1951

User-friendly Manual Transfer of Authenticated Online Banking Transaction Data - A Case Study that Applies the What You Enter Is What
You Sign Transaction Authorization Information Scheme

261

ters of data), Deflate compresses data by 25%. De-
pending on the number of characters, the output can
actually have a size increase between 6.3% (30 char-
acters) and 28.6% (5 characters). This can be ex-
plained by that general-purpose compression algo-
rithms build a dictionary of data to compress based
on earlier compressed data. Therefore, small pieces
of data do not compress really well (or in some cases,
at all) with such algorithms.

An algorithm that specializes more on the com-
pression of very short pieces of text could be used in-
stead, and can be created by using a static dictionary
of commonly used text parts.3 However, the amount
of compression it provides can be unreliable, depend-
ing on how well the message ‘fits’ the pre-established
dictionary.

A completely custom algorithm can be designed
instead, tailored to removing and reconstructing re-
dundant information from messages that comply to
a pre-established structure. For the algorithm to be
durable, the messages’ structure should not change.

2.2 Securing and Verifying Authenticity
And Integrity

The recipient of an MC needs to be able to establish
the authenticity of the message’s source, and to verify
that the message was not changed after it was sent.
The sender has to prepare the data in such a way that
the recipient will be able to perform the necessary
checks. There are several ways in which the sender
can make these preparations, and for the receiver to
verify the message.

Digital signatures are an option. Using public key
cryptography, the integrity and authenticity of a mes-
sage can be established by adding a signature to the
message. In addition, digital signatures provide non-
repudiation: the sender cannot claim that he or she did
not send a message that the recipient has received and
validated. However, a drawback of digital signatures
is that key management is quite complex.

Message authentication codes (MAC) are another
option. A MAC is data added to a message with which
inferences can be made about its integrity and authen-
ticity, similar to a digital signature. Creating a MAC
requires the data of which the integrity and authentic-
ity should be protected (the message), and some secret
data which provides the authenticity (a secret key).
Verifying a MAC requires the message to be verified
and a secret key known to the sender and the recipient.
A difference with digital signatures is that a single key

3An example is SMAZ, compression for very small
strings:https://github.com/antirez/smaz

Table 1: Output sizes of the Deflate compression algorithm,
based on 10,000,000 randomly generated text values with a
character range of [A-Za-z0-9], encoded in 8 bit ASCII.

Number of Size Compressed Number of Size Compressed
characters (bits) size (bits) characters (bits) size (bits)

5 40 40-56 18 144 128-160
6 48 40-64 19 152 136-168
7 56 48-72 20 160 136-176
8 64 48-80 21 168 144-184
9 72 64-88 22 176 160-192
10 80 72-96 23 184 160-200
11 88 72-104 24 192 176-208
12 96 80-112 25 200 184-216
13 104 96-120 26 208 192-224
14 112 104-128 27 216 200-232
15 120 104-136 28 224 200-240
16 128 112-144 29 232 216-248
17 136 112-152 30 240 224-256

is used. This simplifies key management somewhat
since all involved parties (sender and recipient(s)) use
the same key, but it sacrifices non-repudiation since it
cannot be proven which party signed a message.

With MACs, it is initially required that the trusted
environment that generates the key sends it to the
other trusted environment, without an intermediate
untrusted environment. Otherwise a man-in-the-
middle could intercept the key. A public key in-
frastructure with trusted third-parties that issue cer-
tificates to create digital signatures might be a better
choice if it is not viable to securely transfer a secret
key from one trusted environment to the other at the
beginning of the authentication device’s lifespan.

Note that confidentiality is not a security princi-
ple used in this analysis, nor in the case study in Sec-
tion 3. If it would be, authenticated encryption would
be one approach which combines confidentiality, in-
tegrity and authenticity.

Whether a digital signature or MAC is used, it is
important to provide protection against replay attacks.
A cryptographic nonce (number used once) can pro-
vide protection against such attacks if it is used to gen-
erate the digital signature or MAC. Note that a nonce
does not have to add data to the message itself as long
as the remote trusted environment is able to recon-
struct the nonce when verifying the message. Exam-
ples of such nonces include time stamps and counters.

2.3 Encoding/Decoding Methods

Compressed data, digital signatures and MACs often
do not consist exclusively of human readable data.
An encoding can convert data to human readable and
writable text. There are several approaches. Wise-
man et al. performed a comparison of three distinct
encoding schemes for one-time passwords used in de-
vice pairing (Wiseman et al., 2016). These will be re-
ferred to as Wiseman’s word encoding, Wiseman’s al-
phanumerical encoding and Wiseman’s numerical en-

SECRYPT 2016 - International Conference on Security and Cryptography

262

coding. Each encoding was tested on its efficiency
and perceived usability when transcribed by users on
home computers and mobile devices. A lower limit
was set on the length of the codes of 500 million pos-
sible combinations for each tested encoding scheme.
In addition, codes were padded when required to al-
ways give a fixed length.

For Wiseman’s word encoding, the fixed length
is 3 words of 3 letters. An index of 800 words was
used. Each of the three words in a code represents
log2(800)≈ 9.644 bits.

For Wiseman’s alphanumerical encoding the fixed
length is 5 alphanumeric characters using a set of 56
different characters from the range [a-zA-Z0-9], ex-
cluding ‘i’, ‘o’, ‘1’, ‘I’, ‘O’ and ‘L’. Each character in
the code representslog2(56) ≈ 5.807 bits. There are
also other alphanumerical encoding schemes. Base64
is probably the most famous encoding scheme that
outputs ‘real’ characters exclusively (that is: charac-
ters that most humans can see and interpret, assum-
ing that they are familiar with the English alphabet),
and each of its 64 characters represents a 6 bit value.4

Base32 is a variation which uses 32 characters instead
and avoids the use of special and mixed case charac-
ters by only using upper case letters and some digits.
Each of Base32’s characters represents 5 bits. The
same binary data encoded in Base32 will be repre-
sented by more characters compared to Base64. A
variation of Base32 is Z-Base 32.5 The most differ-
entiating aspect of Z-Base 32 is its use of lower case
characters.

Finally, there is Wiseman’s numerical encoding,
which presents all data as a base 10 number with
a fixed length of 9 digits. Each digit represents
log2(10)≈ 3.322 bits.

Wiseman et al. concluded that words are the eas-
iest to transcribe. It must be noted that they were
only interested in using an encoding scheme to cre-
ate a one-time password. This can be compared to the
security information required to validate the integrity
and authenticity of data, as discussed in the previous
section. However, an MC will contain both the data
itself and this security information, implying that its
length will be longer compared to that of a one-time
password in any encoding scheme. This is something
that should be kept in mind when making a decision
on what kind of encoding should be used.

The output of the encoding phase is an MC. Its
characters can be grouped to make them easier to

4RFC 4648 - The Base16, Base32 and Base64 Data En-
codings:https://tools.ietf.org/html/rfc4648

5Human oriented base-32 encoding - O’Whielacronx
(2009):http://philzimmermann.com/docs/human-
oriented-base-32-encoding.txt

transcribe. For example, words can be separated by
spaces and characters of alphanumerical codes can be
separated by dashes.

2.4 Code Transfer

After an MC is made, it needs to be transferred from
the trusted environment. The MC is meant to reach
another (remote) trusted environment. Different path-
ways can be taken, and most will use an untrusted
environment (as shown in Figure 3). If that is the
case, it is expected that the untrusted environment for-
wards the code to another trusted environment. The
untrusted environment provides availability while the
MC provides integrity and authenticity.

The MC can be read by the user from one (trusted)
device and entered in another (possibly untrusted). To
make this process user-friendly the MC should be as
short as possible and consist of characters that are
easy to read and write. The compression phase mostly
dealt with the MC’s length, while the encoding phase
focused on the text that is actually to be transferred by
the user.

Typographical mistakes can be detected by the re-
cipient due to that the code contains both the message
and additional data to verify its integrity and authen-
ticity. When a mistake is made, the message will not
correspond with the additional data when it is verified.
The recipient refuses to process the message further
and notifies the user to correct his entry. This further
improves user-friendliness, since the user can make
and correct mistakes without repercussions.

This paper focuses mostly on a human-
transferable MC since it is the most universal
method to transfer information from a trusted device
to any untrusted device that allows user input,
independent from used software that the latter runs.
However, user-friendliness can be improved without
sacrificing security in specific scenarios, depending
on the used untrusted device. Most smartphones have
a rear-facing camera which can be used to scan QR
codes. An MC could be converted to a QR code that
can be scanned by an application that forwards the
data to the trusted environment. A QR code would aid
in cases where user input is less user-friendly, such as
with touch keyboards on smartphones (Gallagher and
Byrne, 2015).

3 ONLINE BANKING CASE
STUDY

This section notes a case study for the feasibility of
using a Message Code (MC) for transaction authenti-

User-friendly Manual Transfer of Authenticated Online Banking Transaction Data - A Case Study that Applies the What You Enter Is What
You Sign Transaction Authorization Information Scheme

263

cation in online banking using the methods described
in Section 2. It first explains why the use of an MC
can be beneficial for security and usability in online
banking before describing each step of its generation
and verification.

(3)(2)(1)

(5) (4)

xx xx x
x
x xx

x
x

x

x

Figure 4: An overview of the What You Enter Is What You
Sign information scheme.

The user’s time should be used sparingly for secu-
rity actions (Herley, 2009), so it might be beneficial
if the user would not have to process transaction de-
tails twice. We proposed WYEIWYS (Kiljan et al.,
2014b) as shown in Figure 4. The user enters criti-
cal transaction data (the destination account number
and the amount) in a trusted device in step 1. The
trusted device adds a digital signature and enters all
data in the user’s computer in step 2. The user’s com-
puter forwards the data to the bank in step 3. After
verifying the signature, the bank reports the validity
of the entered values back to the user in steps 4 and
5. The idea behind WYEIWYS is that a man-in-the-
middle will not be able to change the data between
steps 2 and 3 without the bank noticing it, since the
digital signature ensures the integrity and authenticity
of the entered critical transaction data. As shown in
Figure 4, the secure information flow is one way only
and the user is not expected to perform any checks
afterwards.

The proposal does not specify which technology
should be used in step 2. Keyboard emulation was
suggested as one possible method, but this does re-
quire a connection and assumes that the user’s com-
puter (the untrusted device) actually supports key-
boards. Connecting devices (wired or wirelessly) can
also be quite cumbersome.

xx xx x
x
x xx

x
x

x

x1

2

3 4 6
7

810

5

9

Figure 5: Overview of the information flow of WYEIWYS
using a Message Code.

An MC could be used for transferring critical
transaction data in a way that reduces compatibility
issues. Figure 5 shows the information flow if the

user would facilitate the transfer of the MC between
both devices. In step 1, the user enters critical transac-
tion information in the trusted device, which creates
an MC in step 2 that is shown to the user in step 3.
The user enters the MC into his home computer or
mobile device in step 4. A browser or application re-
ceives the MC in step 5 and forwards it to the bank
in step 6. The bank processes the MC in step 7 and
returns the resulting data back in step 8 if the MC is
valid. The data is processed by the user’s computer
in step 9 and shown to the user in step 10. If the MC
is invalid, an error would be returned through steps 8,
9, and 10, after which the user can correct any typo-
graphical mistakes made in step 4.

This section continues with the considerations of
constructing an MC in step 2 and the deconstruction
in step 7. Looking at Figure 3, the authentication de-
vice in possession of the user would be the trusted
environment available to the sender, the trusted envi-
ronment of the recipient would be the bank’s infras-
tructure, and the untrusted environment between them
would be represented by the user’s computer and the
Internet. The authentication device is used to create
the message and compress, sign and encode it to cre-
ate an MC. The bank decodes, verifies the signature
and decompresses the data.

3.1 Create the Message

We consider the destination account number and
amount of money to be critical transaction informa-
tion. Both are entered by the user in step 1 in the
authentication device.

NL 76 SIMB 0 759 595 879

Account number

Account type indicator

Bank identifier

Checksum (ISO/IEC 7064, MOD97-10)

Country code (ISO 3166-1 alpha-2)

Figure 6: The structure of a Dutch IBAN account. The ex-
ample IBAN account number is at the fictionalSIMulation
Bank and has a valid checksum.

For the example, we assume that a Dutch IBAN
is used as a destination account number. The struc-
ture of a Dutch IBAN is shown with an example in
Figure 6. The country code and checksum always
have the same location and length for all IBANs.
The checksum also always has the same location and
length. For Dutch account numbers, the bank identi-

SECRYPT 2016 - International Conference on Security and Cryptography

264

fier consists of four uppercase letters, the account type
indicator is 0 for payment accounts and the account
number is always nine digits.

The amount of money is a value with two decimal
digits. For our proposal, we assume that a transac-
tion has a maximum value of less than one million
euro (so a maximum ofe 999,999.99). We also as-
sume that this method will only be used for domestic
transactions (from a Dutch account to another Dutch
account), so the user does not have to specify an al-
ternative currency. An example value the user could
enter is:

123456.78

To enter all values fully, the authentication device
would require a keyboard which allows the user to en-
ter [A-Z0-9] and possibly a decimal separator. Typo-
graphical mistakes in the IBAN can be detected by the
device by verifying the checksum. Such a check is not
possible on the amount of money, but the user can no-
tice typographical mistakes when shown on the screen
of the authentication device, and later (after step 10)
on the display of his or her computer.

3.2 Create the Message Code

For step 2, we define several phases to generate an
MC from the data entered in step 1.

• A compression phase, to compress user provided
data. This shortens the MC in the end.

• A signature phase, to generate data to protect the
message’s authenticity and integrity.

• An encoding phase, which creates a string value
from the data which a user can process.

3.2.1 Compress

There are several approaches for compression noted
in Section 2.1. Data in online banking transactions
is quite structured and well defined. Therefore, an
example is given for a custom algorithm, tailored to-
wards the data to be transferred. The functions de-
scribed in Section 2.1 will be used: removal and re-
construction of redundant information, and restructur-
ing data types for more efficient transportation.

To start, we use the IBAN from the example in
Figure 6 and an amount ofe 123456.78:

NL76SIMB0759595879 12345678

We removed the decimal separator from the amount
to make it an integer value, which reduces complexity
for further processing.

We already stated that we will only use this
method for domestic transfers, so the country code

can be removed. The checksum in the next two dig-
its of the IBAN is only meant to protect against typo-
graphical mistakes. It has already been verified during
entry in step 1, which is why we can also remove it.
As discussed earlier, a Dutch IBAN has a bank iden-
tifier consisting of four upper case letters. Banks in
the Netherlands can reconstruct the destination bank
based on solely the account number, which is why
we can also remove it. Finally, the leading 0 in front
of the bank account number specifies the type of ac-
count. Any other number would be a savings account.
Savings accounts do not support direct withdrawals or
deposits from payment accounts owned by other ac-
count holders, which is why we can also remove this
digit. This leaves us with:

NL 76 SIMB 0 759595879 12345678

The data in strikethrough text has been removed, and
needs to be reconstructed in step 5.

Dutch account numbers have a maximum value
of 999,999,999, which can be represented as an un-
signed integer by 30 bits.6 The amount (as an integer)
has a maximum of 99,999,999, and can be represented
as an unsigned integer by 27 bits. In binary, account
numberan and amountam are as follows (most sig-
nificant bit first):

an = 101101010001101000001101100111

am = 000101111000110000101001110

Since the length of the bit string of each value is
fixed, the bit strings can be concatenated to create a
single string that can be split again in step 7 by the
bank. This concatenated string is the raw message
which must be processed further, and is 57 bits long.

3.2.2 Sign

For our example, there are only two parties involved
who need to access key material: the authentication
device (to create data for verifying the integrity and
authenticity of the message) and the bank (to perform
the verification). Based on the various methods noted
in Section 2.2, a fitting approach would be the use of
a MAC. It can be assumed that the bank can embed
a shared secret key in the authentication device in a
secure environment before it is given to a customer,
and there are no other parties involved which would
warrant the use of a public key infrastructure.

To prevent replay attacks, the MAC should be
based on both the message and a nonce. The nonce
itself is not secret, but should be unique and fresh for

6Actually, the maximum value would be 999999990 due
to the inclusion of a checksum known as the ‘elfproef’, but
for the sake of simplicity for this paper, we assume the max-
imum is the maximum value provided by 9 digits.

User-friendly Manual Transfer of Authenticated Online Banking Transaction Data - A Case Study that Applies the What You Enter Is What
You Sign Transaction Authorization Information Scheme

265

each MC. We assume a nonce is used that does not
have to be part of the message (to keep it as short as
possible). This could be a nonce based on synchro-
nized clocks between authentication device and the
bank, or an incrementing counter of which the bank
keeps track.

To let the authentication device calculate MAC
maca over messagem (an andam concatenated, from
the previous step), we use a randomly generated key
k of 2048 bit, a 32-bit unsigned incrementing counter
as noncena, and a hash functionH. Hence, we could
use:

maca = H(k | na | m)

Care must be taken with this approach, since it is
susceptible to length extension attacks ifH is based
on the Merkle-Dåmgard construction (such as MD-
5, SHA-1 and SHA-2) (Sobti and Geetha, 2012). A
mitigation would be to use an alternative hash algo-
rithm. SHA-3 is based on the sponge construction,
which does not have this inherit limitation.7 There-
fore, SHA-3 will be used forH for this example.

The strength of the MAC is based on its length.
A larger MAC is more secure against brute-force at-
tacks. However, since the MAC is part of the MC, a
longer MAC would result in a longer MC that needs to
be transcribed by the user. The length further depends
on the chosen encoding of the MC, since a MAC
with an aligned length prevents padding and there-
fore makes optimal use of the value of every character.
The chosen encoding is Z-Base 32, which represents
5 bits for each encoded character. Z-Base 32 is further
discussed in Section 3.2.3.

The message is 57 bits, as discussed in the pre-
vious section. A 23 bit MAC would make the total
length 80 bits, which aligns with Z-Base 32 to be 16
characters. There is a 50% probability that a valid
MAC is guessed if an adversary guesses 222 times.
The number of guesses can be limited by the bank,
which can count the number of failed guesses and de-
lay or block further attempts. This is discussed more
in detail in Section 3.6.3.

The values and the output of the formula are:

7The Keccak sponge function family:
http://keccak.noekeon.org/

k = 0x00 0x01...0xFF

na = 0x00 0x00 0x00 0x01

m = 0x01 0x6A 0x34 0x1B 0x38 0xBC 0x61 0x4E

maca = H{ k | na | m }= 0x77 0x64 0xCE

3.2.3 Encode

The compression phase was used to compress the data
and turn it into a bit stream. Furthermore, we gave
an example of how a MAC can be calculated in the
signature phase and computed a MAC of 23 bits. In
the encoding phase, we combine the values from both
phases to create an MC, a human-readable text string
that the authentication device will show on its display.

The output of the compression phase is 80 bits.
Based on the encoding methods noted in Section 2.3
it is possible to tell how long the MC will be by calcu-
lating how much words or characters would be needed
to encode it, rounding up to ensure a fixed length. If
the 800 word encoding from Wiseman et al. would
be used (Wiseman et al., 2016), the length would be
9 words or 27 characters without separators. Base64
would require 14 characters, and Base32 and Z-Base
32 would require 16 characters, all excluding separa-
tors. 25 characters would be required if only digits
were used.

To improve readability, separators would be re-
quired to create groups of characters. For words, that
would be a total of 35 characters (based on 8 spaces).
Based on groups of 4 characters each, three separators
would have to be added to Base64, Base32 and Z-
Base 32, bringing their number of characters respec-
tively to 17, 19 and 19. When only digits would be
used and 4 separators would be used to create groups
of 5 digits, 30 characters would be required. These
are the number of characters that the authentication
device’s display would be required to show.

Wiseman et al. (2016) tested their word encod-
ing with 3 words, which was the preferred encoding
by their test candidates. However, 9 words would be
quite long to show on an authentication device and
for users to enter on other devices. For this case study
we will use Z-Base 32 instead, which provides a good
balance between character length and recognition of
the used characters.

See Table 2 for an overview of the encoding pro-

Table 2: Creating a single human readable string from the message and the MAC using Z-Base 32.

Message MAC
Destinat. account: 759595879 (30 bits) Amount: 12345678 (27 bits) 0x7764ce (23 bits)

Bits 10110101000110100000110110011100010111100011000010100111011101110110010011001110
Decimal 22 20 13 0 27 7 2 30 6 2 19 23 14 25 6 14

Z-Base 32 s w p y 5 8 n 6 g n u z q 3 g q

SECRYPT 2016 - International Conference on Security and Cryptography

266

cess using Z-Base 32. The result is an MC, which
could be displayed as:

swpy-58n6-gnuz-q3gq

3.3 Transfer the Message Code

As described in Section 2.4 and as shown by steps 3
and 4 in Figure 5, the user reads the MC from the
trusted authentication device and enters it in the un-
trusted computer used for online banking. To make
the transfer user-friendly, the MC’s length was re-
duced by compressing the message in Section 3.2.1
while it is structured by the alphanumerical encoding
chosen in Section 3.2.3.

If a mobile banking application on a smartphone
or tablet is used instead of a home computer, an alter-
native to the manual transfer by the user of the MC
from the authentication device to the mobile device
might be the use of a QR code if the device has a rear-
facing camera. The authentication device would show
the QR code to be scanned and the mobile banking ap-
plication would scan the QR code. An advantage of
this would be that the user is not required to manually
enter the MC as a text string into the mobile device.
Compression can still be applied to keep the QR code
as small as possible.

3.4 Verify the Message Code

Step 7 of Figure 5 concerns the verification of the MC,
and is mostly step 2 in reverse order. First, the data is
decoded back into a bit stream and the message and
MAC are separated. After that, the bank needs to ver-
ify if the included MAC corresponds with the payload
to verify integrity and authenticity. Only if both are
verified will the message be processed further.

3.4.1 Decode

Decoding is the reverse of encoding as done at the end
of Step 2. Table 2 can be read starting from the bottom
row to get an idea of the decoding process. The result
is the top row’s bitstream.

3.4.2 Verify

The bank calculates its own MAC, and with that ef-
fectively performs the same steps as the authentica-
tion device did in step 2. The assumption is that the
bank has access to the samek and is able to deduce
na. A counter was used forna, which increases by
one for every generated MAC. The bank has to store
the nonce of the last received valid message to detect
replay attacks in future messages, which we will refer
to asnb.

na as a 32-bit value is not included in the mes-
sage to keep the MC as short as possible. That is why
the bank has to deduce it. It is possible that the user
generates MACs which the bank never receives. This
can happen if the user is testing the workings of the
authentication device or when an online banking ses-
sion is disconnected, after generating the MAC but
before the bank receives it. Sincena is a counter that
is only incremented by the authentication device, all
the bank has to do to compensate for discrepancies
between the last stored value in the authentication de-
vice and at the bank would be to attempt to verify the
MAC multiple times with increasing values for the
nonce, starting atnb and increasing for an acceptable
number of messages which the bank did possibly not
receive. It might be likely that the user created a mes-
sage or two that were missed, but it is unlikely that
the user generated 50 messages. In this exceptional
scenario, the user could be requested to contact the
bank.

For our example, we assume that no previous MCs
were missed by the bank. Letk be the shared key be-
tween authentication device and bank,nb the earlier
mentioned stored nonce value at the bank (increased
to the value ofna + 1 with each valid received mes-
sage),m the message, andmacb the MAC that the
bank calculates.

k = 0x00 0x01...0xFF

nb = 0x00 0x00 0x00 0x01

m = 0x01 0x6A 0x34 0x1B 0x38 0xBC 0x61 0x4E

macb = H{ k | nb | m }= 0x77 0x64 0xCE

Now all the bank has to do is verify ifmaca equals
macb. If they are equal, the message is authentic and
its integrity is protected, and should therefore be pro-
cessed further.

3.4.3 Decompress

Decompression ofm is the opposite operation of com-
pression as done in step 2. First, the two values are
separated, based on their lengths and positions. Let
an again be the destination account number andam
the amount of money.

an = 101101010001101000001101100111

am = 000101111000110000101001110

an is converted to an integer which results in a
value of 759,595,879. The IBAN is reconstructed
by supplementing the integer with known values. In
the end, the bank wants to have the same number as
shown in Figure 6.

User-friendly Manual Transfer of Authenticated Online Banking Transaction Data - A Case Study that Applies the What You Enter Is What
You Sign Transaction Authorization Information Scheme

267

The country code is easy since the transfers were
limited to Dutch domestic accounts. Therefore, the
bank knows the country code isNL. As noted ear-
lier, banks in the Netherlands can identify which ac-
count number belongs to which bank, allowing them
to match the account number to the bank with the
bank codeSIMB. Finally, the account type indicator
is always0 for payment accounts. The value the bank
now has is:

NL ?? SIMB 0 759 595 879

The IBAN checksum is still missing, which can be
recalculated.8 The fully reconstructed IBAN:

NL 76 SIMB 0 759 595 879

All that is needed to reconstruct the amountam
is a conversion to an unsigned 32-bit integer and a
division by 100 to create the original decimal value.
With domestic transfers it is not required for the user
to specify the currency if there is only one. Our ex-
ample concerns the Netherlands, which uses the euro.
Therefore, the bank knows that the value to transfer is
e 123456.78.

3.5 Further Processing

The bank returns the IBAN and the amount back to
the user’s browser (step 8 of Figure 5), which receives
(step 9) and shows (step 10) them. The user has the
opportunity to fill in the rest of the non-critical trans-
action values and submit the transaction. An overview
screen could be shown before the user gives his fi-
nal approval. Note that this final approval would con-
cern usability (the user has one more chance to correct
any mistakes), and unlike WYSIWYS there is not a
mandatory secondary check of initially entered data
as a security action that the user has to perform. If a
user already checked the information on correctness
when it was entered, it would not be required to thor-
oughly check an overview of the data before final ap-
proval is given.

3.6 Attack Analysis

The security of the system is based upon the gener-
ation and verification of the MAC, which provides
integrity (‘Was the data changed in any way?’) and
authenticity (‘Does the data come from the expected
source?’). An adversary not having access to the key
should be unable to generate valid MACs at will.

8European Committee for Bank-
ing Standards (August 2013) - IBAN:
http://www.europeanpaymentscouncil.eu/
documents/ECBS IBAN standard EBS204 V3.2.pdf

3.6.1 The Random Adversary

Steps 5 and 9 of Figure 5 are where malware could
modify transaction data before it is sent to the bank
and the bank’s reply before it is returned to the user.
Imagine that an adversary wants to change the des-
tination account number silently at the beginning of
step 5. An account controlled by the adversary is
NL 38 VIRB 0 307 633 357 (at the fictionalVIRtual
Bank). The attacker modifies the data as follows (pre-
sented in their most clear data types for clarity) in step
5:

Account Amount MAC

Original: 759595879 123456.78 0x77 0x64 0xCE

Modified: 307633357 123456.78 0x77 0x64 0xCE

When only the account number is changed in step
5, the bank would notice upon processing the data in
step 7 that the generated MAC is not based on the re-
ceived account and amount data. If the MAC does not
fit the message (account and amount), the transaction
is discarded. For steps 8 and onward, the bank might
notify the user to contact the bank for clarification.

3.6.2 The Known Adversary

A ‘known’ adversary is an adversary to which the user
(for a legitimate reason) transfers money to, either at
the moment of an attack or in the past. The known
adversary, having full control of the user’s computer,
can attempt to use an older valid transaction code of
a transaction to the adversary to create a new transac-
tion in a replay attack.

Due to the inclusion of a nonce in the MAC, it is
possible for the bank to detect a replay attack. In our
example, we used a counter that increases by one for
each generated MAC. A bank could detect a replay at-
tack by storingnb, the nonce of the last received legit
message. Attempts to verify the MAC of the replayed
message would fail sincena would be lower thannb,
and the bank only checks the current and highernb
values.

Another potential attack vector exists with a
known adversary. If the user prepares a legitimate
transaction to the adversary, the adversary could
change the confirmation that is given in step 10 to the
user. Through control of the user’s computer, the ad-
versary could change the verification information in
step 9 and make the user think that the transaction
failed, which could make the user re-authenticate the
transaction and send it again. The re-attempt would
concern a second (illegitimate) transaction. Banks
could provide protection against this by monitoring
repeated transactions to the same destination account
number within a certain time frame.

SECRYPT 2016 - International Conference on Security and Cryptography

268

3.6.3 The Determined Adversary

The used MAC is relatively short (23 bits in the exam-
ple), to keep the MC as short as possible and to make
it align with the 5 bit boundary of Z-Base 32. A deter-
mined adversary might attempt to brute force a valid
MAC, since for every payload it can be expected that
one valid MAC exists in the range of 223 and since the
adversary has a 50% probability of guessing a correct
MAC when 222 attempts are made.

What limits an adversary is that the MAC can only
be verified by the bank (due to missing the secret
key required for generating and verifying the MAC).
The bank can register accounts for which repeatedly
wrong MACs are generated, and not process further
attempts from them for a specified amount of time.
An example could be a policy that limits the number
of wrong MACs to ten, after which further attempts
are hindered (such as, the customer of the account has
to contact the bank). With ten attempts, an adversary
has a 100%∗ 10

223 = 0.00012% chance of success.
Brute forcing a transaction to a random destina-

tion address would not aid the adversary. In the un-
likely event that a valid MAC would be generated for
one message, it would not disclose the key required to
generate MACs for another message with a different
account number. Therefore, the destination address
provided by an adversary would most likely be under
control of the adversary. Further transactions to a des-
tination address for which multiple wrong MACs are
generated can be delayed or blocked by the bank.

4 DISCUSSION, LIMITATIONS
AND FURTHER RESEARCH

In Section 2 we analyzed methods that can be used
to create an MC. The case study in Section 3 shows
that it is possible to use a selection of these methods to
create and verify an MC for transaction authentication
in online banking in a way that is device-independent
and does not rely on the user to make redundant se-
curity decisions. Note that this is a case study which
only addresses the challenges faced in a single sce-
nario. Other scenarios could present different obsta-
cles and different methods might be more appropriate
to overcome these using an MC, or the use of an MC
might not be appropriate at all. For example, the case
study applied the WYEIWYS information scheme,
which is only usable if the user provides transaction
information and not a third-party (such as an online
e-commerce system). In the case of the latter, WYSI-
WYS might still be the best method to authorize such
transactions.

Further research could experiment by testing the
(perceived) usability when transferring MCs from one
device to another using different manual methods (al-
phanumerical, numerical, words-based), and possibly
expand on the idea of using automated methods when-
ever the use case allows it (such as QR codes through
mobile devices). Another point for further research is
mitigation of the attack vector described at the end of
Section 3.6.2, in which an adversary can trick a user to
perform a legitimate transaction again as a fraudulent
transaction. An example of such a mitigation might
be the authentication of a bank’s reply. In addition,
further research could examine whether WYEIWYS
using a code would be usable in other scenarios in
which a user needs to supply critical information us-
ing an untrusted environment, such as for providing
a phone number for (further) out-of-band authentica-
tion.

5 CONCLUDING REMARKS

We proposed a method that allows humans to transfer
both a message and data to secure the integrity and
authenticity of the message by transcribing a single
code. Different methods were examined to construct
such a code in a way that makes the transfer user-
friendly. In addition, a case study was performed in
which such a code was used to secure online banking
transactions for which the user provides critical infor-
mation.

The case study shows that for online banking, the
use of a Message Code can remove the necessity for
a user to verify entered information twice, as is cur-
rently done. By taking away a critical decision from
the user, usability is improved since the user has less
critical choices to make, which also improves security
since authenticity and integrity of the data rely less on
user activities.

ACKNOWLEDGMENTS

This article is a product of the Dutch Research Pro-
gram on Safety and Security of Online Banking. The
research program is funded by the Dutch banking sec-
tor (represented by the Dutch Banking Association),
the Police Academy, and the Dutch National Police.

REFERENCES

AlZomai, M., AlFayyadh, B., Jøsang, A., and McCullagh,
A. (2008). An exprimental investigation of the usabil-

User-friendly Manual Transfer of Authenticated Online Banking Transaction Data - A Case Study that Applies the What You Enter Is What
You Sign Transaction Authorization Information Scheme

269

ity of transaction authorization in online bank secu-
rity systems. InProceedings of the sixth Australasian
conference on Information security-Volume 81, pages
65–73. Australian Computer Society, Inc.

Curran, K. and Dougan, T. (2012). Man in the Browser
Attacks. Int. J. Ambient Comput. Intell., 4(1):29–39.

Felt, A. P., Finifter, M., Chin, E., Hanna, S., and Wagner, D.
(2011). A Survey of Mobile Malware in the Wild. In
Proceedings of the 1st ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices, SPSM
’11, pages 3–14, New York, NY, USA. ACM.

Gallagher, M. A. and Byrne, M. D. (2015). Modeling Pass-
word Entry on a Mobile Device. InProceedings of the
International Conference on Cognitive Modeling.

Herley, C. (2009). So Long, and No Thanks for the Ex-
ternalities: The Rational Rejection of Security Advice
by Users. InProceedings of the 2009 Workshop on
New Security Paradigms Workshop, NSPW ’09, pages
133–144, New York, NY, USA. ACM.

Kiljan, S., Simoens, K., De Cock, D., van Eekelen, M., and
Vranken, H. (2014a). Security of Online Banking Sys-
tems. Technical Report TR-OU-INF-2014-01 (Open
Universiteit).

Kiljan, S., Vranken, H., and Van Eekelen, M. (2014b). What
You Enter Is What You Sign: Input Integrity in an
Online Banking Environment. InSocio-Technical As-
pects in Security and Trust (STAST), 2014 Workshop
on, pages 40–47.

Poll, E. and de Ruiter, J. (2013). The Radboud Reader: A
Minimal Trusted Smartcard Reader for Securing On-
line Transactions. InPolicies and Research in Iden-
tity Management - Third IFIP WG 11.6 Working Con-
ference, IDMAN 2013, London, UK, April 8-9, 2013.
Proceedings, pages 107–120.

Sobti, R. and Geetha, G. (2012). Cryptographic Hash Func-
tions: A Review. International Journal of Computer
Science Issues, 9(2):461–479.

Weigold, T. and Hiltgen, A. (2011). Secure confirmation of
sensitive transaction data in modern Internet banking
services. InInternet Security (WorldCIS), 2011 World
Congress on, pages 125–132.

Wiseman, S., Mino, G. S., Cox, A. L., Gould, S. J., Moore,
J., and Needham, C. (2016). Use Your Words: De-
signing One-time Pairing Codes to Improve User Ex-
perience (to be published). InProceedings of the 34rd
Annual ACM Conference on Human Factors in Com-
puting Systems. ACM Publications.

SECRYPT 2016 - International Conference on Security and Cryptography

270

