
A Friend or a Foe?
Detecting Malware using Memory and CPU Features

Jelena Milosevic, Miroslaw Malek and Alberto Ferrante
ALaRI, Faculty of Informatics, Universitá della Svizzera Italiana, Lugano, Switzerland

Keywords: Malware Detection, Dynamic Detection, Android, Internet of Things (IoT).

Abstract: With an ever-increasing and ever more aggressive proliferation of malware, its detection is of utmost impor-
tance. However, due to the fact that IoT devices are resource-constrained, it is difficult to provide effective
solutions.
The main goal of this paper is the development of lightweight techniques for dynamic malware detection. For
this purpose, we identify an optimized set of features to be monitored at runtime on mobile devices as well as
detection algorithms that are suitable for battery-operated environments. We propose to use a minimal set of
most indicative memory and CPU features reflecting malicious behavior.
The performance analysis and validation of features usefulness in detecting malware have been carried out by
considering the Android operating system. The results show that memory and CPU related features contain
enough information to discriminate between execution traces belonging to malicious and benign applications
with significant detection precision and recall. Since the proposed approach requires only a limited number of
features and algorithms of low complexity, we believe that it can be used for effective malware detection, not
only on mobile devices, but also on other smart elements of IoT.

1 INTRODUCTION

Malicious software, shortly malware, is any type of
program that is created to cause harm, ranging from
minor inconvenience to loss of data. Among others,
it has the goal of stealing sensitive information from
users, taking control over the operating system, and
damaging or even completely disabling the device.

The focus of Internet security is shifting from the
desktop and the data center to the home, the pocket,
the purse, and, ultimately, the infrastructure of the In-
ternet itself Symantec Corporation (2015). Further-
more, for the second consecutive year, mobile devices
are perceived as IT security’s weakest link Group
(2015). In fact, with increased number of mobile
devices and their widespread usage, mobile malware
is spreading as well. Threat alerts for Android con-
stantly grew year by year and, according to McAfee
Labs McAfee Labs (2015), the collection of mobile
malware continued its steady climb as it broke 6 mil-
lion samples in the fourth quarter of 2014, up 14%
over the third quarter of the same year.

Google Android is certainly one of the main oper-
ating systems for smart devices, with its 85% mar-
ket share worldwide for smartphones Gartner, Inc.

(2015). Android was first developed for mobile de-
vices, but it has evolved into a pervasive operating
system, being also available for wearable devices,
TV sets, and vehicles. Google has also announced
Brillo, an embedded operating system based on An-
droid and aimed at being used on low-power and
memory constrained IoT devices Google Developers
(2015). In this paper, due to the availability of large
number of samples, we have chosen Android malware
for our case study, even though we aim at develop-
ing detection algorithms suitable also for resource-
constrained IoT devices. The aforementioned operat-
ing system convergence towards resource-constrained
devices will facilitate the direct porting of these re-
sults from one system to the other.

Mobile malware detection is used in the battery-
operated environment of mobile devices, where en-
ergy is the main limiting factor to run computation-
ally complex algorithms, as opposed to regular desk-
top malware detection systems. However, same as for
PCs, detection performance has to be high in order to
minimise the number of false positives that may cause
disturbance to users. Increased number of malicious
samples and malware families in recent years, make
the efficient detection a challenging problem and its

Milosevic, J., Malek, M. and Ferrante, A.
A Friend or a Foe? Detecting Malware using Memory and CPU Features.
DOI: 10.5220/0005964200730084
In Proceedings of the 13th International Joint Conference on e-Business and Telecommunications (ICETE 2016) - Volume 4: SECRYPT, pages 73-84
ISBN: 978-989-758-196-0
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

73



solutions are mostly trade-offs between the mentioned
requirements. Most of the existing solutions are either
with good detection performance, but too complex to
be used at run-time and within limited energy budget,
or lightweight but with limited ability to detect the
plethora of malware ever newly generated.

Currently, there are two main approaches to de-
tect malware: static and dynamic. Static detection is
based on the investigation of the applications static
features (e.g., permissions, manifest files, API calls).
It is usually lightweight and suitable for the limited re-
sources of mobile devices. The problems with static
detection are that it cannot cope with increased num-
ber of malicious samples and their variations, it is
prone to obfuscation and alone may no longer be suf-
ficient to identify malware Moser et al. (2007). What
appears as a promising candidate is dynamic mal-
ware detection that is based on observing systems at
run-time. In such a way, malware cannot easily ob-
fuscate. However, such detection can be too com-
plex for battery-operated mobile environments and
lightweight solutions are still needed.

A promising approach towards efficient dynamic
mobile malware detection is the identification of a
limited set of features that provide the ability, through
suitable algorithms, to discriminate between benign
and malicious behavior. The features in this set are the
ones that are monitored at runtime, and are indicative
for detecting presence of malware. Limiting the num-
ber of used features diminishes the requirements for
resources (memory, CPU, and energy), thus lowering
computational overhead. In this paper, we use term
feature to describe an individual measurable property
of a phenomena being observed Bishop (2006). In
the literature, also different terms, such as attributes,
variables, and parameters, can be found to describe
the same property.

We focus on the usefulness of memory and
CPU related features for efficient malware detection.
Namely, our main hypothesis, confirmed by the re-
sults that we have obtained, is that by observing only
memory and CPU related features, malicious execu-
tion traces can be distinguished from benign ones by
means of algorithms of low complexity. We identify
an optimized set of memory and CPU related fea-
tures and prove their effectiveness in detecting mal-
ware by applying different lightweight classification
algorithms: Naive Bayes, Logistic Regression, and
J48 Decision Tree. The experiments we performed in
this work are with a set of malicious and benign ap-
plications running on Android mobile devices. How-
ever, due to the simplicity of monitoring and the low-
complexity of algorithms used to detect malware, we
are confident that our approach can also be used in

majority of other IoT devices.
The rest of the paper is organized as follows. First,

in Section 2 the related work is discussed. Then, in
Section 3 the proposed approach is outlined. Later, in
Section 4 the performed experiments are described,
followed by detailed explanation of the obtained re-
sults in Section 5 and discussion in Section 6.

2 RELATED WORK

With increased number of mobile malware threats the
need to protect mobile devices from them is growing,
resulting in higher demands for effective detection
systems and increased research activity in this area.
Most of the existing malware is developed for mo-
bile devices. Not surprisingly, most of the available
solutions are focused on these devices as well. We re-
port related approaches where observation of different
features was used for mobile malware detection, both
static and dynamic, and compare our approach with
them.

An effective static approach to malware detection
is proposed in Arp et al. (2014) where high detection
quality is achieved by using features from the mani-
fest file and feature sets from disassembled code; de-
tection is performed by means of Support Vector Ma-
chines. Also, the mechanism presented in Wu et al.
(2012) uses static features including permissions, In-
tent messages passing and API calls to detect mali-
cious Android applications, with K-means being the
best performing clustering algorithm. However, the
main disadvantage of these approaches, since they are
based on static analysis, is the inability to detect mal-
ware at run-time and, thus, the inability to detect ma-
licious behavior after the installation of applications
and/or in between periodic system scans.

Another static approach is presented in Enck et al.
(2009) where the authors propose to identify malware
based on sets of permissions. In Felt et al. (2011a),
sending SMS messages without confirmation or ac-
cessing unique phone identifiers like the IMEI are
identified as promising features for malware detec-
tion. Legitimate applications ask those permissions
less often Felt et al. (2011b). Still, using only asked
permissions, as it is done in Felt et al. (2011a,b) pro-
duces a high false positive rate.

In Truong et al. (2013), as a static feature for de-
tecting susceptibility of a device to malware infection,
a set of identifiers representing the applications on a
device is used. The assumption is that the set of ap-
plications used on a device may predict the likelihood
of the device being classified as infected in the fu-
ture. Nevertheless, observing just this feature is not

SECRYPT 2016 - International Conference on Security and Cryptography

74



enough to give satisfactory answer about device be-
ing attacked due to relatively low precision and recall
Truong et al. (2013).

Battery power, as a dynamic feature, is also con-
sidered for detection of malware. One of the proposed
solutions, VirusMeter Liu et al. (2009) monitors and
audits power consumption on mobile devices with a
power model that accurately characterizes power con-
sumption of normal user behaviors. Also in Kim
et al. (2008) the authors use power monitoring to de-
tect malware. They first extract characteristic power
consumption signatures of malicious and benign ap-
plications and then, while using the system, detect if
its power consumption is more similar with benign or
malicious sample. However, althought it appears as a
promising feature, to what extent malware can be de-
tected on phones by monitoring just battery power re-
mains an open research question Becher et al. (2011).

In Shabtai et al. (2012), Andromaly, a framework
for detecting malware, is proposed. It uses a variety of
dynamic features related to: touch screen, keyboard,
scheduler, CPU load, messaging, power, memory,
calls, operating system, network, hardware, binder,
and leds. The authors of Andromaly compared False
Positive Rate, True Positive Rate, and accuracy of dif-
ferent detection algorithms and concluded that the al-
gorithms that outperformed the others were Logistic
Regression and Naive Bayes. The results were ob-
tained using 40 benign applications and four mali-
cious samples, developed by the authors, since real
malicious samples did not exist at that time.

In Ham and Choi (2013), feature selection was
performed on a set of run-time features related to net-
work, SMS, CPU, power, process information, mem-
ory, and virtual memory. Four different classifica-
tion algorithms were evaluated and as a measure of
features usefulness Information Gain was used. Ran-
dom Forest was the one that provided the best perfor-
mance. Random Forest is a combination of different
tree classifiers Breiman (2001). Although it is a pow-
erful algorithm in achieving high quality of detection,
it also has high complexity, making it unsuitable for
mobile devices. Additionally, results have been ob-
tained by only considering 30 benign and five mali-
cious applications, with a limited coverage of the high
variety of malware available to date. This may limit
the applicability of results, both in terms of algorithm
and of selected features.

As previously mentioned, Shabtai et al. (2012)
and Ham and Choi (2013) also consider some mem-
ory and CPU features as part of a larger feature set.
While we have limited our observation to memory
and CPU related features, we have considered more

detailed features related to single applications, instead
of generic ones such as total CPU or memory usage.
In our opinion, our approach better covers CPU and
memory behavior of the observed applications. Addi-
tionally, as opposed to Shabtai et al. (2012), our ap-
proach uses real malicious samples with higher vari-
ety of malicious behavior, and less complex detection
methods rather than Random Forest, as it is done in
Ham and Choi (2013).

Another recent work, presented in Milosevic et al.
(2016), also takes into account memory and CPU fea-
tures and their usefulness in malware detection. It an-
alyzes these features and their significance within the
malware families they belong to, and takes into ac-
count the most indicative ones for each family. It con-
cludes that some features appear as good candidates
for malware detection in general, some features ap-
pear as good candidates for detection of specific mal-
ware families, and some others are simply irrelevant.
For the analysis of usefulness of features, the authors
use Principal Component Analysis. However, in this
work further validation of features by using detection
algorithms is not performed nor benign samples are
included in the experiments.

As opposed to the approach proposed in Milosevic
et al. (2016), we validate the usefulness of the selected
features by using three different detection algorithms
and use a balanced dataset consisting of both benign
and malicious applications. Additionally, in order to
find the most indicative features, we take into account
five different feature selection methods. Finally, we
focus on discrimination of malicious and benign ex-
ecution traces, while the paper deals with usefulness
of features within different malware families.

3 METHODOLOGY

Towards enabling efficient dynamic detection of mo-
bile malware, we propose the following approach to
identify the most indicative features related to mem-
ory and CPU to be monitored on mobile devices and
the most appropriate classification algorithms to be
used afterwards:

1. Collection of malicious samples, representing dif-
ferent families, and of benign samples

2. Execution of samples and collection of the execu-
tion traces

3. Extraction of features, from the execution traces,
related to memory and CPU

4. Selection of the most indicative features

A Friend or a Foe? Detecting Malware using Memory and CPU Features

75



5. Selection of the most appropriate classification al-
gorithms

6. Quantitative evaluation of the selected features
and algorithms

The first step defines the dataset to be used in
the remaining parts of the methodology. Namely, it
is important to use malicious samples coming from
different malware families, so that the diverse behav-
ior of malware is covered to as large extent as possi-
ble. Furthermore, it is needed to set up the execu-
tion environment to run malicious samples, so that
malicious behavior can be triggered. Additionally,
such environment should provide the possibility to ex-
ecute large number of malicious samples, within rea-
sonable time, so that the obtained results have statis-
tical significance. We have achieved these require-
ments, first, by using a variety of malware families
with broad scope of behavior, second by triggering
different events while executing malicious applica-
tions and, third, by using an emulation environment
that enabled us to execute applications quickly. Since
our goal is to discriminate between malicious and be-
nign execution records, we have taken into account
also benign samples, and executed them in same con-
ditions used for malicious applications. While usage
of an emulator enables us to execute statistically sig-
nificant number of applications on one hand, on the
other hand it is our belief that its usage instead of a
real device has a limited or no effect on results, due
to the nature of features observed. However, we are
aware of the fact that the use of an emulator may pre-
vent the activation of certain sophisticated malicious
samples.

Before identification of the most indicative symp-
toms, feature extraction and selection needs to be per-
formed. A comprehensive survey covering the state-
of-the-art in feature selection can be found in Liu
and Yu (2005). Intuitively, a better classification re-
sult can be achieved if we add more features to the
dataset, however this is not the case, as it can happen
that irrelevant and redundant features confuse classi-
fiers and decrease detection performance. Due to this
fact, we have performed feature selection as a separate
step, in which we have evaluated features usefulness
based on the following techniques: Correlation At-
tribute Evaluator, CFS Subset Evaluator, Gain Ratio
Attribute Evaluator, Information Gain Attribute Eval-
uator, and OneR Feature Evaluator Hall et al. (2009).
We have chosen feature selection techniques due to
their difference in observing usefulness of features as
they are based either on statistical importance or in-
formation gain measure. Following, the list of feature
selection algorithms that we have used:

◦ Correlation Attribute Evaluator calculates the
worth of an attribute by measuring the correlation
between it and the class.

◦ CfsSubsetEval calculates the worth of a subset of
attributes by considering the individual predictive
ability of each feature along with the degree of re-
dundancy between them. Subsets of features that
are highly correlated with the class while having
low intercorrelation are preferred Hall (1998).

◦ Gain Ratio Attribute Evaluator calculates the
worth of an attribute by measuring the gain ratio
with respect to the class.

◦ Information Gain Attribute Evaluator calculates
the worth of an attribute by measuring the infor-
mation gain with respect to the class.

◦ OneR Feature Evaluation calculates the worth of
an attribute by using the OneR classifier, which
uses the minimum-error attribute for prediction
Holte (1993).

In order to validate the usefulness of selected features
we have used the following detection algorithms hav-
ing different approach to detection: Naive Bayes, Lo-
gistic Regression, and J48 Decision Tree. While most
of the steps of the proposed approach are executed of-
fline (i.e., on machines equipped with extensive com-
putational resources), the classification algorithm will
be executed on the mobile devices; thus, it needs to be
compatible with their limited resources. This is the
reason why we also take into account the complexity
of algorithms, and use the ones with low complexity.
A brief description of aforementioned classification
algorithms follows:

• Naive Bayes is a probabilistic classifier. It ap-
plies Bayes theorem making an assumption that
the features are independent. Under this naive as-
sumption it calculates probability of an unknown
instance belonging to each class and selects the
one with the highest probability as an output John
and Langley (1995).

• Logistic Regression is a linear classifier that calcu-
lates the conditional probabilities of possible out-
comes and chooses the one with the maximum
likelihood. It is a technique widely used in many
fields.

• A decision tree-based J48 classifier is an open
source implementation of C4.5 algorithm Hall
et al. (2009); C4.5 is a statistical classifier that
for each node of the tree, chooses the attribute of
the data that the most effectively splits its samples
into subsets; the splitting criterion being maxi-
mum information gain Quinlan (1993).

SECRYPT 2016 - International Conference on Security and Cryptography

76



4 EVALUATION

We have executed both malicious and benign sam-
ples by using the Android SDK emulator and we have
observed their influence on 53 features representing
phone state. We have analysed collected execution
traces by applying methods to reduce the set of sig-
nificant features used in the classifiers, based both
on statistical significance of features and on informa-
tion gain measure. The selected features, extracted
from the training set, were afterwards employed to
train different classifiers for a comparative evaluation;
these classifiers are then used to categorize execution
records into malicious or benign. To build a balanced
set of applications, we used malicious samples com-
ing from Malware Genome Project Zhou and Jiang
(2012) and benign samples coming from Play Store
Google Inc. (2015b).

In this section, we describe in detail the dataset
that we have used, and the experiments that we have
performed. Furthermore, we list the features that we
have collected, describe the settings of the techniques
used for feature analysis, so as implementation details
of the classification algorithms used for malware de-
tection.

4.1 Dataset

The dataset consists of a mix of malicious and be-
nign applications. The Malware dataset is composed
of 1,247 malicious applications taken from the Mal-
ware Genome project Zhou and Jiang (2012) and
belonging to 41 families. These malware families
cover a broad range of malicious behaviors, including
different installation methods (repackaging, update,
drive-by download, standalone), activation mecha-
nisms (Boot Completed, Phone Events, SMS, Calls,
USB, Battery, Package, Network, System Events) and
different malicious payloads (privilege escalation, re-
mote control, financial charges, and personal informa-
tion stealing). More details on each of these families
are provided in Zhou and Jiang (2012).

The benign dataset has been obtained by running
952 benign applications downloaded from the Google
Play Store Google Inc. (2015b). We believe that the
applications coming from Google Play Store can be
used as benign due to the detailed analysis done to
identify potentially harmful applications and the low
infection rate reported in Google Inc. (2015c). We
are aware that some of these applications could po-
tentially contain malicious behavior, but we believe
that the number of benign ones is still much higher
making the obtained dataset representative.

4.2 Execution Environment

Memory and CPU usage traces were recorded by run-
ning the applications, one at a time, on the Android
emulator; each application has been run for 10 min-
utes, even though some of the traces are shorter, due
to emulator hiccups. The considered monitoring in-
terval is equal to two seconds. Although it could be
the case that a longer execution period would provide
us more significant results, we believe that the dura-
tion that we have chosen is a good trade-off between
time when most of the malware samples expose their
malicious intents and duration of the overall experi-
mentation.

The Android emulator of choice was the one in-
cluded in the Android Software Development Kit An-
droid Open Source project (2015b) release 20140702,
running Android 4.0. The reason why an Android em-
ulator was chosen instead of real devices is that this
solution minimizes the time necessary to set up each
application before running, thus providing the abil-
ity to run a large number of applications, making the
obtained dataset more significant. The Android oper-
ating system was each time re-initialized before run-
ning each application, so that the interferences (e.g.,
changed settings, running processes, and modifica-
tions of the operating system files) from previously
run samples are avoided.

All this process was automated by means of a shell
script that was run on a Linux PC and made use of
Android Debug Bridge (adb) Android Open Source
project (2015a), a command line tool that lets the PC
communicate with an emulator instance or with an
Android device. The Monkey application exerciser
Android Open Source project (2015c) was also used
in the script. The Monkey is a command-line tool that
can be run on any emulator instance or on a device; it
sends a pseudo-random stream of user events into the
system, which acts as a stress test on the application
software. In our script, Monkey was used to activate
different features of the applications; adb was used to
monitor application features, namely the memory us-
age of the considered sample, as well as to install the
applications. In summary, for each application, the
following actions were performed:

• A clean install of the Android operating system

• The application installation on the Android Emu-
lator by means of adb

• The memory monitoring by means of periodic
calls to the adb shell command

• Initialization and run of the application for 10
minutes by using the Monkey.

A Friend or a Foe? Detecting Malware using Memory and CPU Features

77



4.3 Collected Features

We have taken into account all the features related to
memory and CPU that can be accessed in Android. In
total, this makes 53 features for each running appli-
cation; these features are listed in Table 1. There are
five features related to CPU: three related to CPU us-
age, and two to virtual memory exceptions (major and
minor faults). The remaining 48 features are related
to different aspects of memory usage.

4.4 Feature Analysis Techniques

As described in Section 3, collected features are anal-
ysed by using Correlation Attribute Evaluator, CFS
Subset Evaluator, Gain Ratio Attribute Evaluator, In-
formation Gain Attribute Evaluator, and OneR Fea-
ture Evaluator. For the mentioned feature selection
methods, their implementation in Weka data mining
tool Hall et al. (2009) has been used. More in detail,
CFS subset evaluation is performed by using Greedy
forward search through the space of attribute subsets
Hall (1998). Correlation Attribute Evaluator, Gain
Ratio Attribute Evaluator, Information Gain Attribute
Evaluator, and OneR Attribute Evaluator are used to-
gether with Ranker method that ranks attributes by
their individual performance.

4.5 Detection Algorithms

As discussed in Section 3, the classifiers of choice
are: Naive Bayes, Logistic Regression, and J48 Deci-
sion Tree. Weka implementations of these algorithms
have been used. Naive Bayes has been set assum-
ing normality and modelling each conditional distri-
bution with a single Gaussian; Logistic Regression
has been used with ridge estimator, since it has been
shown that it can improve attribute estimation and de-
crease the error made in further predictions Le Cessie
and Van Houwelingen (1992). J48 has been used with
pruning, setting the confidence factor used for prun-
ing to 0.25 and the minimum number of instances per
leaf to 5000; these values represent a trade-off be-
tween number of instances in the dataset, speed of
execution and the quality of classification.

4.6 Evaluation of the Approach

The validation of the classification is done by us-
ing ten-fold cross validation, that is widely used
model validation technique that can estimate how ac-
curately observed model will perform in practise Ko-
havi (1995). In case of ten-fold cross validation, the
dataset is divided into ten parts, where at each round

Table 1: List of all the considered features; totals are related
only to single applications.

CPU Usage
Total CPU Usage
User CPU Usage
Kernel CPU Usage

Virtual Memory
Page Minor Faults
Page Major Faults

Native memory

Native PSS
Native Shared Dirty
Native Private Dirty
Native Heap Size
Native Heap Alloc
Native Heap Free

Dalvik memory

Dalvik PSS
Dalvik Shared Dirty
Dalvik Private Dirty
Dalvik Heap Size
Dalvik Heap Alloc
Dalvik Heap Free
Dalvik Cursor PSS

Cursor memory
Cursor Shared Dirty
Cursor Private Dirty

Android shared memory
Ashmem PSS
Ashmem Shared Dirty
Ashmem Private Dirty

Memory-mapped native code
.so mmap PSS
.so mmap Shared Dirty
.so mmap Private Dirty

Memory mapped Dalvik code
.dex mmap PSS
.dex mmap Shared Dirty
.dex mmap Private Dirty

Memory-mapped fonts
.ttf mmap PSS
.ttf mmap Shared Dirty
.ttf mmap Private Dirty

Other memory-mapped files
and devices

.jar mmap PSS

.jar mmap Shared Dirty

.jar mmap Private Dirty

.apk mmap PSS

.apk mmap Shared Dirty

.apk mmap Private Dirty
Other mmap PSS
Other mmap Shared Dirty
Other mmap Private Dirty

Non-classified memory allo-
cations

Unknown PSS
Unknown Shared Dirty
Unknown Private Dirty
Other dev PSS
Other dev Shared Dirty
Other dev Private Dirty

Memory totals

Total PSS
Total Shared Dirty
Total Private Dirty
Total Heap Size
Total Heap Alloc
Total Heap Free

one part, consisting of nine folds, is considered as a
training set and the remaining part is used as a test set.
This procedure is repeated ten times, each time using
a different training and a test set, and after ten rounds
the average detection performance is reported.

SECRYPT 2016 - International Conference on Security and Cryptography

78



5 RESULTS

Results show that by observing limited number of fea-
tures related to memory and CPU (only seven in case
of Naive Bayes and Logistic Regression, and six in
case of J48 Decision Tree), the execution traces be-
longing to malicious applications can be identified
with precision and recall of more than 84%. In our
opinion, this result is valuable, having in mind the
small number of features used, the lightweight clas-
sification algorithms, and the good F-measure score
obtained.

To rank the available features, we applied the five
feature selection methods introduced in Section 3; the
first fifteen highest ranked features for each method
are shown in Table 2. We may notice that different
ranking methods provide different results; however, a
number of features related to memory mapping, such
as .ttf mmap PSS and .so mmap PSS, are among the
highest ranked ones in most methods. In Table 2 for
CFS Subset Evaluator only seven features are listed,
without any ranking. This is due to the fact that CFS
does not evaluate single features but, instead, subsets
of features, calculating their usefulness with respect
to the other subsets.

As discussed in Section 4, we have used three
different classification algorithms. In case of Naive
Bayes and Logistic Regression we have evaluated
the results of the classifiers both considering all the
available features and by considering only the highest
ranked ones for each feature selection method. On the
obtained dataset, we have performed ten-fold cross
validation and have taken into account precision, re-
call, and F-measure of a model as a result of the ex-
periment. We have repeated this procedure for all five
feature selection methods taken into account.

For J48 Decision Tree, we have trained the model
by changing the maximum number of instances that a
node can have and by observing its quality of detec-
tion (precision, recall, and F-measure). The number
of instances is important in order to avoid overfitting,
a situation in which the decision tree consists of many
nodes that are very well fitted for the training set, but
do not perform well on a test set and unseen data. In
J48 Decision Tree, the maximum number of instances
in the three can be set, but meaningful features are se-
lected by the algorithms and cannot be set externally.

Table 3 summarizes the results obtained with the
different classifiers. The initial model includes all the
53 features available. The second model, instead, is
the one providing maximum F-measure; the last one
provides the best ratio between F-measure and the
number of features considered. We use F-measure
(sometimes also called F-score) as a quantitative de-

scription of the quality of detection models, since it
includes both precision (the fraction of detected in-
stances that are relevant) and recall (the fraction of
relevant instances that are detected).

In case of Naive Bayes, with the dataset contain-
ing all 53 features, an F-measure of 0.77 is obtained.
After taking into account rankings of the features for
all five feature selection methods, we identified an op-
timized set of features, both with respect to their num-
ber and to F-measure, as the one computed with the
CFS Subset Evaluator. As it can be seen from Table 3,
the obtained F-measure in this case is 0.83, with a set
of seven features.

In case of Logistic Regression, using all features,
we obtained F-measure of 0.83. However, decreas-
ing the number of features and observing system per-
formance, we obtained an increased F-measure of
0.86, obtained by using Correlation Attributes with
rankings higher than 0.03 (38 features). The optimal
model with respect to both number of features and
quality of detection is again obtained by using fea-
tures selected by CFS Subset Evaluator. This model
has an F-measure of 0.84.

For what concerns J48, the obtained model, that
uses six features, has an F-measure of 0.82. The deci-
sion three, with the selected features thereby used, is
shown in Figure 1.

In summary, features that are the most indicative
for the Logistic Regression and Naive Bayes classi-
fiers are the seven listed in the CFS Subset Evaluator
column of Table 2; for J48 Decision Tree, the six most
significant features are listed in Figure 1. A brief de-
scription of these features is provided in Table 4. The
best detection performance with respect to F-measure,
so as with respect to the ratio between F-measure and
the number of features considered, is achieved by the
Logistic Regression algorithm. The best F-measure
is obtained by considering 38 highest ranked features
provided by the Correlation Attribute Evaluator; the
optimized set of only 7 features is obtained by con-
sidering the CFS Subset Evaluator. Also the other two
detection algorithms considered, namely Naive Bayes
and J48 Decision Tree, perform well, showing simi-
larly good detection performance.

6 DISCUSSION

We propose and validate an approach for detection
of malicious execution traces that takes into account
limited resources of battery-operated devices. This
is the case due to the small number of features that
is used and the lightweight algorithms that are taken
into account for detection. The discussed algorithms

A Friend or a Foe? Detecting Malware using Memory and CPU Features

79



Table 2: Top 15 features ranked by different feature selection algorithms.

Correlation Attribute Evaluator CFS Subset Evaluator Gain Ratio Attribute Evaluator

Ranking Feature Feature Ranking Feature
0.49 .ttf mmap PSS .so mmap Shared Dirty 0.12 .jar mmap PSS
0.46 .so mmap PSS .jar mmap PSS 0.06 .dex mmap Private Dirty
0.43 .dex mmap PSS .ttf mmap PSS 0.05 Other dev Private Dirty
0.39 TOTAL PSS .dex mmap PSS 0.04 .dex mmap PSS
0.38 .so mmap Shared Dirty .dex mmap Private Dirty 0.04 .ttf mmap PSS
0.36 TOTAL Private Dirty Other mmap Private Dirty 0.04 .so mmap Shared Dirty
0.36 .jar mmap PSS CPU Total 0.03 .so mmap PSS
0.33 Unknown Private Dirty 0.03 .so mmap Private Dirty
0.33 Unknown PSS 0.03 Other mmap Private Dirty
0.31 CPU User 0.03 .dex mmap Shared Dirty
0.30 CPU Total 0.03 Unknown PSS
0.30 TOTAL Heap Size 0.03 Native Heap Size
0.29 TOTAL Heap Alloc 0.03 Unknown Private Dirty
0.27 Other mmap PSS 0.03 Other mmap Shared Dirty
0.26 Native Heap Alloc 0.02 TOTAL PSS

Information Gain Attribute Evaluator OneR Attribute Evaluator

Ranking Feature Ranking Feature
0.28 .dex mmap PSS 79.99 .ttf mmap PSS
0.27 .ttf mmap PSS 79.64 .dex mmap PSS
0.25 Unknown PSS 78.92 Unknown PSS
0.25 .so mmap PSS 78.51 .so mmap PSS
0.23 Native Heap Size 76.24 TOTAL Heap Size
0.23 TOTAL Heap Size 76.19 Native Heap Size
0.21 Unknown Private Dirty 75.87 Unknown Private Dirty
0.21 .so mmap Private Dirty 75.44 .so mmap Private Dirty
0.17 .so mmap Shared Dirty 73.25 .so mmap Shared Dirty
0.17 Ashmed PSS 71.26 Native PSS
0.15 Other mmap PSS 71.21 Other mmap PSS
0.15 TOTAL PSS 71.17 Ashmed PSS
0.14 minor faults 70.75 minor faults
0.13 Native PSS 69.78 TOTAL PSS
0.13 TOTAL Private Dirty 69.49 .apk mmap PSS

are envisioned to be part of a run-time malware de-
tection system installed on mobile devices. In such
system, identified optimized features will be period-
ically monitored, and the classification of the execu-
tions traces will be done in the way proposed in this
work. The classified execution traces will be further
analysed at the application level and in case of a de-
tected malicious application, the user will be notified.
While in this paper we focused on the classification
of the executions traces, the classification of the entire
applications is envisioned as a next step of our work.
We believe that such a lightweight detection system
could be used either as a complement to other detec-
tion systems (e.g., static ones) or in two-level detec-
tion systems, such as the one presented in Milosevic
et al. (2014), to raise the first alarm.

6.1 Highlights of the Approach

The approach adopted in developing the detection

method presented in this paper, provides the ability to
underline a number of key facts as follows.

From the results of our experiments, we can claim
that CPU and memory features contain useful in-
formation for discriminating between the execution
traces related to malicious or benign applications.
Additionally, good detection performance can be ob-
tained while using algorithms of low complexity, suit-
able for battery-operated mobile devices.

We have shown that in case of Logistic Regression
and Naive Bayes, detection performance, measured
with precision, recall, and F-measure, and presented
in Table 3 is improved even if the number of features
is decreased from 53 to 7. Reducing the number of
features without reducing performance of the system
is in line with our intention to design effective, while
at the same time efficient, mobile detection system.

Out of five feature selection methods taken into
account, our analysis shows that CFS Subset Evalua-

SECRYPT 2016 - International Conference on Security and Cryptography

80



Table 3: Performance of the classifiers when different number of features are considered.

Model
Initial Max. F-

measure
Optimized

Naive Bayes

Precision 0.79 0.84 0.84
Recall 0.76 0.83 0.83
F-measure 0.77 0.83 0.83
No. of features 53 7 7

Logistic Regression

Precision 0.84 0.86 0.84
Recall 0.84 0.86 0.84
F-measure 0.83 0.86 0.84
No. of features 53 38 7

J48 Decision Tree

Precision – – 0.83
Recall – 0.83
F-measure – – 0.82
No. of features – – 6

Figure 1: Optimized J48 Decision Tree; malicious and benign traces are labelled with 0 and 1, respectively.

tor performs the best and identifies the set of features
that demonstrates the highest detection performance
among all considered detection algorithms.

Out of three detection algorithms taken into ac-
count, Logistic Regression has the highest detection
performance measured by F-measure. Therefore, we
have shown that a very small number of features, cou-
pled with algorithms of linear complexity in the num-
ber of features, can be used to detect malware effec-
tively, making the approach lightweight and poten-
tially compatible with the limited resources of small
IoT nodes.

We have observed that malicious samples con-
sume less memory and CPU compared to the benign
ones. This can be seen looking into values of fea-
tures of J48 Decision Tree presented in Figure 1. A
similar behavior can also be observed by looking into

details of the obtained Naive Bayes and Logistic Re-
gression models. The reason for this could be that
malicious applications perform only a limited activ-
ity, connected to their malicious intent, rather than the
legitimate actions for which they were installed by the
user.

Ten-fold cross validation was used to evaluate per-
formance of the different classifiers and of the se-
lected sets of features. This approach is equivalent
to testing by applying a mix of execution traces (or
parts of them) related to both malicious samples that
have been used during training and others that have
not. This situation is still worse than what happens
in reality, where the large majority of malicious sam-
ples are known to the classifiers and only a fraction of
them is not.

We have performed validation by using execution

A Friend or a Foe? Detecting Malware using Memory and CPU Features

81



Table 4: Brief description of the most indicative features
Google Inc. (2015a).

Feature Name Feature Description

.so mmap Shared
Dirty

Shared memory, in the Dirty state, being used
for mapped native code. The Dirty state is due
to fix-ups to the native code when it is loaded
into its final address.

.so mmap PSS Memory used for native code, including plat-
form code shared across applications

.jar mmap PSS Memory usage for Java archives, including
pages shared among processes

.ttf mmap PSS Memory usage for true type fonts, including
pages shared among processes

.so mmap PSS Memory used for Dalvik or ART code, includ-
ing platform code shared across applications

.so mmap Private
Dirty

Private memory, in the Dirty state, being used
for mapped Dalvik or ART code. The Dirty
state is due to fix-ups to the native code when
it is loaded into its final address.

Other mmap Private
Dirty

Private memory used by unclassified contents
that is in the dirty state

Unknown shared
dirty

Shared memory that in the dirty state that can-
not be classified into one of the other more
specific items

CPU User Userspace CPU usage by the considered ap-
plication

CPU Total Total (User + System) CPU usage by the con-
sidered application

traces obtained when only one application was run-
ning: this situation is very likely to be the most com-
mon one in IoT nodes with limited resources.

6.2 Limitations of the Approach

Our detection system uses dynamic features that are
by their nature more difficult to evade than the static
ones. The assumption for usage of dynamic features
(in our case memory and CPU) is that even when
the applications are repackaged or obfuscated, dur-
ing their execution they will still have similar behav-
ioral footprints, and a classifier trained on these fea-
tures could properly discriminate malicious applica-
tions from benign ones. Our detection method can
detect effectively known malicious samples and un-
known malicious samples belonging to known mal-
ware families. However, it cannot guarantee, as any
other detection method, absolute security. If a mali-
cious attacker develops a new malicious sample that
has a behavior reflected in significantly different fea-
ture profiles than the ones observed in our dataset, the
detection system might not be able to detect it.

Our approach is data driven and, as other meth-
ods that use a similar approach, such as Shabtai et al.
(2012)Ham and Choi (2013), it does not provide any
help in understanding how the selected features and
their relations are connected with the behavior of the

applications. Therefore, while selected features can
be described individually and the rationale beyond al-
gorithms can be explained, an explanation on why
features are important for the identification of mal-
ware is possible only in the simplest cases, where the
number of available features is very limited and the
system is extremely simple. However, without usage
of these mathematical algorithms and models it would
be impossible to measure usefulness of features, iden-
tify their correlations, and choose only the most in-
dicative ones.

7 CONCLUSIONS

The usefulness of CPU and memory features in the
discrimination between malicious and benign exe-
cution traces has been investigated. We use differ-
ent feature selection methods based on statistics and
information theory and identify the most indicative
ones. Furthermore, in order to validate the useful-
ness of the features we use classification algorithms
that are suitable for malware detection in the limited
battery-operated environment of mobile and other IoT
devices. Results show that memory and CPU features
contain enough information to discriminate between
benign and malicious execution behavior of applica-
tions. In particular, only six or seven features, de-
pending on the classification algorithm, are sufficient
to identify execution traces that can be associated with
malware with a precision and recall that are higher
than 84%. Since the proposed methodology is of low
complexity, it is also applicable to a wide range of
resource-constrained devices in Internet of Things.

REFERENCES

Android Open Source project (2015a).
Android Debug Bridge. Online:
http://developer.android.com/tools/help/adb.html.

Android Open Source project (2015b). An-
droid Software Development Kit. Online:
https://developer.android.com/sdk/index.html.

Android Open Source project (2015c).
UI/Application Exerciser Monkey. Online:
http://developer.android.com/tools/help/monkey.html.

Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., and
Rieck, K. (2014). DREBIN: Effective and Explain-
able Detection of Android Malware in Your Pocket.
In NDSS.

Becher, M., Freiling, F. C., Hoffmann, J., Holz, T., Uel-
lenbeck, S., and Wolf, C. (2011). Mobile Security
Catching Up? Revealing the Nuts and Bolts of the Se-
curity of Mobile Devices. In Symposium on Security

SECRYPT 2016 - International Conference on Security and Cryptography

82



and Privacy, SP ’11, pages 96–111. IEEE Computer
Society.

Bishop, C. M. (2006). Pattern Recognition and Ma-
chine Learning (Information Science and Statistics).
Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Breiman, L. (2001). Random forests. Mach. Learn.,
45(1):5–32.

Enck, W., Ongtang, M., and McDaniel, P. (2009). On
lightweight mobile phone application certification. In
16th ACM conference on Computer and communica-
tions security (CCS), pages 235–245. ACM.

Felt, A. P., Finifter, M., Chin, E., Hanna, S., and Wag-
ner, D. (2011a). A Survey Of Mobile Malware in the
Wild. In 1st ACM workshop on Security and privacy
in smartphones and mobile devices (SPSM), pages 3–
14. ACM.

Felt, A. P., Greenwood, K., and Wagner, D. (2011b).
The effectiveness of application permissions. In 2nd
USENIX conference on Web application development
(WebApps), pages 7–7. USENIX Association.

Gartner, Inc. (2015). Gartner says emerging markets
drove worldwide smartphone sales to 15.5 per-
cent growth in third quarter of 2015. Online:
http://www.gartner.com/newsroom/id/3169417.

Google Developers (2015). Brillo. Online:
https://developers.google.com/brillo.

Google Inc. (2015a). Android Developers – Investigat-
ing Your RAM Usage. Online: http://developer.an
droid.com/tools/debugging/debugging-memory.html.

Google Inc. (2015b). Google Play. Online:
https://play.google.com.

Google Inc. (2015c). Google Report – Android Security
2014 Year in Review. Technical report. Online:
https://static.googleusercontent.com/media/source.an
droid.com/it//devices/tech/security/reports/Google
Android Security 2014 Report Final.pdf.

Group, C. (2015). 2015 cyberthreat defense re-
port. Technical report. Online: http://www.bright
cloud.com/pdf/cyberedge-2015-cdr-report.pdf.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann,
P., and Witten, I. H. (2009). The WEKA Data Min-
ing Software: An Update. SIGKDD Explor. Newsl.,
11(1):10–18.

Hall, M. A. (1998). Correlation-based Feature Subset Se-
lection for Machine Learning. PhD thesis, University
of Waikato, Hamilton, New Zealand.

Ham, H.-S. and Choi, M.-J. (2013). Analysis of android
malware detection performance using machine learn-
ing classifiers. In ICT Convergence (ICTC), 2013 In-
ternational Conference on, pages 490–495.

Holte, R. (1993). Very simple classification rules per-
form well on most commonly used datasets. Machine
Learning, 11(1):63–90.

John, G. and Langley, P. (1995). Estimating continuous dis-
tributions in bayesian classifiers. In In Proceedings of
the Eleventh Conference on Uncertainty in Artificial
Intelligence, pages 338–345. Morgan Kaufmann.

Kim, H., Smith, J., and Shin, K. G. (2008). Detecting
energy-greedy anomalies and mobile malware vari-

ants. In Proceedings of the 6th International Confer-
ence on Mobile Systems, Applications, and Services,
MobiSys ’08, pages 239–252, New York, NY, USA.
ACM.

Kohavi, R. (1995). A study of cross-validation and boot-
strap for accuracy estimation and model selection.
pages 1137–1143. Morgan Kaufmann.

Le Cessie, S. and Van Houwelingen, J. C. (1992). Ridge
estimators in logistic regression. Applied statistics,
pages 191–201.

Liu, H. and Yu, L. (2005). Toward integrating feature selec-
tion algorithms for classification and clustering. IEEE
Transactions on Knowledge and Data Engineering,
17(4):491–502.

Liu, L., Yan, G., Zhang, X., and Chen, S. (2009). VirusMe-
ter: Preventing Your Cellphone from Spies. In 12th
International Symposium on Recent Advances in In-
trusion Detection (RAID), pages 244–264. Springer.

McAfee Labs (February 2015). Threats
Report. Technical report. Online:
http://www.mcafee.com/hk/resources/reports/rp-
quarterly-threat-q4-2014.pdf.

Milosevic, J., Dittrich, A., Ferrante, A., and Malek, M.
(2014). A resource-optimized approach to efficient
early detection of mobile malware. In Availability,
Reliability and Security (ARES), 2014 Ninth Interna-
tional Conference on, pages 333–340. IEEE.

Milosevic, J., Ferrante, A., and Malek, M. (2016). What
does the memory say? towards the most indicative
features for efficient malware detection. In CCNC
2016, The 13th Annual IEEE Consumer Communica-
tions & Networking Conference, Las Vegas, NV, USA.
IEEE Communication Society, IEEE Communication
Society.

Moser, A., Kruegel, C., and Kirda, E. (2007). Limits of
static analysis for malware detection. In Computer Se-
curity Applications Conference, 2007. ACSAC 2007.
Twenty-Third Annual, pages 421–430.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learn-
ing. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA.

Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., and Weiss,
Y. (2012). ”andromaly”: A behavioral malware detec-
tion framework for android devices. J. Intell. Inf. Syst.,
38(1):161–190.

Symantec Corporation (2015). Internet security threat
report volume 20. Technical report. Online:
https://www.symantec.com/content/en/us/enterprise/
other resources/21347933 GA RPT-internet-
security-threat-report-volume-20-2015.pdf.

Truong, H. T. T., Lagerspetz, E., Nurmi, P., Oliner, A. J.,
Tarkoma, S., Asokan, N., and Bhattacharya, S. (2013).
The Company You Keep: Mobile Malware Infec-
tion Rates and Inexpensive Risk Indicators. CoRR,
abs/1312.3245.

Wu, D.-J., Mao, C.-H., Wei, T.-E., Lee, H.-M., and Wu,
K.-P. (2012). Droidmat: Android malware detection
through manifest and api calls tracing. In Information
Security (Asia JCIS), 2012 Seventh Asia Joint Confer-
ence on, pages 62–69.

A Friend or a Foe? Detecting Malware using Memory and CPU Features

83



Zhou, Y. and Jiang, X. (2012). Dissecting Android Mal-
ware: Characterization and Evolution. In Proceedings
of the 2012 IEEE Symposium on Security and Privacy,
SP ’12, pages 95–109, Washington, DC, USA. IEEE
Computer Society.

SECRYPT 2016 - International Conference on Security and Cryptography

84


