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Abstract: This paper proposes a practical solution to the autonomous exploration and mapping problem using a single
mobile robot. Moreover, the authors implement the proposed scheme within the Robot Operating System
(ROS), and validate it experimentally using PowerBot, a real wheeled mobile robot equipped with a 2D laser
scanner. In essence, the proposed scheme integrates an efficient particle-filter-based SLAM algorithm, two
different exploration strategies, and a path-planning and navigation module. The modular nature of the pro-
posed scheme is intentional and advantageous. It allows the authors to compare the two exploration strategies
under investigation objectively and with ease. Finally, hypotheses testing is also used to strengthen the results
of the comparative analysis.

1 INTRODUCTION vironment as possible, and in the shortest time pos-
sible. Other researchers argue that rather than just

Exploration and mapping by an autonomous agent €xploratory actions, accurate mapping requires-
have been of particular interest to the robotics com- Ploitation actions, such as place revisiting actions
munity for decades. Research shows that the au-(Makarenko et al., 2002). This gave rise Aative
tonomous mapping of an unknown environment by a SLAM strategies, that seek to improve the localiza-
mobile robot is a non-trivial task (Thrun et al., 2005). tion estimate of the robot rather than explore as much
Global Positioning Systems (GPS) and the use of bea-Of the environment as possible in the shortest time.
cons for mapping an unknown environment may facil- However, bothexplorationand Active SLAMstrate-
itate the task of mapping (Dissanayake et al., 2011). 9ies ultimately provide the robot with a sequence of
However, such systems suffer from a number of in- locations that it needs to visit in order to meet the
herent limitations, namely, the inaccessibility of GPS SPecified exploration criteria.
indoors and the laborious setting up of strategically ~ For a robot to autonomously explore and map an
placed beacons. Hence, the concepBimhultaneous  environment, it must follow a set of navigation in-
Localization and MappingSLAM), was developedin  structions that allow it to proceed from one location
order to amalgamate sensory data into a world modelto the next safely, even in the presence of obstacles.
(or a map). Through probabilistic techniques, SLAM During the years, severghath planning and motion
algorithms are capable of processing sensory data tocontrol algorithms have been proposed which enable
estimate the location of a robotic system and a map of the robot to move to the chosen location. The integra-
its environment at the same time. tion of a SLAM algorithm, an exploration or Active
In robotics, maps are mainly acquired to enable SLAM strategy and a path planning/navigation algo-
autonomous navigation. However, mapping using fithm allows the robot to autonomously explore and
robots can also be useful when it comes to explore map an unknown environmentusing just sensory data.
and map dangerous environments, or places that are The purpose of this work was to develop a sin-
inaccessible to human beings. Heneetonomous gle robot system, running Robot Operating System
exploration strategiesvere developed, which enable (ROS), that can autonomously explore and map un-
the robot to determine the next location to explore known environments efficiently. The system needed
in order to improve its map and localization esti- to be modular, in that the SLAM, path planning and
mates. Exploration strategies place an emphasis onmotion control modules, can be used with differ-
autonomously mapping as much of an unknown en- ent exploration strategies, without any modifications.
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Autonomous Exploration and Mapping using a Mobile Robot Running ROS

ROS facilitates this modular implementation since it (DWA) (Fox et al., 1997), among others, have been
allows a set of independent processes to communicateproposed to allow a robot to navigate autonomously
through a message passing structure. in the environment. During the years, there have
The main contributions of this work are: 1) the de- been many advancements in the field of path planning
velopment and experimental evaluation of a new ROS algorithms that can be used seamlessly within the
package consisting of two autonomous exploration integrated problem of autonomous exploration and
strategies for mobile robots. To the best of the au- mapping. Moreover, the Dijkstra, A* and D* algo-
thors’ knowledge, no other ROS package offering the rithms are allglobal path plannersin that they plan a
same functionality is available to date; 2) a compara- path from the current robot location to the destination
tive study of the two mentioned exploration strategies, based on the current global map (the whole map ac-
based on physical experiments in a real-life environ- quired so far). The DWA was designed to make use of
ment. the velocity control space to search for control com-
The rest of this paper is structured as fol- mands that must be sent to the robot in order to reach
lows. Section2 provides a review of the exist- a goal destination. Hence, the DWA does not make
ing autonomous exploration and mapping systems. use of a global map, but rather it uses the local map
Section 3 describes the main hardware used in thisobtained through sensory data.
implementation and the underlying software frame- ~ Perhaps the most complex problem that must be
work that makes up the whole robotic system. solved in the task illustrated in Figure 1, is SLAM. In
Section 4, presents a set of experimental results whileautonomous exploration, the map estimate produced
Section 5 contains a comparative analysis, backed upby SLAM is used by the exploration algorithms in
by statistical hypothesis testing, of the two explo- order to identify which is the best location that the
ration strategies under investigation. Finally, conclu- robot must visit next. Overall, SLAM algorithms
sions from this work are drawn in Section 6. may be organized into three main categories as fol-
lows: Extended Kalman Filter (EKF) SLANParticle
Filter SLAM, andGraph Based SLAMEKF SLAM
was for many years the preferred choice since it re-
quires a simple and straight-forward implementation
and performs well in small areas having a limited
Being aware of one’s environment means that: one number of landmarks. However, since EKF SLAM
is able to perceive the environment, localize himself bases its estimate on just one hypothesis and assumes
in it, and be able to navigate effectively in this envi-  that the posterior is normally distributed, it may be-
ronment. In the field of mobile robotics, this involves come overconfidentin its estimate, leading to less ac-
learning maps of an unknown environment, which is curate mapping (Dissanayake et al., 2011). Hence,
the integration of three non-trivial tasks that must be particle Filtering became the preferred probabilis-
solved concurrently (Stachniss et al., 2005). Figure 1 tic technique for many researchers. Particularly, in
illustrates this concept as the integration of mapping, (Thrun et al., 2004), the authors integrate the common

2 RELATED WORK

localization and path planning and motion control. Sequential Importance Resamplir(§IR filter with
EKF to produce FastSLAM, which results in a faster
Simultancous Localization and Mapping algorithm, when compared to the common SIR filter

on its own. Furthermore, Rao-Blackwellized Particle
Filters are more commonly used to solve the SLAM
problem since they attempt to reduce thegeneracy

Mapping Localization

VL Integrated andpatrticle depletiorproblems presented by less ad-
‘ ‘v Approaches vanced particle filters such as t&equential Impor-
J tance SamplingSIS) and SIR filters (Grisetti et al.,

, Path Planning / Active 2007). In (Grisetti et al., 2007) the authors propose

Exploration Qeton Control/ " ocalization two improved techniques for Rao-Blackwellized Par-

ticle Filter SLAM, that make the algorithm more effi-
Figure 1: lllustration of the integrated approaches, atapt  cient and accurate in estimating the most likely pose
from (Makarenko et al., 2002). as well as having a reduction in the particle depletion
problem. The implementation of this improved Rao-

Given a known map, several path planning algo- Blackwellized Particle Filter is often referred to as
rithms such as Dijkstra’s algorithm (Dijkstra, 1959), GMapping, which is directly accessible online from

A* algorithm (Dechter and Pearl, 1985), D* algo- opensl am org. Moreover, the use of Graph-Based
rithm (Stentz, 1994) and Dynamic Window Approach
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techniques in SLAM is fast gaining popularity. In among others, seek to compare such strategies. In
Graph-Based SLAM, each node in the graph repre- (Amigoni, 2008), the author shows that the simpler
sents an estimated robot pose or the estimated posialgorithms, such as the NBV approach, yield the best
tion of a landmark, while the edges connecting these results in the shortest time possible, and the robot
nodes encode in them sensor observations that ardravelling the shortest distance. However, in (Carlone
constrained by the estimated robot pose. The perfor-et al., 2014), the authors show that when the focus is
mance of Graph-Based SLAM is said to be compara- placed on the quality of the map, then those strate-
ble to that of Particle Filter-Based SLAM algorithms gies that involve Active SLAM produce the best re-
such as GMapping (Burgard et al., 2009). sults, even if not in the shortest time possible. Such
Although the task of choosing the next loca- Works indicate that the choice of exploration or Ac-
tion that the robot should visit seems to be intu- tive SLAM algorithm is highly dependent on the ap-
itive, several researchers have developed several dif-plication and on the criteria that shall be used in the
ferent exploration and Active SLAM algorithms for ~ evaluation of the results.
this purpose. One very popular and simple explo-
ration strategy is th&learest Frontierapproach (Ya-
mauchi, 1997). This algorithm simply analyses an 3 SYSTEM DESIGN AND

Occupancy Grid Majand detects all potential borders
(called candidate frontiers) between the cells marked IMPLEMENTATION

asOPEN (free from obstacles) and those marked as
UNKNOWN (not yet explored). Such a map is seg-
mented into cells, where each cell is assigned with a
probability of occupancy, with zero probability mean-
ing that it is free from obstacles, and with a probabil-
ity of one, meaning that it iI© CCUPIED Normally,

The concept of autonomous exploration and map-
ping represented in Figure 1 was implemented in
ROS on PowerBdtV, a differentially-driven wheeled
mobile robot designed and manufactured Agept
Mobilerobots for research and rapid prototyping.

a probability of 0.5 means that there is no informa- PpwerBot Is Ae‘gwppe((ij \g'tg ?. SI%K I{MISZO(? (IJaser
tion about the occupancy of the cell, and hence it is scanner, an Advanced Robolics Lontrol and Lpera-

still UNKNOWN(Yamauchi, 1997). The distance be- tions (ARCOS) robot controller for low-level motion
tween the current robot pose and each frontier, is anal-coerI’ as well as an on-board computerfor algorithm

ysed, and the frontier closest to the robot is chosen asdgvelopment. The on-bogrd computer Is mt_erfaced
the next location to explore with the robot controller via Advanced Robotics In-

terface for Applications (ARIA), which is a library of

Ar?oihﬁr algorithm that is desigbf:ed tm(plore a5 functions that are capable of handling the lowest level
much of the environment as possible is Mext Best  yois of the client-server interactions, such as con-
View (NBV) approach proposed in (Gonzalez-Bafos trolling the speed of the robot

and Latombe, 2002). In this case, the evaluation cri- Robot Operating System (ROS) is a software

teria of the candidate destinations, attempt to strike @ framework that is ideal for the development of robotic
balance between the amount of annown area_that theapplications. It consists of a number of software pack-
robot can explore from that location, and the distance

; ages that are used to perform particular tasks, for ex-

that the robot must travel to arrive there. ample, SLAM. ROS facilitates modular implementa-

Unlike the Nearest Frontier and the NBV strate- tjon of different functions, in that processes that are
gies jUSt deSCfibEd, in (Makarenko et al., 2002) and Currenﬂy running on the system (Ca”enbde$, in-
(Stachniss et al., 2005), among others, the authorsteract between themselves through a message passing
propose techniques that do not only focus on explor- system, as shown in Figure 2. Each packet of data is
ing as much of the environment as possible, but in sent between nodes according to tbpic that it has
addition aim to improve the localization estimate of peen assigned. The topic defines the type of data mes-
the robot (Active SLAM). Particularly, in (Stachniss  sage that is sent. Furthermore, a node may either be
et al., 2005), the authors propose a technique thata publishing nodébroadcasting data) orsubscriber
makes use of the entropy of a Rao-Blackwellized Par- node(receiving data). Hence any node Subscribing
ticle Filter together with the distance from the current to the same topic shall receive the same data being
robot pose in order to evaluate candidate destinations.proadcast by the publisher. For instance, in Figure 2

To date, the robotics community is still in de- the publishing node “talker” is communicating with
bate on which of these exploration strategies is bestthe subscriber node “listener” by sending data mes-
to solve the problem of autonomous exploration and sages over the topic “chatter”. These interactions are
mapping. To this end, several works such as thosecontrolled by the master node called “roscore”.
presented in (Amigoni, 2008; Carlone et al., 2014), The modularity of ROS leads to a rather simple
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talker listener was set to be updated every three seconds.
Although there are some packages that implement
’ the Nearest Frontierexploration approach in ROS,
these presented certain limitations, such as not being
fully autonomous, and thus could not be used for the
intended purpose. Hence, tiNearest Frontierap-
proach proposed in (Yamauchi, 1997) and Mhext
Best Viewapproach proposed in (Gonzalez-Bafios and
Latombe, 2002) were both implemented from scratch
as ROS nodes in a new package called “exploration”.
To the best of the authors knowledge, this is the first
time that these two algorithms are being made avail-
fable in ROS.
For both exploration strategies, the potential can-
‘ didates for exploration emerge through the use of
SLAM |_Pose. Active Path Planner and frontier detection which was also proposed in (Ya-

7Map4> Exploration | —Goal— Motion Control

Strategy mauchi, 1997). Frontier detection is performed in two

‘ steps:
Sensory | Real World Execution of path 1. The search for frontier cells, and
Information | Environment to reach goal . . . . .
2. The grouping of said frontier cells into frontiers
Figure 3: ROS architecture of nodes and topics. comprising adjacent frontier cells only.

Figure 2: ROS architecture of nodes and topics.

design that emerges from the integration of the fun-
damental concepts and the system block diagram de-
picted in Figure 3. Going from the block diagram in
Figure 3 to a system designed in ROS requires the
identification of the specific package to be used in
place of each component in the block diagram. The
parameters of each package must then be tuned fo
the specific robot platform and application.

To perform SLAM, the gmapping package, which 1 "6 S8 of ronter clls. e aacrih taverses
implements the Rao-Blackwellized particle-filter- p da . ; '
These frontier cells are then grouped into frontiers ac-

based approach developed in (Grisetti et al., 2007), . L S
was chosen due to its ability to map an environment pordlngto their adjacency. Each frontier is then stored

. ] in a two-dimensional v r which i he ex-
in an accurate and efficient manner. In contrast to a fwo-dimensional vecta glipis Usegipihe e

potheses represented by the particle set in the parti_detecti%n al orit[r)1m can no longer detect frontiers that
cle filter. The node, called “slargmapping”, sub- 9 9

scribes to the raw odometry data and laser scan date'S atleast ten cells long. This applies to both explo-

over the “/RosAria/pose” and “/scan” topics, respec- ration approaches that were examined in this work.

: P " The difference among the two approaches lies
tively. The package “ROSARIA” acts as a wrapper . . o
for t%e ARIApIibrargas in ROS. It allows the transrﬂ?s- in how theygvaluate the candidate destinations and
sion of high level commands to the robot controller Qgose thegpcation t.hat the robot must explore next.
from ROS. In fact, the odometric pose estimate of the InSiigiiiediest Frontierapproach, a global path. IS
robot is published by the “RosAria” node. In turn, the planned fr_om the current robot poseto each candidate.
“slam_gmapping” node publishes the map data v(/hich The candidate that is closest to the robot (i.e. the one
is the_n used by the exploration algorithm to cc;mpute having the shortest path) is then chqsen. On the other
the next location that the robot needs to explore. hand,. theNext .Best Vievapproach wpplemepts the
The published map is a®ccupancy Grid Map following equation to rank the potential candidates,

vector. Moreover, some of the “slagmapping” pa-

rameters had to be tuned in order?:)neft?acgt tr?e best 9(g) = A(g)exp(—AL(g,ax)) 1)
performance in the given environment with the given whereg(q) represents the ranking functioA(q) is
robot. For example: two particular parameters were the total unknown area that is expected to be covered
used to enable the SLAM package to execute a scanby the laser scanner from a candidate location, and
every time the robot translates by 0.2 metres or rotatesL(q, gx) is the length of the path planned from the cur-
by 0.1 radians. The settings were chosen in an attemptrent robot pose to each candidate location, using the
to obtain the best map with the available computa- global occupancy grid map published by the SLAM
tional power, as more frequent scans naturally require algorithm.

more computational power. Furthermore, the laser  The path lengthl.(q,qx) is computed in the same
range was also tuned in accordance with the speci-manner as it is computed in tiNearest Frontierap-
fications of the laser scanner, namely the maximum proach. This means that the same global path planner
range setting was set to five metres. Finally, the map used to plan accessible paths for navigation is used to
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plan a path for the robot in an incomplete occupancy grid map that is being built by SLAM. Moreover, hav-
grid map. The length of this path is then computed. ing just a global path planned does not enable the
The unknown area that the robot can potentially “see” robot to avoid dynamic obstacles such as people walk-
from a candidate locatio®\(q), is calculated by aray  ing around it. To mitigate this problem, the package
casting technique, which is also used in (Gonzalez- makes use of a local path planner, which plans inter-
Bafios and Latombe, 2002). Ray casting attempts to mediate paths using a local map. This local map is
simulate the data obtained through a single scan ofanother costmap which is constructed using the laser
the laser scanner. Given a scan resolution, the max-scan data directly. Therefore, if a dynamic obstacle
imum laser range and the scanning angle of the realappears in the local path planned of the robot, this
laser scanner, a number of rays are projected from awould be detected by the laser scanner and the local
candidate location. If the ray encounters a known cell path planner changes course accordingly. However,
(OPEN or OCCUPIED), then the length of the ray the local path planner always seeks to guide the robot
from that point to the maximum ray length is cropped as close to the global path as possible. For this effect,
out. Consequently, the endpoint of the ray is the point the global and local costmap parameters were tuned to
at which the ray hits a known cell, and therefore, the the dimensions of the robot. Furthermore, the global
length of that ray is the Euclidean distance between path planner adopted in this case is the Dijkstra’s Al-
the candidate location coordinates and the coordinateggorithm (Dijkstra, 1959), while the local path plan-
of the ray endpoint. Thus, the unknown area that ner adopted is the Dynamic Window Approach (Fox
may be visible from a candidate point is the summa- et al., 1997). The implementation of these path plan-
tion of the lengths of the rays projected outwards over ners were both available in ROS.

the unknown cells only, as seen in (2), whéxe yc)

are the map coordinates of the candidate location and

(Xend; Yend) are the coordinates of the ray endpoint. 4 RESULTS

5 5 One of the aims of this study was to compare the
A(g) = Z \/ (Xend—Xc)* + (Yend—Yc)*  (2)  mapping accuracy of twexplorationstrategies which

70 QTS were implemented as part of a complete autonomous
exploration and mapping system in ROS. The first
in the selection of the next best view since it allows Z?f; of resultslpres_ented n S.ecno?] 4.1 SI’(]jQ]:IfVS how the
the robot to either prefer shorter routes over a larger Merent explaglionstialegles cOposE, qUiSIant ex-
area of visibility, or vice-versa. If the value of ploratory Iog:atlons from a set of candidates. Furth_er-
is small, the algorithm prefers the candidates from MOre, Section 4.2 presents a set of results obtained
which a larger unknown area may be explored and through a_numbero_f real life autonomous _explo_ratlon
hence gives them a higher rankAlfs large, the algo- and mapping experiments. The map obtained in eaph
rithm gives a higher rank to those candidates that arelexperlmde_ntl\:/yas campﬁ_reﬁ toa gljrognddt[)uth map,nll—
closer to the robot. Eventually the candidate that has ustrgte 'r? |ggre_ V; Ich was o talneH ymz;ga y
the largest ranking valugy(q), is chosen as the next Ste€ring the robotin the environment. Hence,

location that the robot must navigate to and explore. ceptance Indgmetrig could be qalculate_d. This com-
As soon as the next destination is chosen, the robotp"’m”mve metric was introduced in (Carpin, 2008). The

must navigate to that location. To do so, path plan- gcfggﬁgﬁfb'ggfgg’n'fhgali%lg\?vtﬁgeﬁé ?feara:fuﬁ;tgith
ning and motion control algorithms are required to 9 9

allow the robot to navigate effectively in an environ- map,M1, and a_resultmg mapd2, to the t_otal sum
ment cluttered with both static and dynamic obstacles. of agn_aed and disagreed cells, as shown in (3). When
For this purpose, the package “mabase” was used. w= 0 it means that the two maps are completely dis-
This package requires the pose of the robot within the tinct and wherm = 1it means that the two maps are
map to be able to plan a global path from the current completely identical.

robot pose to the goal destination. In order to take the

dimensions of the robot into consideration, the path w(M1,M2) = ag(Ml,MZ)

is planned in a global costmap that inflates the cost ’ agM1,M2) +dis(M1,M2)
around eactOCCUPIEDcell. If the robot traverses

the inflated circle around such a cell, it may be either 4.1 Case Study

close to colliding with an obstacle or in fact, it may be

in collision, depending on the cost of each cell. This In this case study, an incomplete map of the Univer-
global costmap is constructed on the static occupancysity of Malta Faculty of Engineering ground floor was

Furthermore, the parameteiplays an important role

®)
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Figure 4: Ground truth map obtained by manually steering
the robot in the laboratory environment.

location since it offered the smallest path length. The
algorithm of interest is NBV. When the valuedfvas
small (i.e.{0.02,0.15,0.5}), Candidate 3 was always
preferred since it offered the largest area of visibil-
ity even though it was not the closest location to the
robot. WhenA was equal to 1.0, the algorithm pre-
ferred Candidate 1 since itis the location closest to the
robot. Hence, one can conclude that as the value of
increases, the NBV approach starts preferring candi-
dates that are closer to the currentrobot pose and thus,
this approach becomes similar to the Nearest Frontier

used, where three candidate locations were detectecapproach.

by the frontier detection technique as shown in Figure
5. Candidate 3 shows a frontier that is made up of a
collection of connected smaller frontiers. This is due

to the diffused laser rays in that area which resulted in
several gaps of unknown cells between the free cells.

For this scenario, the ranking values of each approach

are tabulated in Table 1. In order to show how the
NBYV approach can be used to rank candidates differ-
ently, the parametex was set to four different values
from the set{0.02,0.15,0.5,1.0}.

Candidate 1

Area =26.11m?

Path Length = 4.84m
Candidate 2 :
Area = 82.76m?
Path Length = 35.65m Y

.

u
Candidate 3
Area — 165.88m”
Path Length = 7.04m

Figure 5: Incomplete map of the University of Malta Fac-
ulty of Engineering ground floor showing three exploratory
candidates, together with the respective path length (in me
tres) from the current robot pose and the expected unknown
area (in metres squared) that is visible from each candidate

Table 1: Case Study results showing the value of the rank-
ing function for each candidat¢l, 2,3}, where the ranking
function of the Nearest Frontier is the path length, which
must beminimized and that of the NBV ig(q) as shown in

(1), which must benaximized Note that the ranking value

of the chosen candidate for each approach is italicized.

Approach 1 2 3
Nearest Frontier | 4.84 35.65 7.04
NBV A =0.02 23.70 40.55 144.1
NBV A =0.15 12.64 0.39 57.74
NBV A =05 2.33 | 1.49%x10°% | 4.92
NBV A =10 0.21 | 2.67x10° 1% | 0.15

As can be seen in Table 1, the Nearest Frontier

4.2 Completely Autonomous
Exploration and M apping Results

In order to validate and compare the algorithms,
the whole system was used in a set of four ex-
periments where for each experiment, seven trials
were recorded. In each experiment, the robot au-
tonomously explored, navigated and mapped a con-
trolled environment (a laboratory) consisting of sev-
eral static obstacles such as desks and chairs.
the first experiment thé\earest Frontierapproach
was used while in the other three experiments, the
NBV approach was used with different values of

A = {0.15,0.5,1.0}. These values ok were cho-

sen heuristically depending on the visual inspection
of the robot behaviour. Figure 6 illustrates a typical
map resulting from one trial for each of the adopted
approaches while Table 2 presents the average (across
the seven trials in each experiment) acceptance index,
distance travelled and total exploration time for each
approach.

In

(¢) NBVA=05 (d) NBVA=10

Figure 6: Sample map results for each approach showing
the robot trajectory. ‘A’ and ‘B’ indicate the initial and fih
robot poses respectively.

approach chose Candidate 1 as the next exploratory
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Table 2: Autonomous exploration and mapping results

showing the average acceptance index, average distance

travelled (metres) and the average exploration time fon eac
approach (seconds).

Acceptance| Distance | Exploration
Index Travelled Time

Nearest | g5 25.41 132.48
Frontier

NBV

\—0.15 0.86 30.95 156.28
NBV

=05 0.84 40.44 140.90
NBV

A—10 0.83 35.15 160.56

Visual inspection of the resulting maps, compared
to the ground truth map in Figure 4, and trajectories,

reveals that the Nearest Frontier approach keeps the

robot from visiting certain locations that are quite far
from its current pose. This then leads to unclear fea-

tures and regions in the map, as shown in Figure 6a.

On the other hand, in general, with the NBV approach
the robot seems to cover a larger portion of the envi-

ronment, hence leading to more accurate maps. It is
important to note that the two approaches are subject

to the same termination condition, specified in Sec-
tion 3, to end exploration. Furthermore, in this study,

although the focus is placed on the map accuracy, the

distance travelled by the robot and the total time of ex-
ploration were also recorded to analyse the efficiency
of the algorithms.

5 DISCUSSION

A question arises, of whether it is better to use a sim-
ple and fast exploratory algorithm like the Nearest
Frontier (NF) approach, or the more complex and less
time-efficient Next Best View (NBV) approach. To

0.86} =
P _
T 084 T
st
5082 T i
2 .
(=]
L] L
g os
078l |
NF NBV NBV NBV
A=015  A=05 A=10

Figure 7: Boxplot of the acceptance index distributions.

Table 3: ANOVA statistical test: The Hypotheses.

Ho | The NF approach and the NBV approagh
with A = {0.15,0.5, 1.0} all perform equally
well.
Some of the approaches have better per
mance than the others in terms of map ac
racy.

Hy

dex performance of the four experiments under test.
Hence, this means thely was rejected. However, this
test does not revealherethe significant difference
occurs, and hence the Tukey H$IDst-hoctest was
performed. The outcome of this test shows that while
there is a significant difference between the NF algo-
rithm and the NBV algorithm witth = 0.15, there

is no significant difference among the other groups.
Since the mean of NBV with = 0.15 is larger than
that of NF, then the NBV approach with = 0.15

is significantlybetterthan NF. Furthermore, the lack
of significant difference between NF and NBV with
A = 0.5, and NF and NBV withA = 1.0 indicates that
for higher value ofA the NBV algorithm converges
to the NF algorithm. One may argue that this is in
line with the theoretical expectations sinceXam-
creases, the NBV approach prefers the closer candi-

evaluate the map accuracy objectively, the differencesdates (i.e. shorter path lengths) over candidates that
between the acceptance indices of the seven trials foroffer a higher area of visibility. Furthermore, one
each approach were statistically tested. The boxplot must note that the paramefers application-specific.

in Figure 7 illustrates the distribution of these indices
for each of the four adopted approaches. Intuitively,

Thus, the threshold value at which the NBV algorithm
is not statistically different from the NF approach may

Figure 7 indicates that the best accuracy was obtainedbe different for different environments.

by the NBV approach since this exhibited the high-

From the means tabulated in Table 2, one can im-

est mean and the smallest variance. However, as themediately identify a difference between the distance

value ofA is increased, the NBV approach starts con-
verging towards the NF approach. This intuition was
verified statistically by using the One-Way ANOVA
hypothesis test, where the null{) and alternative
(H1) hypotheses were formed as shown in Table 3.
The main result of ANOVA reported that there
exists asignificantdifference in the acceptance in-
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travelled by the NF approach and the NBV approach.
This difference is also apparent in the time taken to
finish the exploration and mapping process. Although
such metrics have been used to compare different ex-
ploratory algorithms, it is important to note that in this
case, the distance travelled and the time taken do not
depend on just the adopted strategy. The actual dis-
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tance travelled by the robot does not only depend on cle filters using Kullback-Leibler Divergencdournal

the destination, but it also depends on the local tra- of Intelligent and Robotic System#5(2):291-311.
jectories planned by the local path planner, which ac- Carpin, S. (2008). Fast and accurate map merging for multi-
counts for the robot kinematic constraints. Hence, the robot systemsAutonomous R0b0t§5(3)23_05—316- _
length of the travelled path is typically longer than Dechter, Rh- atndt Pearl, J-d (&1985)-{ Gﬁtner?“;gd beslt-flrst
that which is considered as the global patfg, gx) in search stralegies and the optimaiity or AJourna
both algorithms. Furthermore, the time taken to finish Diik tOf thEe '3\??15‘]52?“/232(3)‘505_536' b .

the whole process does not only depend on the algo-""<sta E. WW. - A NOte on two problems in connex-
rithm or the distance travelled. It also depends on the g]l‘_’v'th graphs. Numerische mathemalii(1):269
speed of the roboj[ Wh.”e itis _naVIgatlng. This speed Dissanayake, G., Huang, S., Wang, Z., and Ranasinghe, R.
may be reduced S|_gn|f_|cantly if the_ robot passes close (2011). A review of recent developments in Simul-
to an obstacle, which is a precaution taken by the lo- taneous Localization and Mapping. @th Interna-

cal path planner in order to avoid collision with obsta- tional Conference on Industrial and Information Sys-
cles. For these reasons, this study mainly focused on ~ tems pages 477-482.

the accuracy of the map obtained by the two different Fox, D., Burgard, W., Thrun, S., et al. (1997). The

algorithms which were implemented from scratch as Dynamic Window Approach to collision avoidance.
ROS packages for the first time. IEEE Robotics & Automation Magaziné(1):23-33.

Gonzalez-Bafios, H. H. and Latombe, J.-C. (2002). Naviga-
tion strategies for exploring indoor environmentée
International Journal of Robotics Reseaych1(10-
6 CONCLUSIONS 11):829-848.
Grisetti, G., Stachniss, C., and W.Burgard (2007). Impdove
In this paper, a modular design concept was used  techniques for grid mapping with Rao-Blackwellized
in order to implement a robotic system that can au- gg{tlug_lgﬂggrs. IEEE Transactions on Robotics
tonc_)mously e?(plore, navigate and map an unknown Makarenko, A. A., Williams, S. B., Bourgault, F., and
environment in ROS. Furthermore, this work con-

. . . Durrant-Whyte, H. F. (2002). An experiment in inte-
tributes a new package to the ROS community. This grated exploration. IRroc. of the IEEE/RSJ Int. Conf.

package consists of the implementation of two explo- on Intelligent Robots and Systems, (IRQBpes 534—
ration algorithms which can be used independently 5309.

of the navigation and the SLAM components. More- Stachniss, C., Grisetti, G., and Burgard, W. (2005).
over, the experimental evaluation of tNearest Fron- Information gain-based exploration using rao-
tier (NF) and the\ext Best \/iev(,NBV) approach re- blackwellized particle filters. IrRobotics: Science

vealed that in general, the NBV approach produces  2nd Systemsolume 2, pages 65-72. _
more accurate maps than the NF approach. Further-Stentz, A. (1994). Optimal and efficient path planning for
more, from this study one can also conclude that as partiallygfown environments. IRroc. of IEEE In-

) e ternational Conference on Robotics and Automation,
the parametex in the NBV approach is increased, the 1994, pages 3310-3317.

NBV algorithm converges to the NF approach. More- Thrun, S., Burgard, W., and Fox, D. (2003probabilistic
over, the results clearly confirm that the best choice robotics chapter 10, pages 309 — 330. MIT press.

of an exploration strategy, is highly dependent on the Tryyn, ., Montemerlo, M., Koller, D., Wegbreit, B., Ni-
problem at hand and the environment in question. eto, J., and Nebot, E. (2004). FastSLAM: An efficient
solution to the simultaneous localization and mapping
problem with unknown data associatiodournal of
Machine Learning Research(3):380—407.

REFERENCES Yamauchi, B. (1997). A frontier-based approach for au-
tonomous exploration. ItEEE International Sympo-
Amigoni, F. (2008). Experimental evaluation of some ex- sium on Computational Intelligence in Robotics and
ploration strategies for mobile robots. IREE In- Automation, 1997 pages 146-151.

ternational Conference on Robotics and Automation
(ICRA), 2008 pages 2818-2823.

Burgard, W., Stachniss, C., Grisetti, G., Steder, B., Kum-
merle, R., Dornhege, C., Ruhnke, M., Kleiner, A., and
Tardés, J. D. (2009). A comparison of SLAM algo-
rithms based on a graph of relations.|IFEE/RSJ In-
ternational Conference on Intelligent Robots and Sys-
tems, (IROS)pages 2089—-2095.

Carlone, L., Du, Jingjing, K., Ng, M., Bona, B., and Indri,
M. (2014). Active SLAM and exploration with parti-

215



