
Towards a Software Approach to Mitigate Correlation Power Analysis

Ibraheem Frieslaar1,2 and Barry Irwin2
1Modelling and Digital Science, Council for Scientific and Industrial Research, Pretoria, South Africa

2Department of Computer Science, Rhodes University, Grahamstown, South Africa

Keywords: Software Countermeasure, AES, CPA, Threads, Task Scheduler, Resistance.

Abstract: In this research we present a novel implementation for a software countermeasure to mitigate Correlation
Power Analysis (CPA). This countermeasure combines pseudo controlled-random dummy code and a task
scheduler using multi threads to form dynamic power traces which obscures the occurrence of critical opera-
tions of the AES-128 algorithm. This work investigates the use of a task scheduler to generate noise at specific
areas in the AES-128 algorithm to mitigate the CPA attack. The dynamic power traces have shown to be an
effective contermeasure, as it obscures the CPA into predicting the incorrect secret key. Furthermore, the coun-
termeasure is tested on an ATmega and an ATxmega microcontroller. The basic side channel analysis attack
resistance has been increased and in both scenarios the proposed countermeasure has reduced the correlation
accuracy and forced the CPA to predict the incorect key. The correlation accuracy decreased from 97.6% to
53.6% on the ATmega microntroller, and decreased from 82% to 51.4% on the ATxmega microcontroller.

1 INTRODUCTION

Since the introduction of side channel analysis (SCA)
(Kocher et al., 1999), SCA has grown to be a pow-
erful technique used to attack various embedded sys-
tems that employ cryptographic algorithms for secu-
rity such as the AES algorithm. These cryptographic
algorithms assist in protecting vital information of an
individual or a system. The AES algorithm has be-
come the main standard for encrypting data, therefore
the research community have focused much of their
attention on attacking the AES implementations on
embedded devices (Brier et al., 2004; Schramm et al.,
2004; Kocher et al., 2011; O’Flynn and Chen, 2015).

Kocheret al. have shown that there is a correla-
tion between the power usage of a cryptographic sys-
tem and its secret key-dependent intermediate vari-
ables. SCA uses this information to retrieve the se-
cret key that was used to encrypt the data. SCA con-
sists of three main types of attacks, simple power
analysis (SPA), differential power analysis (DPA),
and correlation power analysis (CPA). To mitigate
these SCA attacks, various software countermeasures
have been introduced such as boolean and arithmetic
masking (Blömer et al., 2004; Oswald and Schramm,
2005); hiding (Tillich et al., 2007); random precharg-
ing (Hoogvorst et al., 2011) and shuffling (Veyrat-
Charvillon et al., 2012).

This work aims to combine the knowledge of the

hiding technique within the time frequency domain
and combines it with mullti threads and a task sched-
uler to generate dynamic power traces on each exe-
cution of the AES-128 algorithm to create a software
solution for a hardware problem. The best possible lo-
cation to insert the pseudo controlled-random dummy
code into the algorithm and the amount of threads that
are required to be inserted to generate a noise pattern
that hides information and forms a mask for the power
traces are investigated.

1.1 Our Contribution

This research presents a novel implementation of a
software countermeasure to mitigate the CPA attack
on microcontrollers. The implementation consists of
combining pseudo controlled-random dummy code
that hides the occurrence of critical operations of the
algorithm. Additionally, time dilation is used in com-
bination with the task scheduler and multi threads to
generate dynamic power traces. To the best of our
knowledge we have not come across a software coun-
termeasure that makes use of a threaded approach.
The use of a task scheduler to generate noise at
specific areas in the AES-128 algorithm to mitigate
the CPA attack is investigated. The dynamic power
traces has shown to be an effective measure, as it ob-
scures the CPA into predicting the incorrect secret
key. The countermeasure is tested on an ATmega

Frieslaar, I. and Irwin, B.
Towards a Software Approach to Mitigate Correlation Power Analysis.
DOI: 10.5220/0005955604030410
In Proceedings of the 13th International Joint Conference on e-Business and Telecommunications (ICETE 2016) - Volume 4: SECRYPT, pages 403-410
ISBN: 978-989-758-196-0
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

403

and an ATxmega microcontroller, in both scenarios
the countermeasure has reduced the correlation accu-
racy significantly and has prevented the correct secret
key from being predicted on both microcontrollers.
Furthermore, the countermeasure have increased the
attack resistance fromp = 1

(T+1)·16 to p = 1
(T+1)N·17

with a minimal execution overhead.

1.2 Organization

The remainder of this paper is organized as follows:
Sections 2 discusses the research carried out in the
field of software countermeasures against SCA; Sec-
tion 3 elaborates on the equipment and techniques
used to capture and analyze the data; Section 4 details
the proposed countermeasure the system implements;
followed by Section 5 and Section 6 which presents
on the results and analysis of the results; and finally,
the paper is concluded in Section 7.

2 SOFTWARE
COUNTERMEASURES

This section discusses the most prominent exist-
ing techniques used as a software countermea-
sures against SCA. These techniques are random
precharging, masking, hiding and shuffling. Random
precharging in a software environment requires the
datapath to be filled with random operand instruc-
tions before and after an important value is executed
(Tillich and Großschädl, 2007).

The masking countermeasure generates a mask to
camouflage the intermediate values of the algorithm
with a random value not known to the attacker. There-
fore the intermediate values will become independent
from the power consumption of the device.

Hiding can possibly occur in two domains. These
are the amplitude and time domains. Hiding infor-
mation in the amplitude domain attempts to diminish
the power consumption of various executions of the
algorithm to reduce the overall power consumption
whereas, the time domain requires the use of random-
ization of a specific execution of the algorithm to oc-
cur at different positions in time for every execution
of the algorithm.

It is naturally easier to implement the hiding tech-
nique in the time domain as a software countermea-
sure. This type of hiding reduces the correlation be-
tween the power usage and its secret key-dependent
intermediate variables. To achieve the randomization
that leads to the specific execution of the algorithm
occurring at various time locations, two methods can

be used. These two methods are inserting dummy op-
erations and shuffling the operations of algorithm. It
is important that the dummy code not be recognized
from the normal code, as the attacker could ignore the
dummy code.

A good SCA resistance is achieved by using both
the shuffling and insertion of dummy operations in the
AES algorithm. (Tillich et al., 2007). The most effec-
tive location in the AES algorithm for this approach
is at the S-box round of encryption. The AES round
consists of 16 S-boxes (Daemen and Rijmen, 2002)
thus the probability to locate a specific value at a spe-
cific point in time isp= 1

16. Dummy operations(T)
can be inserted at the S-box round, this leads toT op-
erations added to 16 true states. On each execution of
the algorithm the randomizer would integrate the true
states with the dummy operations randomly. There-
fore, the probability for finding a specific value at a
specific point in time becomes.

p=
1

(T +1) ·16
(1)

The protection against SCA attacks is determined by
the value ofp. Therefore, the greater the probability
the more resistant the algorithm becomes against SCA
attacks (Tillich et al., 2007).

3 EXPERIMENT SETUP

This section is separated into three subsections. Sub-
section 3.1 will discuss the equipment that was used to
carry out a CPA attack, Subsection 3.2 will elaborate
on the CPA attack algorithm, followed by Subsection
3.3 which discusses the experiments that were carried
out.

3.1 Equipment

This subsection describes the equipment and settings
used to carry out a successful CPA attack on the mi-
crocontrollers. In order to capture the data, we make
use of a complete platform called the ChipWhisperer
kit (O’Flynn and Chen, 2014). This kit serves as a
platform for SCA attacks as it consists of the main
elements required for an attack: a target device, mea-
suring equipment, capturing software, and attack soft-
ware. The hardware consists of a field-programmable
gate array (FPGA). The ZTEX FPGA Module uses a
Spartan 6 LX25 FPGA (ZTEX, 2016).

The hardware allows the attacker to use syn-
chronous sampling. This grants the ability to syn-
chronize the sample clock with the device clock.

SECRYPT 2016 - International Conference on Security and Cryptography

404

It is demonstrated that sampling at 96 MS/s syn-
chronously achieves the same results as sampling at
2 GS/s asynchronously (O’Flynn and Chen, 2012).
Once the system clock and the device clock is syn-
chronized it is possible to multiple the digital signal.

The attack is carried out by using the provided
board known as the multi-target board. The multi-
target board is connected to the FPGA module. The
multi-target board consists of various areas that can
target different devices such as an AVR microproces-
sor or a smartcard. For this research the AVR section
of the multi-target board was used as the target area.

In this research the countermeasure has been
tested on two different types of microcontrollers
(MCU). The two MCUs that were used are the AT-
mega328p and the ATxmega128D4 MCUs. Addi-
tionally, two versions of the ChipWhisperer were
used as well. The ChipWhisperer Capture Rev2 was
used to capture data for the ATmega328p MCU and
the ChipWhisperer Lite was used to capture data for
ATxmega128D4 MCU. Both versions of the Chip-
Whisperer uses the same FPGA.

These MCUs are part of the 8-bit microproces-
sors from Atmel. They offers on-chip Flash, SRAM
and internal EEPROM memories. These types of
MCU have been used in various scientific research
and in industrial applications (Kunikowski et al.,
2015). Therefore, this research makes use of these
two MCUs.

Both ChipWhisperers were configured to use the
same variables when an attack was carried out. These
variables are as follows: the gain was set to a low
setting and the signal amplitude was increased by
34.5039 decibel (dB); the trigger was set to use the
rising edge, thus the power traces would be captured
at a rising edge logic level; and finally, the base clock
frequency of 7.375 MHz was multiplied by 4 to give
a frequency of 29.5 MHz. These set variables assisted
in increasing the power output and remained constant
for all experiments.

3.2 Attack Procedure

This subsection explains the type of SCA attack that
will be used in this research. In this research the CPA
attack would be used (Brier et al., 2004). It is known
that the CPA out performs the standard DPA attack.
The CPA is much faster in processing data since it
only requires a few power traces whereas the DPA is
slower and needs thousands of power traces. Further-
more, CPA is more accurate at predicting the correct
subkeys as it looks at the correlation between all the
key guesses (Brier et al., 2004).

Firstly, the mathematical approach of the CPA

would be explained followed by an implementation
of using it to retrieve the secret keys from the AES
algorithm.

It is assumed that the attacker has captured a
power tracetd, j with d = 1,2,3. . .D being the total
amount of traces, andt = 1,2,3. . .T is the time index
per power trace. Therefore, the attack system takesD
measurements with each measurement beingT points
long. If the attacker has the knowledge of the exact
point the encryption process occurs, then only a sin-
gle point would be measured such thatT = 1 for each
d trace. The plaintext that corresponds to the power
trace is also known by the attacker and is defined as
Pd.

It is assumed that the microcontroller’s power con-
sumption is dependent on the intermediate value’s
hamming weight.hd,i = l((Pd, i)) is defined, where
a given intermediate value’s leakage model isl(x),
and w(p, i) produces and intermediate value based
on the given input plaintext with a guess number
i = 1,2,3. . . I .

In terms of AES, the intermediate value would
be selected as follows: each byte of the plaintext
is XOR’d with each subkey byte of the secret key.
Therefore we have:

l(x) = HammingWeight(x)

w(p, i) = p⊕ i (2)

This implies that a single byte of the plaintextp
is being attacked at a time. Therefore the AES key is
being attacked a single byte at a time. It is known that
AES-128 algorithm consists of 16 subkeys (Daemen
and Rijmen, 2002) thus, there is only 16× 28 possi-
bilities, instead of 2128 possibilities.

The next procedure is to establish a linear rela-
tionship between the captured power tracestd, j and
the predicted power consumption modell(x) using
the correlation coefficient. The aim is to ensure that
there is a non-linear relationship betweenw(p, i) and
either p or i. For this case it is possible to attack the
the AES-128 algorithm at the point of the non-linear
substitution boxes (S-Boxes). The final step is to cal-
culate the correlation coefficient for each of the pos-
sible subkey valuesI over all tracesD for each points
of j, the equation is as follows:

r i, j =
∑D

d=1[(hd,i − h̄i)(td, j − t̄ j)]√
∑D

d=1(hd,i − h̄i)2 ∑D
d=1(td, j − t̄ j)2

(3)

Whereh is the hypothetical values produced by
the power consumption model.

Based on the mathematical explanation of the
CPA in order to obtain the secret key of the AES-
128 algorithm, four steps needs to be accomplished.
These four steps are as follows:

Towards a Software Approach to Mitigate Correlation Power Analysis

405

1. Capturing the power trace, along with the input
text when the encryption process is executed.

2. Implement a power leakage model, where the
known input text is used with a guess of the key
byte.

3. Implement the correlation equation that loops
through all the captured power traces.

4. Create a ranking procedure that determines the
most likely key based on the correlation equation.

Figure 1 illustrates a snippet of the AES algorithm at
the first round of the algorithm.

Figure 1: A snippet of the AES algorithm with an arrow
poitning at the point of attack.

It is depicted that each input byte of text is XOR’d
with the secret key which passes through an S-Box (a
lookup table). The output of the S-Box is the target
area where the attack will take place, this can be seen
by the red arrow in the figure.

After the data is acquired, the next step is to per-
form a guess and create a power leakage model. A
single subkey is attacked at a time, thus the attack sys-
tem loops through a single subkey and guesses every
possibility for that subkey. The guessed values range
from 0 – 255. Upon acquiring the guess, the inter-
mediate value corresponding to the guess needs to be
calculated. Therefore, a single byte of input and a
single byte of the guessed key, is used to return the
output of the S-Box. For each guess, the number is
converted to binary and the total number of 1’s of that
binary output is accumulated to determine theweight,
known as the hamming weight power model (Mestiri
et al., 2013).

The correlation is calculated by substituting all the
acquired data into Equation 3. It is possible to ob-
tain a negative correlation. However, only the value
is required, thus the absolute value of the correlation
is used. Furthermore, only the maximum correlation
across all points in the trace are stored. In order to
achieve a ranking system the maximum correlation is
used to find which hypothetical key caused that maxi-
mum correlation, this intern is the subkey of the secret
key.

3.3 Experiments

The experimental setup can be broken down into two
phases the capture data and analyze data phases as
seen in Figure 2.

Figure 2: The flow diagram of the experimental setup.

In order to capture the data, the Atmel AT-
mega328p and ATxmega128D4 MCUs was pro-
grammed to execute the AES-128 cryptographic al-
gorithm. The ATmega328p was placed into the multi-
target board, the target board was connected to the
FPGA which was connected to a computer. Python
is used to send commands from the computer to the
FPGA, issuing the commands to MCU to execute the
AES-128 algorithm. While the algorithm is being ex-
ecuted the power traces along with its correspond-
ing input text are captured. The ATxmega128D4 is
an embedded MCU and it is embedded onto a pcb,
known as the device under test as seen Figure 3. The
device under test is connected to the FPGA of the
ChipWhisperer Lite and the same procedure to cap-
ture data from the ATmega328p is used.

Figure 3: The device under test with the embedded MCU of
the Atmel ATxmega128D4.

Once the data has been acquired it is sent to a
Python program where it determines the secret key.
This program consists of the leakage model and CPA
attack discussed in the previous subsection to guess
the correct secret key.

The first experiment is to create a baseline for
future experiments. The baseline is determined by
implementing the AES-128 on both MCUs with no
countermeasures in place and using the CPA tech-
nique to retrieve the secret key. While the MCUs are
executing the AES-128 algorithm, the power traces
and its corresponding input text would be collected.
The data collection will be repeated 50 times, on each
occasion the same secret key and different random in-

SECRYPT 2016 - International Conference on Security and Cryptography

406

put text would be used. Therefore, each set would
consist of 50 power traces with the same secret key
and different input text. Upon acquiring the data,
the CPA attack would be performed on these power
traces.

In order to determine the best location to insert
the noise threads two pre-experiments were carried.
Experiment A inserted the noise threads at the odd
subkeys and Experiment B inserted the noise threads
at all the subkeys.

The second and third experiments would con-
sist of implementing the countermeasure on the AT-
mega328p and ATxmega128D4, respectively. The
same procedure would be used as discussed previ-
ously. Additionally, each experiment consists of an
additional 25 test cases. These 25 test cases used dif-
ferent secret keys. The secret keys were generated by
RANDOM.ORG which uses atmospheric noise as a
True Random Number Generator (TRNG) to gener-
ate their data (RANDOM.ORG, 2016).

The robustness and scalability of the countermea-
sure will be tested in experiment four and five, where
the number of trace would be increased from 50 to
200. On each increment of 50 power traces, the data
would be used as input for the attack procedure for
both MCUs. To test the added overhead introduced
by the countermeasure in experiment four and five,
the time it takes to execute one run of the algorithm
will be recorded for all test scenarios.

4 PROPOSED
COUNTERMEASURE

This section discusses the proposed countermeasure
that the system will implement. The countermeasure
aims to improve on the basic hiding and shuffling
techniques and introduces a new approach of using
a multi threads and a task scheduler.

The countermeasure makes use of the li-
brary implemented by Dean Ferreyra, known as
the AVR Threads Library.(Ferreyra, 2008) The
AVR Threads Library provides basic preemptive
multitasking/multi-threading to the Atmel AVR fam-
ily of microcontrollers. The library was implemented
in assembly and in C language. A simple round-
robin style task switcher is implemented. Origi-
nally, the library was designed for the ATmega128
and AT90S8515 MCUs, the library has been modi-
fied and recompiled to work with ATmega328p and
ATxmega128D4 MCUs.

The basic idea is to have the AES-128 algorithm
executing on one thread, while multiple other threads
would be executing at the same time. These multi-

ple threads would consist of dummy code, and will be
known as noise threads. These noise threads would
be executed at the S-boxes. Furthermore, on each ex-
ecution of the code, the noise threads would vary.

A random number(x) would be generated be-
tween 0 – 15 this would server as the amount of
threads to use. The next step in the procedure is to
use that number and generate noise threads at ran-
dom subkeysy[x]. To calculate at which location of
the subkey the noise would appear eachy[] value was
randomized between 0 – 15, a check is performed to
make sure that none of they[] values are the same.
Thus, the noise would be placed at different locations
of the subkeys and generate dynamic power traces.
Therefore, on each execution of the algorithm the
power traces would differ. This approach gives us a
resistance of:

p=
1

(T +1) ·16
(4)

Where T is the number of threads. The resis-
tance to SCA attacks is the same to that of Equation 1.
The resistance is further increased by having different
types of noise threads. Each noise thread can execute
a different set of dummy code. These dummy sets of
code are various mathematical instructions. These in-
structions were placed inside theprintf method. This
generates a more robust power signal.

Below is a code snippet that illustrates at line 7 –
9, theNoisemethod making a call to the arithmetic
method which is located at line 1 – 5. In order to en-
capsulate theNoisemethod into the thread framework
it is called at line 9.

Begin
1 int ArthmPlus(int A, int B){
2 int x;
3 x = A+B;
4 return x;
5 }
6 void Noise(void){
7 printf("%d\n",ArthmPlus(10,20));
8 }
9 avr_thread_start(&fn_context,Noise,
fn_stack, sizeof(fn_stack));
End.

The resistance is increased by having each noise
thread perform a different instruction. The type of
noise generated by the noise thread is randomly se-
lected. Therefore the new resistance becomes:

p=
1

(T +1)N ·16
(5)

WhereN is the number of different types of noise
that are produced. It is noted that at the execution
location of a subkey, there can be more than one noise
thread. In this research only one noise thread would
be generated at a subkey, since the ChipWhisperer has

Towards a Software Approach to Mitigate Correlation Power Analysis

407

a hardware limitation of only be able to capture 24000
points. Therefore, this technique already shows it has
the capabilities of deterring attackers that use low cost
equipment to attack microcontrollers.

On the initial startup a value was stored into the
EEPROM of the MCUs. This value is used to ensure
that the algorithm is generating a different sequence
of random values on each execution. Before the S-
box procedure is called, the value is pulled from the
EEPROM and used by thesrand()method to change
the random sequence. After the S-box procedure has
been completed this value is incremented and stored
back into the EEPROM to be used for the next pro-
gram execution. Furthermore, to create more confu-
sion and increase the resistance, this value is XOR’D
and gets passed through the same S-box the AES al-
gorithm uses. By inserting an additional XOR into
the algorithm, locating a specific value at a specific
point in time is no longer116 but now 1

17. Therefore,
the resistance becomes:

p=
1

(T +1)N ·17
(6)

5 RESULTS

This section examines the results of the experiments
explained in Subsection 3.3. The first step is to ana-
lyze the findings from experiment one. Table 1 shows
the results for the CPA attack against both microcon-
trollers, while no countermeasures are in place. Fur-
thermore, the table indicates the results for experi-
ments A and B. These results will serve as the base-
line that the other experiments are compared to. The
table illustrates the correlation accuracy that the at-
tack predicts for each subkey of the AES-128 algo-
rithm, followed by a total average accuracy for all the
subkeys.

Referring to Table 1, it is indicated that using
50 traces as input, CPA achieves an average ac-
curacy of 97.66% while the ATmega328p MCU is
under test and an average accuracy of 82% as the
ATxmega128D4 is under test. In both experiments,
the secret key is successfully retrieved. Furthermore,
the table illustrates the results of experiments A and
B. A slight reduction in accuracy is observed in com-
parison to the base results. However, the CPA attack
still predicts the correct secret key. This is due to the
fact that the CPA can handle power traces with the
same type of noise even at different locations.

Tables 2 consists of five columns, with the first
column referring to the microcontroller under test.
The second column denotes whether the secret is re-
coverable. The third column indicates the number of

recoverable subkeys over all cases, followed by its
predication rate for recovering a subkey, in column
four. In order to calculate the correct subkey predic-
tion rate, the number of correct subkeys is divided by
the total number of subkeys and multiplied by 100.
Finally, column five indicates the average correlation
accuracy. As explained in Subsection 3.2, the corre-
lation accuracy is determined by the ranking system.
The ranking system list all possible subkeys with their
corresponding correlation values. The correlation val-
ues of the real subkeys are summed up and averaged,
to give the average correlation accuracy. Furthermore,
Table 3, second column depicts the number of traces
used as input, followed by, if the secret key is recov-
erable, number of subkeys recoverable, and the corre-
lation accuracy columns.

The next discussion will elaborate on the findings
of experiment two and three, as the software counter-
measure is on both microcontrollers. It is observed
in Table 2, the CPA predicts the secret keys incor-
rectly and thus the countermeasure is working. It has
only predicted two subkeys out of 400 subkeys cor-
rectly. The correct subkey prediction rate on the AT-
mega328p MCU is 0.5%. Therefore, 0.5% of the time
CPA predicts a correct subkey. Furthermore, the av-
erage correlation accuracy is only 53.6%. Therefore
the base correlation accuracy of 97.66% using the AT-
mega328 MCU has seen a reduction of 43.96% in cor-
relation accuracy. The results further indicate that the
countermeasure prevents the secret keys from being
correctly predicted on the ATxmega128D4. The CPA
attack correlation drops from 82% to an average of
51.4% in correlation accuracy. Furthermore, only 1
subkey out of 400 subkeys is predicted correctly. The
system has a correct subkey prediction rate of 0.25%
on the ATxmega128D4 MCU.

The next evaluation of the system is testing the
scalability of the countermeasure as explained earlier
in Subsection 3.3.

Table 3 illustrates the results for experiments four
and five. Observing the table, the first noticeable find-
ing is that the CPA attack predicts the incorrect secret
keys on all four occasions. As the number of sam-
ple traces increase the correlation accuracy decreases.
By adding an additional 150 traces, the correlation
accuracy decreases to 26.8% from 53.6% as the AT-
mega328p is in use. A similar result is obtained as the
ATxmega128D4 is in use. The correlation accuracy
decreases from 51.4% to 26.3%.

The final experiment is to determine, the extent of
extra overhead the countermeasure has on the algo-
rithm. Table 4, depicts the average time it took to ex-
ecute one instance of the AES-128 algorithm on the
ATmega328p and ATxmega128D4 MCUs with and

SECRYPT 2016 - International Conference on Security and Cryptography

408

Table 1: The results for the CPA attack against both microcontrollers, when no countermeasure is in place. All subkey values
are in percentage(%)

Subkey

MCU 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Total

ATmega328p 98,0 98,8 98,7 98,1 96,8 98,3 94,4 98,6 95,9 98,5 98,5 98,8 97,5 98,2 97,2 96,2 97,6

ATxmega128D4 71,7 86,4 88,7 85 84,7 84,8 75,8 91,0 82,7 71,3 80,2 85,3 75,4 79,4 81,8 87,1 82,0

Experiment A 91,5 88,4 95,2 90,2 93,0 88,0 91,7 82,0 92,7 74,4 91,4 95,7 95,2 89,0 93,8 90,2 90,1

Experiment B 90,4 98,6 97,5 92,9 91,4 98,4 93,3 97,8 91,5 97,7 89,9 81,4 92,6 98,0 91,0 92,0 93,4

Table 2: Result of the CPA attack using various trace sampleson the ATmega328p.
MCU Secret Key Predicted Num. of SubKeys Predicted SubKey Prediction Rate (%) Correlation Accuracy (%)

ATmega328p No 2 0.5 53.6
ATxmega128D4 No 1 0.25 51.4

Table 3: Result of the CPA attack using various trace sampleson the ATmega328p.

MCU Traces Secret Key Predicted Num. of SubKeys Predicted Correlation Accuracy(%)
ATmega328p 100 No 0 38.9
ATmega328p 200 No 0 27.7

ATxmega128D4 100 No 0 37.4
ATxmega128D4 200 No 0 26.3

Table 4: Time taken to execute the code with and without
the countermeasure

MCU Time (s)
ATmega328p 0.102
ATmega328p + Countermeasure 0.170
ATxmega128D4 0.115
ATxmega128D4 + Countermeasure 0.198

without the countermeasure.
It is observed that the difference in time on the

ATmega328p MCU with and without the countermea-
sure is only 0,068 milliseconds and the difference
on the ATxmega128D4 MCU is 0,084 milliseconds.
Thus, by adding the countermeasure code with the
existing AES-128 algorithm the execution time differ-
ence has a minimal increase on both the ATmega328p
and ATxmega128D4 MCUs.

6 ANALYSIS

As we know the CPA attack only require less than a
100 power traces to carry out a successful attack. This
is evident in experiment one and two where 50 power
traces were needed to predict the correct secret key
on two different microcontrollers. This is due to the
strength of the CPA attack. Before the proposed coun-
termeasure was implemented it was seen from the re-
sults in experiment A and B that inserting the same
type of noise at every subkey or at every odd subkey in
the substitution round, the CPA attack still predicted
the correct secret key. This is due to the fact that the
power traces had little change in each execution of the
algorithm and each subkey was attacked.

Once the proposed countermeasure was in place,

the CPA attack started loosing correlation accuracy
tremendously. The power leakage model of the CPA
relies on the power traces to have small changes when
each subkey is attacked and since the proposed coun-
termeasure produces dynamic power traces where the
power trace is different on each occasion, causing
confusion to the CPA attack model. Therefore, hav-
ing more permutations of the dynamic power trace
would lead to the CPA producing an even lower ac-
curacy. This is further evident by the fact that when
more power traces were added to the input, the corre-
lation accuracy decreased and the attack predicted the
incorrect secret keys.

These dynamic power traces are very effective
against attackers that make use of low cost equipment,
such as the ChipWhisperer, since it is possible to pro-
gram the algorithm to use more noise threads at each
subkey location. This will force the CHipWhisperer
to only capture half or less of the actual runtime of
the encryption process. This prevents the attackers
from gaining useful data to carry out an attack. Fur-
thermore, the proposed countermeasure has a mini-
mal execution overhead. This leads to a slowdown in
performance. However, the tradeoff is a more secured
implementation.

7 CONCLUSION

In this work we present a novel software countermea-
sure to mitigate CPA. The implementation consists of
combining pseudo controlled-random dummy code to
hide the occurrence of critical operations of the AES-
128 algorithm. Additionally, time dilation is used in

Towards a Software Approach to Mitigate Correlation Power Analysis

409

combination with multi threads and a task scheduler
to generate dynamic power traces. We have inves-
tigated the use of a task scheduler to generate noise
at specific areas in the AES-128 algorithm to miti-
gate the CPA attack. The dynamic power traces have
shown to be an effective countermeasure, as it ob-
scures the CPA into predicting the incorrect secret
key. Furthermore, the countermeasure was shown
to work on an ATmega and an ATxmega microcon-
troller.

In both scenarios the countermeasure reduced the
correlation accuracy significantly and prevented the
correct secret key from being predicted. The research
has also displayed that the extra overhead introduced
by the countermeasure is minimal in execution time
and that the basic SCA resistance has increased when
using this countermeasure. Therefore, this research
has introduced a novel low overheard software solu-
tion that uses multi threads and a task scheduler for a
hardware security problem.

8 FUTURE WORK

Although, the countermeasure has demonstrated that
it is able to mitigate the CPA attack, the issue of
performing instructions sequentially still remains on
these microcontrollers. It is intended to improve on
this work by implementing the countermeasure on an
embedded device that supports true multi threading
functionality where it would be able to execute the
noise and the AES threads in parallel. Additionally, it
is aimed to create a system where the algorithm learns
to manipulate the data such that it never produces the
same power trace twice.

ACKNOWLEDGEMENTS

The authors would like to thank the department of
Modelling and Digital Science at CSIR for providing
funding and support.

REFERENCES

Blömer, J., Guajardo, J., and Krummel, V. (2004). Provably
secure masking of AES. InSelected Areas in Cryp-
tography, pages 69–83. Springer.

Brier, E., Clavier, C., and Olivier, F. (2004). Correla-
tion power analysis with a leakage model. InCryp-
tographic Hardware and Embedded Systems-CHES
2004, pages 16–29. Springer.

Daemen, J. and Rijmen, V. (2002). The design of rijndael:
AES. The Advanced Encryption Standard.

Ferreyra, D. (2008). AVR development.
http://www.bourbonstreetsoftware.com/AVRDevelop
ment.html.

Hoogvorst, P., Duc, G., and Danger, J.-L. (2011). Software
implementation of dual-rail representation.COSADE,
February, pages 24–25.

Kocher, P., Jaffe, J., and Jun, B. (1999). Differential power
analysis. In Advances in CryptologyCRYPTO99,
pages 388–397. Springer.

Kocher, P., Jaffe, J., Jun, B., and Rohatgi, P. (2011). In-
troduction to differential power analysis.Journal of
Cryptographic Engineering, 1(1):5–27.

Kunikowski, W., Czerwiński, E., Olejnik, P., and Awre-
jcewicz, J. (2015). An overview of ATmega AVR mi-
crocontrollers used in scientific research and industrial
applications.Pomiary, Automatyka, Robotyka, 19.

Mestiri, H., Benhadjyoussef, N., Machhout, M., and Tourki,
R. (2013). A comparative study of power consump-
tion models for CPA attack.International Journal of
Computer Network and Information Security, 5(3):25.

O’Flynn, C. and Chen, Z. (2012). A case study of side-
channel analysis using decoupling capacitor power
measurement with the OpenADC. InFoundations and
Practice of Security, pages 341–356. Springer.

O’Flynn, C. and Chen, Z. D. (2014). Chipwhisperer: An
open-source platform for hardware embedded security
research. InConstructive Side-Channel Analysis and
Secure Design, pages 243–260. Springer.

O’Flynn, C. and Chen, Z. D. (2015). Side channel power
analysis of an AES-256 bootloader. InElectrical and
Computer Engineering (CCECE), 2015 IEEE 28th
Canadian Conference on, pages 750–755. IEEE.

Oswald, E. and Schramm, K. (2005). An efficient mask-
ing scheme for AES software implementations. In
Information Security Applications, pages 292–305.
Springer.

RANDOM.ORG (2016). Introduction to randomness and
random numbers. https://www.random.org/random
ness/.

Schramm, K., Leander, G., Felke, P., and Paar, C. (2004). A
collision-attack on AES. InCryptographic Hardware
and Embedded Systems-CHES 2004, pages 163–175.
Springer.

Tillich, S. and Großschädl, J. (2007).Power analysis re-
sistant AES implementation with instruction set exten-
sions. Springer.

Tillich, S., Herbst, C., and Mangard, S. (2007). Protecting
AES software implementations on 32-bit processors
against power analysis. InApplied Cryptography and
Network Security, pages 141–157. Springer.

Veyrat-Charvillon, N., Medwed, M., Kerckhof, S., and
Standaert, F.-X. (2012). Shuffling against side-
channel attacks: A comprehensive study with cau-
tionary note. InAdvances in Cryptology–ASIACRYPT
2012, pages 740–757. Springer.

ZTEX (2016). Spartan 6 LX9 to LX25 FPGA board.
http://www.ztex.de/usb-fpga-1/usb-fpga-1.11.e.html.

SECRYPT 2016 - International Conference on Security and Cryptography

410

