CoAP Option for Capability-Based Access Control for IoT-Applications

Keywords:

Abstract:

Borting Chen!?, Mesut Giines?> and Yu-Lun Huang'

Unstitute of Electrical and Control Engineering, National Chiao Tung University, Hsinchu City, Taiwan

2 Institute of Computer Science, University of Miinster, Miinster, Germany

Capability-Based Access Control, Internet of Things, Network Security.

Access control is critical for many applications of the Internet of Things (IoT) since the owner of an IoT device
(and application) may only permit one user to access a subset of the resources of the device. To provide access
control for an IoT network, recent work adopted the capability-based access control (CBAC) model, which
allows an IoT device to decide on the authorization by itself based on a capability token. However, the existing
approaches based on CBAC directly attach the capability token at the end of CoAP when sending a request
message. For the receiver, it is not easy to retrieve the capability token from the request message if the CoAP
payload is present, because CoAP does not have a length field to indicate the size of its payload. To counter
this problem, we propose a CoAP option, Cap-Token, to encapsulate a capability token when sending request
messages. Because a CoAP option is independent from other CoAP fields, a receiver can get the capability
token from the Cap-Token option of the request message without ambiguity. We also provide a compression
mechanism to reduce the size of the Cap-Token option. Our evaluation shows that the compression mechanism
can save the size of the option by 60%. Adding a compressed Cap-Token option to a request message increases
the IP datagram size by 45 bytes, which is only 41% of the increase when directly attaching the capability token

at the end of CoAP.

1 INTRODUCTION

The Internet of Things (IoT) is a promising archi-
tecture for the next generation Internet where ev-
ery device has the ability to communicate with each
other. Various communication protocols, such as
6LoWPAN (Montenegro et al., 2007) and RPL (Win-
ter et al., 2012) has been proposed to support realiz-
ing this concept in many fields, including home au-
tomation, smart building and industrial control (Seitz
and Gerdes, 2015). With the growing use of IoT
technologies, IoT security attracts more attention in
academia and industry. IoT security includes con-
fidentiality, integrity, authentication, data freshness,
and access control (Alghamdi et al., 2013) (Granjal
et al.,, 2015) (Nguyen et al., 2015) (Roman et al.,
2013). Among these security requirements, access
control is critical because an IoT device can provide
multiple resources, however the device owner may
only permit a user to access a subset of them. Hence,
some research has been conducted to present different
access control solutions for an IoT network.

Recent work adopted the capability-based access
control (CBAC) model (Gusmeroli et al., 2013) for
an IoT network. CBAC allows an IoT device to han-

266

Chen, B., Glnes, M. and Huang, Y-L.
CoAP Option for Capability-Based Access Control for loT-Applications.
DOI: 10.5220/0005950902660274

dle the authorization processes by itself based on a
capability token sent with the request message. A ca-
pability token contains access permissions granted to
a requester!. The requester sends a request message
with the capability token, and the receiver decides on
the authorization of the request based on the permis-
sions described in that capability token. Such a design
enables applying access control for an IoT network
where a centralized authorization server is hard to de-
ploy. It also helps to enforce the principle of least
privilege, because different requesters can be granted
with capability tokens containing different access per-
missions.

However, the existing approaches based on CBAC
still have some issues.

e When applying CBAC for an IoT network
which uses the Constrained Application Proto-
col (CoAP) (Shelby et al., 2014) as its commu-
nication protocol, every CoAP request message
should be sent with a capability token. This is be-
cause CoAP was designed according to the Rep-

'We use “requester” instead of “user” in this paper, be-
cause in an IoT network the source of a request message can
be a human or a network-connected device.

In Proceedings of the International Conference on Internet of Things and Big Data (loTBD 2016), pages 266-274

ISBN: 978-989-758-183-0

Copyright (© 2016 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

resentational State Transfer (REST) architecture,
which requires the interaction between a requester
and a receiver being stateless. Some CBAC ap-
proaches (Gusmeroli et al., 2013) (Hernindez-
Ramos et al., 2013) realized this requirement by
directly attaching the capability token at the end
of CoAP, i.e., behind the CoAP payload. How-
ever, CoAP does not have a length field to indi-
cate the size of its payload. If the CoAP payload
is present in a request message (e.g., “UPDTAE”
or “PUT” messages), the receiver has no means
to retrieve the capability token from the message,
because the capability token is mixed up with the
CoAP payload. We call this issue as the “payload
ambiguity problem.”

e A capability token contains not only access per-
missions but also data for identification, validity
verification, and integrity checking. This causes a
capability token is usually large in size. However,
in a 6 LoWPAN network, the maximum frame
size defined in IEEE 802.15.4 is much smaller
than the minimum MTU for IPv6 (127 bytes vs.
1280 bytes). If a large size capability token is sent
with the request message, the message might be
fragmented into several data link frames. Things
get worse when the 6 LOWPAN network uses RPL
as the routing protocol. Because RPL is a hop-by-
hop routing protocol, an intermediate router needs
to collect all data link frames of a request message
to determine the next forwarding target. Losing
any data link frame fails the reassembling of the
message, which means the entire message is lost.
This decreases the success rate of delivering re-
quest messages over a 6 LOWPAN network.

To address these issues, we design a CoAP option,
called Cap-Token, to encapsulate a capability token
when sending a request message. Because a CoAP
option is independent from other CoAP fields and the
option knows its size, the capability token would not
be mixed up with the contents of other CoAP fields.
The receiver can hence retrieve the capability token
from the Cap-Token option of a request message with-
out ambiguity. Besides, to reduce the increase in the
IP datagram size after adding the Cap-Token option to
the request message, we provide a compression mech-
anism for the Cap-Token option. Since the capabil-
ity token in the Cap-Token option may have dupli-
cate contents in other CoAP fields or in the lower-
layer protocols of a request message, the compres-
sion mechanism can elide those duplicates to mini-
mize the size of the Cap-Token option. This results in
smaller IP datagrams for request messages, reducing
the chance of the occurrence of link-layer fragmenta-
tion in a 6 LOWPAN network. The main contributions

CoAP Option for Capability-Based Access Control for IoT-Applications

of this paper are as follows.

e The Cap-Token option solves the “payload ambi-
guity problem” for a receiver when processing a
CoAP request message containing both a capabil-
ity token and a payload. The receiver can retrieve
the Cap-Token option from any type of CoAP re-
quest message and get the capability token from
the option.

e The compression mechanism saves 60% of the
original size of the Cap-Token option. Benefited
from the compression, we can reduce the increase
in the IP datagram size when applying CABC for
an IoT network. Our evaluation shows that adding
a compressed Cap-Token option only increases
the IP datagram size by 69%. In comparison to
directly attaching a capability token at the end of
CoAP, which increases the IP datagram size by
304%, our work significantly reduces the IP data-
gram size.

e The compression mechanism also helps reduce
the chance of the occurrence of the link-layer
fragmentation when transmitting CoAP request
messages over a 6LoWPAN network. Because
of the smaller IP datagram size, using a com-
pressed Cap-Token option allows a request mes-
sage to be transmitted in 1 packet. Comparatively,
directly attaching a capability token would cause
the IP datagram being fragmented into 3 data link
frames, which downgrades the success rate of de-
livering request messages.

The paper is organized as follows. We first brief the
design of our capability token in Section 2, and de-
scribe the design of the Cap-Token option and the
compression mechanism in Section 3. Section 4 eval-
uates the benefits of the compression mechanism and
Section 5 discusses how the compression mechanism
impacts the request message transmission in a 6LoW-
PAN network. We review the related work in Sec-
tion 6. Section 7 concludes the paper.

2 CAPABILITY TOKEN

A capability token contains access permissions
granted to a requester as well as the necessary infor-
mation to verify the ownership, integrity, and validity
of the capability token.

In our design, a capability token includes the fol-
lowing data.

o Issuer Identity (I1) is a 4-byte-long unsigned in-
teger, which indicates the identity of the server
that issues this capability token.

267

IoTBD 2016 - International Conference on Internet of Things and Big Data

e Subject Identity (SI) makes reference to the
owner of this capability token. SI is the IPv6 ad-
dress of the owner’s device.

e Object Identity (0I) makes reference to the tar-
get device which holds resources that the owner
of this capability token is able to access. OI is the
[Pv6 address of the target device.

e Issued Time (IT) indicates the time at which
the capability token was issued. IT is a 4-byte-
long integer, representing how many seconds are
elapsed since the Epoch time.

e Not Before (NB) indicates the time at which the
capability token becomes valid. NB is a 4-byte-
long integer, representing how many seconds are
elapsed since the Epoch time.

e Not After (NA) indicates the time at which the ca-
pability token becomes expired. NA is a 4-byte-
long integer, representing how many seconds are
elapsed since the Epoch time.

e Permission List (PL) stores a set of access per-
missions granted to the owner of this capability to-
ken. Each access permission is composed of three
elements, resource path, request methods, and ad-
ditional conditions:

— Resource Path (RP) is the path to a resource.

— Request Methods (RVM) indicates the types of
request methods granted to the owner for ac-
cessing RP. The definition of request meth-
ods is aligned with the definition in RFC
7252 (Shelby et al., 2014).

— Additional Conditions (AC) describes a set of
conditions which should be fulfilled when the
receiver decides on the authorization of an ac-
cess request to RP. The contents of additional
conditions could be related to requester’s lo-
cation information or receiver’s battery sta-
tus (Seitz et al., 2013) (Hernandez et al., 2014).

o Issuer Signature (IS) stores the digital signature
signed by the issuer to provide authenticity and
integrity protection for the capability token.

e Token Sub-Identity (TI) is a 1-byte-long un-
signed integer, which stores the data to support the
issuer server in identifying this capability token.

In order to manage the issued capability tokens, an
issuer server also assigns each capability token with
an identity (ID). ID is a combination of the sub-
set of the contents of a capability token, which is
SI||OI||IT||NB||NA||TI. TI is usually assigned with 0.
Only when there exists two capability tokens having
the same SI, OI, IT, NB, and N2, one of the capability
tokens would be assigned with different value in TI

268

"capability_token": {
"11": 46804706,
"SIz ""2002::8c71:65",
"Ol'"™: "2002::8c71:66",
"1T": 1447066800000,
"NB*: 1447066800000,
"NA": 1447066800000,
"PL": [{"RP": "temperature",
“RM™: ["001']1}1.,
"1S": "jBghEa2a08v;urVlbafsQad_difn",
“T1": 0

Figure 1: Example of a capability token.

to distinguish their identities. Besides, since ID de-
pends on other contents of the capability token, when
an issuer server generates a digital signature for the
capability token, ID would not be included in the cal-
culation. ID is also excluded when storing a capability
token on the requester’s device or sending a capabil-
ity token with a request message in order to save the
storage space and bandwidth.

Figure 1 shows an example of a capability to-
ken, which stores its contents in JSON format. The
capability token is used to obtain temperature data
from a sensor in a smart home environment. The
owner’s IPv6 address is “2002::8¢71:65” and the sen-
sor’s IPv6 address is “2002::8¢71:66”. “001” in RM
indicates the “GET” request method is granted to the
owner of this capability token for accessing the “tem-
perature” resource. NB equals to IT means this capa-
bility token is valid immediately after the capability
token was issued, and NA equals to NB means the va-
lidity time of this capability token is permanent. The
issuer server uses the Elliptic Curve Digital Signa-
ture Algorithm (ECDSA) with the secpl12rl curve
to generate SI, which is 28 bytes in length.

When the receiver obtains a capability token from
the request message, it first examines NB and NA to
check whether the capability token is still valid. Then,
SI and OI are checked to insure the requester is the
owner of the capability token and the receiver is the
target device. Next, the receiver checks whether the
requested resource and request method have a match
in PL. If the matched access permission has additional
conditions, the receiver also needs to insure these con-
ditions are fulfilled. IS is verified at the last step,
because it costs more computational power than the
previous steps. If a request is rejected at the previous
steps, the high-cost digital signature calculation can
be avoided. Finally, if the digital signature is valid,
the receiver authorizes the request and processes the
request message.

0 1 2 3
bit01234567890123456789012345678901

Opt. Delta & Len. | Opt. Len. (Ext.) Dashboard Token Sub-Identity

Issuer Identity

Subject Identity

Object Identity

Issued Time

Activation Time

Validity Time

Issuer Signature

Permission List

Figure 2: The option fields of the Cap-Token option.

3 CAP-TOKEN OPTION

The Cap-Token option is designed for solving the
“payload ambiguity problem.” When sending a re-
quest message, the requester encapsulates a capability
token into the Cap-Token option and embeds the op-
tion into the message to be sent. The receiver extracts
the Cap-Token option from the request message and
obtains the capability token from the option.

Meanwhile, as a capability token is usually large
in size, the Cap-Token Option is proposed with a com-
pression mechanism to minimize the size of the op-
tion. The compression mechanism elides the option
fields of which the contents have a duplicate in other
CoAP fields or in the lower-layer protocols of the re-
quest message. The receiver relies on the duplicates
in the request message to restore those elided option
fields and “decompress” the Cap-Token option.

3.1 Option Fields

The Cap-Token option is composed of several option
fields which store the contents of a capability token.
It also has a length option field to indicate the size of
the option.

Figure 2 shows the option fields of the Cap-Token
option. The first byte indicates the difference between
the option number of the Cap-Token option and that
of the previous option. We define the option num-
ber of the Cap-Token option as 9, which implies this
option is a critical option and is safe-to-forward for
a proxy (Shelby et al., 2014). The second byte is
an extension field indicating the size of the option.
The third byte is the “Dashboard” option field, which
encodes the format of the option fields in the Cap-
Token option. The fourth byte stores the value of TI.
The next four fields seriatim store the value of II (4

CoAP Option for Capability-Based Access Control for IoT-Applications

bt 0 1 2 3 4 5 6 7
T|S|O| AT vT | P

Figure 3: The bit layout of the Dashboard field.

bytes), SI (16 bytes), 0I (16 bytes), and IT (8 bytes)
of the capability token. IP addresses are converted
to the network order before being stored. After these
four fields, the Activation Time field stores the time
difference between IT and NB of the capability token.
The Validity Time field indicates how long the capa-
bility token is valid, i.e., the time difference between
NA and NB. Both fields are unsigned integers and max-
imum 4 bytes in length. After the Validity Time field,
the issuer signature is stored. The Permission List
field is placed at the end of the Cap-Token option, be-
cause the length of the permission list varies by its
content.

3.2 Compression Mechanism

In the Cap-Token option, the compression mechanism
elides the option fields of which the contents have a
duplicate in other part of the request message. It lever-
ages the Dashboard field to indicate whether an option
field is compressed in the Cap-Token option. Figure 3
shows the bit layout of the Dashboard field.

e Token Sub-Identity (7) (1 bit) indicates whether
the compression elides the Token Sub-Identity
field in the Cap-Token option. The Token Sub-
Identity field can be elided only when its value
equals to 0. If T = 1, the Token Sub-Identity
field is carried in-line. Otherwise, the Token Sub-
Identity field is elided and the receiver restores
this field by assigning its value to O.

e Subject Identity (S) (1 bit) indicates whether the
compression elides the Subject Identity field in the
Cap-Token option. If § = 1, the Subject Iden-
tity field is carried in-line. Otherwise, the Sub-
ject Identity field is elided and the receiver uses
the source IP address of the request message to
restore this field.

e Object Identity (O) (1 bit) indicates whether the
compression elides the Object Identity field in the
Cap-Token option. If O = 1, the Object Iden-
tity field is carried in-line. Otherwise, the Object
Identity field is elided and the receiver uses the
destination IP address of the request message to
restore this field.

e Activation Time (AT) (2 bits) indicates how
many bytes (bit value plus 1) are used to present
the Activation Time field. For example, if AT =1,

269

IoTBD 2016 - International Conference on Internet of Things and Big Data

two bytes are used to present the Activation Time
field.

e Validity Time (VT) (2 bits) indicates how many
bytes (bit value plus 1) are used to present the Va-
lidity Time field.

e Permission List (P) (1 bit) indicates whether the
Permission List field is compressed. If P = 0, the
field is compressed; otherwise, no compression is
applied.

In the Permission List field, when P = 0, the com-
pression mechanism elides the contents which have a
duplicate in other CoAP fields. For a valid CoAP re-
quest message, the resource path and request method
indicated by the CoAP header (more precisely, indi-
cated by the Uri-Path options and the Code field of
CoAP) must have a duplicate in the Permission List
field. So, the compression mechanism elides the du-
plicated resource path and request method in the Per-
mission List field, and lets the receiver to restore the
permission list from the contents stored in the CoAP
header.

Algorithm 1 shows the pseudo code for compress-
ing a permission list. In the pseudo code, rPath and
rMethod are the resource path and request method in-
dicated by the CoAP header. pList is the permission
list of a capability token, which stores a set of ac-
cess permissions. The compression mechanism first
searches pList to find the access permission which has
the same resource path (RP) and request method (RM)
as rPath and rMethod. If the permission is found, the
matched resource path and request method in that per-
mission are elided. Using the permission list shown
in Figure 1 as an example, when sending a “GET” re-
quest message to obtain “temperature” data, we elide
the indicated resource path and request method as
well as elide the key part of a key-value pair in JSON
if its associated value is elided. The permission list
becomes “[{}]” after compression. The result is seri-
alized and stored in the Permission List field.

4 EVALUATION

In this section we evaluate the performance of the
Cap-Token option and the compression mechanism.
We first use an example to elaborate how many bytes
could be saved when compressing the Cap-Token op-
tion. Next, we study the overhead in terms of the
increase in the IP datagram size of a CoAP request
message when applying CBAC to an IoT network.

270

Algorithm 1: Compressing a permission list.

1: procedure COMPRESSPERMISSIONLIST
: rPath < path of the requested resource
rMethod < the request method
pList < permission list of a capability token

if rPath matches the RP of perm then
if rMethod has a match in RM of perm then

2
3
4
5:
6: for each perm in pList do
7
8
9 Elide the rPath from perm

10: Elide the rMethod from perm
11: break

12: end if

13: end if

14: end for

15: end procedure

4.1 Benefit of Compression

We use the capability token shown in Figure 1 as an
example to elaborate how many bytes could be saved
when compressing the Cap-Token option.

If compression is not applied, all option fields
shown in Figure 2 are kept in the Cap-Token option.
The uncompressed option requires 32 bytes for stor-
ing source and destination IP addresses, and 8 bytes
for recording the activation time and validity time.
The value of the permission list is serialized before
being stored in the option field and the resulting string
is 35 bytes in length. The overall size of the uncom-
pressed Cap-Token option is 115 bytes.

When the compression mechanism is applied,
both Subject Identity field and Object Identity field
are elided. Since TI equals to O, the Token Sub-
Identity field can also be elided. The sizes of the Acti-
vation Time field and Validity Time field are reduced
to 1 byte, because the difference between IT and NB
and the difference between NA and NB are zero. More-
over, we assume the resource path and request method
described in PL have a duplicate in other CoAP fields,
so both are elided. The compression result of the per-
mission list is “[{}]”, which is 4 bytes in length after
serialization. The final size of the compressed Cap-
Token option is 45 bytes.

Table 1 shows the comparison in terms of the
size between an uncompressed Cap-Token option and
a compressed Cap-Token option. Our compression
mechanism reduces 70 bytes when encapsulating a
capability token into the option. 60% of the original
size of the option is saved. Among those saved data,
31 bytes are reduced from compressing the Permis-
sion List field. The rest 39 bytes are saved from com-
pressing other fields of the Cap-Token option. Such
a result shows that our compression mechanism can
minimize the size of the Cap-Token option, resulting
in a smaller IP datagram size.

Table 1: Comparison of the size of the Cap-Token option
before and after compression.

Uncompressed Compressed

Option Field Option Option
Option Header 2 2
Token Dashboard 1 1
Token Sub-Identity 1 0
Issuer Identity 4 4
Subject Identity 16 0
Object Identity 16 0
Issued Time 4 4
Activation Time 4 1
Validity Time 4 1
Issuer Signature 28 28
Permission List 35 4
Total (bytes) 115 45

4.2 Access Control Overhead

We define the overhead of applying an access control
model for an IoT network as the increase in the IP
datagram size in percentage. Equation 1 shows how
the overhead being calculated.

(new_size — original _size)

overhead = x 100% (1)

original _size

Here, we compare the overheads in three different
cases, which are: (1) directly attaching a capability
token at the end of CoAP, (2) adding an uncompressed
Cap-Token option, and (3) adding a compressed Cap-
Token option. The first and third cases are used to
compare the overhead of our Cap-Token option with
the overhead of the capability token transmission ap-
proach proposed by previous work (Gusmeroli et al.,
2013) (Hernandez-Ramos et al., 2013). The second
and third cases are used to demonstrate how the com-
pression mechanism reduces the overhead.

We calculate the overheads based on sending a
CoAP “GET” request message to obtain data from
the “/temperature” path of a sensor device. The ca-
pability token shown in Figure 1 is used for access
control and is sent with the request message. We
also assume that the Datagram Transport Layer Se-
curity (DTLS) (Rescorla and Modadugu, 2012)) is
adopted to secure the transmission of CoAP mes-
sages. The DTLS adopts AES-GCM (Dworkin, 2007)
as the cryptography algorithm, which uses a 128-bit-
long key for encryption and generates an 8-byte-long
integrity check value (ICV).

Table 2 shows the IP datagram of the CoAP re-
quest message if no access control is applied. At
the network layer, a LOWPAN_IPHC header (Hui
and Thubert, 2011) is adopted to compress the IPv6

CoAP Option for Capability-Based Access Control for IoT-Applications

header, which results in 7 bytes in length. An 8-byte-
long Hop-by-Hop Options extension header, which
contains a RPL option (Hui and Vasseur, 2012), is
also included to support storing-mode routing in a
RPL network (Winter et al., 2012). At the transport
layer, the UDP header is compressed to 4 bytes ac-
cording to the definition in (Montenegro et al., 2007).
The DTLS header contains a 13-byte-long record
header and an 8-byte-long initialization vector. In the
DTLS payload, the CoAP header occupies 5 bytes?.
The Uri-Host and Uri-Port options are set to default,
so both options are not present. The Uri-Path option
occupies 12 bytes to specify the path to the resource.
The contents of the DTLS payload are encrypted by
AES-GCM and are followed by an 8-byte-long ICV.
Summarily, the overall IP datagram size is 65 bytes
when CBAC is not applied.

Table 2: The IP datagram of the CoAP request message
without any access control protection.

Size

Layer Header or Payload (byte)
Compressed IPv6 header 7
Netyore Hop-by-Hop Options 8
Compressed UDP header 4
Record header 13
Transport LS heades Initialization vector 8
CoAP header 5
D PR Uri-Path option 12
DTLS ICV 8
Total size 65

When applying CBAC for an IoT network, it re-
quires every request message being transmitted with
a capability token. If we directly attache the capabil-
ity token at the end of the CoAP, the content of the
capability token is serialized and the result is attached
behind the Uri-Path option. Because the Uri-Path op-
tion has its own length field, unlike attaching behind
CoAP payload, the receiver can still retrieve the ca-
pability token from the message. In such a case, the
serialized capability token is 198 bytes in length. The
overhead of directly attaching a capability token at the
end of CoAP is 304%.

On the other hand, encapsulating a capability to-
ken into the Cap-Token option can reduce the increase
in the IP datagram size, because most special char-
acters used by JSON (such as comma, colon, and
quotation marks) are removed during the encapsula-
tion process. After embedding an uncompressed Cap-
Token option into the CoAP request message, the in-

2We assume the CoAP header uses 1 byte for Version
and Type, 1 byte for Code field, 2 bytes for Message ID
field, and 1 byte for Token field. The last field is used for
matching a response message with a request message.

271

IoTBD 2016 - International Conference on Internet of Things and Big Data

Table 3: Comparison of the IP datagram sizes and over-
heads in difference cases.

IP datagram Size Overhead
Case 0 65 bytes -
Case 1 263 bytes 304 %
Case 2 180 bytes 176 %
Case 3 110 bytes 69 %

* Case 0: no access control protection.

* Case 1: attaching a capability token.

* Case 2: uncompressed Cap-Token option.
* Case 3: compressed Cap-Token option.

crease in the IP datagram size reduces to 115 bytes.
The overhead decreases to 176%. Compressing the
Cap-Token option further reduces the increase in the
IP datagram size. As shown in our previous analy-
sis, the compressed Cap-Token option is 45 bytes in
length. The overhead becomes 69% after compress-
ing the Cap-Token option.

Table 3 compares the IP datagram sizes and over-
heads in different cases. The results show that attach-
ing a capability token at the end of CoAP not only suf-
fers the payload ambiguity problem, it also generates
the largest IP datagram, which is 263 bytes. Compar-
atively, using the Cap-Token option to encapsulate a
capability token reduces the IP datagram size by 83
bytes. When the compression mechanism is applied,
the IP datagram size further reduces to 110 bytes,
which is only 41% of the IP datagram size when at-
taching a capability token at the end of CoAP. The
overhead is reduced by 235%. This demonstrates that
our Cap-Token option and the compression mecha-
nism not only solve the payload ambiguity problem,
they also reduce the IP datagram size.

S DISCUSSION

A benefit of using the compressed Cap-Token option
is that it results in fewer data link frames when trans-
mitting the CoAP request message over a 6LoWPAN
network. Because the maximum frame size defined
in IEEE 802.15.4 is 127 bytes, a large IP datagram
will be fragmented into several data link frames be-
fore transmission. Since an intermediate router needs
to collect all data link frames to determine the next
forwarding target. Losing any data link frame means
the entire message is lost. Hence, generating fewer
data link frames for a request message in a 6LoW-
PAN network would result in a better success rate on
delivering request messages.

Based on our results in the previous section as an
example, directly attaching a capability token at the
end of CoAP would generates 3 data link frames. Al-

272

though using an uncompressed Cap-Token option re-
duces the IP datagram size, the size is still larger than
127 bytes. So, the request message is fragmented
into 2 data link frames. Only when using a com-
pressed Cap-Token option, the IP datagram can be
fitted in one IEEE 802.15.4 frame. The generated
data link frames of the above three cases are shown
in Table Al, A2, and A3 in Appendix, respectively.
Thus we conclude that using the Cap-Token option
and compression mechanism can reduce the chance of
the occurrence of the link-layer fragmentation when
sending CoAP request messages. It also improves
the success rate of delivering request messages over
a 6LoWPAN network.

6 RELATED WORK

Many researchers have adopted the CBAC model
for an IoT network. Mahalle et al. (Mahalle et al.,
2012a), (Mahalle et al., 2012b) treated a capability
token as a permission for setting up a connection with
an IoT device. However, their design doesn’t send
every CoAP request message with a capability token,
breaking the stateless rule of REST. Besides, no fine-
grained access permission is defined in the capabil-
ity token to control the access of resources hosted on
the target device. Gusmeroli et al. (Gusmeroli et al.,
2013) proposed a design for capability tokens to sup-
port the principle of least privilege. However, their
design relies on a centralized authorization server to
decide on the authorization. This makes their design
hard to be deployed in an IoT network where a cen-
tralized authorization server is hard to deploy. In the
work done by Herndndez-Ramos et al. (Hernandez-
Ramos et al., 2013), (Hernandez-Ramos et al., 2014),
an IoT device can decide on the authorization by it-
self without the intervention of a centralized autho-
rization server. However, when sending a CoAP re-
quest message, their design directly attaches a capa-
bility token behind the CoAP payload. This causes
a receiver hard to retrieve the capability token from
the request message, because CoAP does not define
a length field to indicate its payload size. To prevent
a capability token from being mixed up with the con-
tents of CoAP, both Seitz et al. (Seitz et al., 2013) and
Pereira et al. (Pereira et al., 2014) proposed to use a
CoAP option to encapsulate a capability token. But,
no detail design of the option is mentioned in their
paper. Hence, we can conclude that none of existing
work has provided a good solution for the “payload
ambiguity problem” and considered how to reduce the
IP datagram size after applying CBAC for an IoT net-
work.

7 CONCLUSION

In this paper, we propose the Cap-Token option to
solve the payload ambiguity problem when applying
the capability-based access control model for an IoT
network. Because the Cap-Token option is indepen-
dent form other CoAP fields and the option knows
its size, we can prevent a capability token from being
mixed up with the contents of other CoAP fields. Be-
sides, we also propose a compression mechanism to
reduce the size of the Cap-Token option. Our evalua-
tion shows that the compression mechanism can save
the size of the Cap-Token option by 60%. This also
helps decrease the overhead (the increase in the IP
datagram size) after applying CBAC for an IoT net-
work. Our results show that the overhead of adding a
compressed Cap-Token option to a request message is
only 69%, while adding an uncompressed Cap-Token
option is 176% and directly attaching a capability to
the end of CoAP is 304%. The smaller IP datagram
size also helps generate fewer data link frame when
sending a CoAP request message over a 6LoOWPAN
network.

Our future work focuses on solving the storage
consumption problem on the requester’s device. Be-
cause the current design only allows a capability to-
ken to be used to access a particular device, a re-
quester has to acquire at least N capability tokens if
attempting to access the resources hosted on N IoT
devices. This may consume a large amount of stor-
age space in a large IoT use case, such as smart city.
Hence, we plan to design a new type of capability to-
ken to tackle this problem.

REFERENCES

Alghamdi, T., Lasebae, A., and Aiash, M. (2013). Security
Analysis of the Constrained Application Protocol in
the Internet of Things. In Second International Con-
ference on Future Generation Communication Tech-
nology, pages 163-168.

Dworkin, M. (2007). Recommendation for Block Cipher
Modes of Operation: Galois/Counter Mode (GCM)
and GMAC. Technical report, National Institute of
Standards and Technology.

Granjal, J., Monteiro, E., and Sa Silva, J. (2015). Secu-
rity for the Internet of Things: A Survey of Existing
Protocols and Open Research Issues. IEEE Commu-
nications Surveys Tutorials, 17(3):1294-1312.

Gusmeroli, S., Piccione, S., and Rotondi, D. (2013). A
Capability-based Security Approach to Manage Ac-
cess Control in the Internet of Things. Mathematical
and Computer Modelling, 58:1189-1205.

Herndndez, J. L., Moreno, M. V., Jara, A. J., and Skarmeta,
A. F (2014). A Soft Computing Based Location-

CoAP Option for Capability-Based Access Control for IoT-Applications

aware Access Control for Smart Buildings. Soft Com-
puting, 18(9):1659-1674.

Hernandez-Ramos, J. L., Jara, A. J., Marin, L., and Gémez,
A.F.S. (2014). DCapBAC: Embedding Authorization
Logic into Smart Things through ECC Optimizations.
International Journal of Computer Mathematics, 0:1—
22.

Hernandez-Ramos, J. L., Jara, A. J., Marin, L., and
Skarmeta, A. F. (2013). Distributed Capability-based
Access Control for the Internet of Things. Journal of
Internet Services and Information Security, 3:1-16.

Hui, J. W. and Thubert, P. (2011). Compression Format for
IPv6 Datagrams over IEEE 802.15.4-Based Networks.
RFC 6282.

Hui, J. W. and Vasseur, J. (2012). The Routing Protocol
for Low-Power and Lossy Networks (RPL) Option for
Carrying RPL Information in Data-Plane Datagrams.
RFC 6553.

Mabhalle, P., Anggorojati, B., Prasad, N., and Prasad, R.
(2012a). Identity Driven Capability based Access
Control (ICAC) Scheme for the Internet of Things.
In 2012 IEEE International Conference on Advanced
Networks and Telecommunications Systems, pages
49-54.

Mahalle, P., Anggorojati, B., Prasad, N., and Prasad,
R. (2012b). Identity Establishment and Capability
based Access Control (IECAC) Scheme for Internet
of Things. In 15th International Symposium on Wire-
less Personal Multimedia Communications (WPMC),
pages 187-191.

Montenegro, G., Kushalnagar, N., Hui, J. W., and Culler,
D. E. (2007). Transmission of IPv6 Packets over IEEE
802.15.4 Networks. RFC 4944,

Nguyen, K. T., Laurent, M., and Oualha, N. (2015). Survey
on Secure Communication Protocols for the Internet
of Things. Ad Hoc Networks, 32:17-31.

Pereira, P., Eliasson, J., and Delsing, J. (2014). An Authen-
tication and Access Control Framework for CoAP-
based Internet of Things. In 40th Annual Confer-
ence of the IEEE Industrial Electronics Society, pages
5293-5299.

Rescorla, E. and Modadugu, N. (2012). Datagram Trans-
port Layer Security Version 1.2. RFC 6347.

Roman, R., Zhou, J., and Lopez, J. (2013). On the Features
and Challenges of Security and Privacy in Distributed
Internet of Things. Computer Networks, 57(10):2266—
2279.

Seitz, L. and Gerdes, S. (2015). Use Cases for Authentica-
tion and Authorization in Constrained Environments.
IETF Draft.

Seitz, L., Selander, G., and Gehrmann, C. (2013). Autho-
rization Framework for the Internet-of-Things. In /4th
IEEE International Symposium and Workshops on a
World of Wireless, Mobile and Multimedia Networks,
pages 1-6.

Shelby, Z., Hartke, K., and Bormann, C. (2014). The Con-
strained Application Protocol (CoAP). RFC 7252.

Winter, T., Thubert, P., Brandt, A., Hui, J. W., Kelsey,
R., Levis, P, Pister, K., Struik, R., Vasseur, J., and

273

IoTBD 2016 - International Conference on Internet of Things and Big Data

Alexander, R. K. (2012). RPL: IPv6 Routing Protocol
for Low-Power and Lossy Networks. RFC 6550.

APPENDIX

Here we show how many data link frames are gen-
erated when sending a CoAP request message with a
capability token and (1) directly attaching the capabil-
ity token at the end of CoAP (Table A1), (2) encapsu-
lating the capability token into the Cap-Token option
(Table A2), and (3) encapsulating the capability token
into the Cap-Token option and compressing the op-
tion (Table A3). We assume that the link-layer header
occupies 9 bytes, which includes the Frame Check Se-
quence. PAN ID is elided and short MAC addresses
are used. If the link-layer fragmentation occurs, ad-
ditional fragmentation header would be added to the
adaptation layer, which occupies 4 bytes in the first
frame and occupies 5 bytes in the succeeding frames.

Table Al: The data link frames of the CoAP request mes-
sage when attaching a capability token at the end of CoAP.

1% data link frame

Size
Layer Header or Payload (byte)
Data Link IEEE 802.15.4 header 9
Adaptation Fragmentation header 4
Network Compressed IPv6 header 7
Hop-by-Hop Options 8
Compressed UDP header 4
Transport by § header Record header 13
Initialization vector 8
DTLS payload” 74
Total size 127
2" data link frame
Size
Layer Header or Payload (byte)
Data Link IEEE 802.15.4 header 9
Adaptation Fragmentation header 5
Transport ~ DTLS payload” 113
Total size 127
374 data link frame
Size
Layer Header or Payload (byte)
Data Link IEEE 802.15.4 header 9
Adaptation Fragmentation header 5
DTLS payload” 28
Transport DTLS ICV 8
Total size 50

* The DTLS payload is composed of the CoAP header, the Uri-Path option,
and the serialized capability token.

274

Table A2: The data link frames of the CoAP request mes-
sage when using an uncompressed Cap-Token option.

1% data link frame

Size
Layer Header or Payload (byte)
Data Link IEEE 802.15.4 header 9
Adaptation Fragmentation header 4
Network Compressed IPv6 header 7
Hop-by-Hop Options 8
Compressed UDP header 4
Transport DTLS header Re_c_orfi he_ader 13
Initialization vector 8
DTLS payload” 74
Total size 127
2" data link frame
Size
Layer Header or Payload (byte)
Data Link IEEE 802.15.4 header 9
Adaptation Fragmentation header 5
. DTLS payload” 58
Transport DTLS ICV 3
Total size 80

* The DTLS payload is composed of the CoAP header, the Uri-Path option,
and the uncompressed Cap-Token option.

Table A3: The data link frame of the CoAP request message
when using a compressed Cap-Token option.

1% data link frame

Size

Layer Header or Payload (byte)
Data Link IEEE 802.15.4 header 9
Compressed IPv6 header 7

Network Hop-by-Hop Options 8
Compressed UDP header 4

DTLS header Rggorq hgader 13
Initialization vector 8

Transport

CoAP header 5

DTLS payload Uri-Path option 12

Cap-Token option 45

DTLS ICV 8

Total size 119

