Automatic Detection and Recognition of Human Movement Patterns in

Keywords:

Abstract:

Manipulation Tasks

Lisa Gutzeit! and Elsa Andrea Kirchner®!
1AG Robotik, Universitit Bremen, Robert-Hooke-Str. 1, 28359 Bremen, Germany

2German Research Center for Artificial Intelligence (DFKI), Robotics Innovation Center,
Robert-Hooke-Str. 1, 28359 Bremen, Germany

Human Movement Analysis, Behavior Segmentation, Behavior Recognition, Manipulation, Motion Tracking.

Understanding human behavior is an active research area which plays an important role in robotic learning
and human-computer interaction. The identification and recognition of behaviors is important in learning from
demonstration scenarios to determine behavior sequences that should be learned by the system. Furthermore,
behaviors need to be identified which are already available to the system and therefore do not need to be
learned. Beside this, the determination of the current state of a human is needed in interaction tasks in order
that a system can react to the human in an appropriate way. In this paper, characteristic movement patterns
in human manipulation behavior are identified by decomposing the movement into its elementary building
blocks using a fully automatic segmentation algorithm. Afterwards, the identified movement segments are
assigned to known behaviors using k-Nearest Neighbor classification. The proposed approach is applied to
pick-and-place and ball-throwing movements recorded by using a motion tracking system. It is shown that the
proposed classification method outperforms the widely used Hidden Markov Model-based approaches in case
of a small number of labeled training examples which considerably minimizes manual efforts.

1 INTRODUCTION

In future, robots and humans must interact very
closely and even physically to satisfy the require-
ments of novel approaches in industry, production,
personal services, health care, or medical applica-
tions. To facilitate this, not only the robotic systems
must be equipped with enlarged dexterities and mech-
anisms that allow intuitive and safe interaction, but
also the human intention, behavior and habits have to
be better understood (Kirchner et al., 2015). To allow
this, novel methods have to be developed which are
easy to apply.

One highly relevant factor in human-computer in-
teraction is an understanding of human behaviors. For
example, the knowledge of the current state of the hu-
man is necessary to realize an intuitive interaction.
Based on this knowledge, systems can interact with
humans in an appropriate manner. To obtain this
knowledge, the identification of the important parts of
the human behavior and the assignment of the identi-
fied behaviors into categories which induce different
reactions of the system are necessary. Only if the state
of the human and the context which is described by
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this state are known, the system can follow the work-
ing steps that are required in this situation or can sup-
port the human if desired.

Another example is imitation of human behaviors
by a robotic system which is a current issue in robot
learning approaches and has intensively been investi-
gated, see for example (Metzen et al., 2013; Miilling
et al., 2013; Pastor et al., 2009). Especially, Learn-
ing from Demonstration (LfD) is a relevant issue in
this research area, in which learning algorithms are
used to transfer human demonstrations of behavior to
arobot (Argall et al., 2009). Because learning of com-
plex behavior can be very time-consuming or even
impossible, the behavior should be segmented into its
main building blocks to be learned more efficiently.
By grouping segments that belong to the same behav-
ior and by recognizing these behaviors, it can be de-
termined which segments are needed to be learned for
a certain situation. Beyond that, movements can be
identified that can already be executed by the system
and thus do not need to be learned.

The hypothesis of the composition of human
movement into building blocks is shown in several
behavioral studies, e.g., in a study on infants (Adi-
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Japha et al., 2008). These studies show that complex
human behaviors are learned incrementally, starting
with simple individual building blocks that are chun-
ked together to a more complex behavior (Graybiel,
1998). If these building blocks should be detected
by an artificial system, characteristics in the move-
ment patterns have to be identified. In manipulation
behaviors, bell-shaped velocity profiles have found to
be a suitable pattern (Morasso, 1981). In this work, a
velocity-based behavior segmentation algorithm pre-
sented by Senger et al. (Senger et al., 2014) is used
to segment recorded human movement. The applied
algorithm detects reliably and fully automatic move-
ment sequences that show a bell-shaped velocity pro-
file and are therefore assumed to be building blocks
of human behavior.

As stated above, identified building blocks of hu-
man movement have also to be classified according to
the actual behavior they belong to. By assigning suit-
able annotations to the recognized movement classes,
the selection as well as the detection of the required
behavior becomes intuitive and easy to use in different
interaction scenarios. For supervised movement clas-
sification approaches, training data is needed that has
to be manually pre-labeled. To keep the manual input
low, it is desirable that the classification works with
small sets of training data. We propose to classify
detected building blocks by using simple k-Nearest
Neighbor (kNN) classification. With suitable features
extracted from the movements, kNN satisfies this con-
dition.

This paper is organized as follows: In Section 2,
different state-of-the-art approaches for segmentation
and recognition of human movements are summa-
rized. Our approach is described in Section 3. Af-
terwards in Section 4, the approach is evaluated on
real human manipulation movements and compared
to Hidden Markov Model (HMM)-based approaches
which are widely used in the literature to represent
and recognize movements. At the end of this paper, a
conclusion is given.

2 RELATED WORK

Action recognition is an active research area which
plays an important role in many applications. One
main focus lies in the automatic annotation of hu-
man movements in videos, which can be used, e.g.,
to find tackles in soccer games, to support elderly in
their homes or for gesture recognition in, e.g. video
games (Poppe, 2010). Besides the detection of hu-
mans in video sequences, the classification of their
movements is an important part in video-based ac-

tion recognition. Algorithms like Support Vector Ma-
chines, or their probabilistic variant the Relevance
Vector Machines, Hidden Markov Models, k-Nearest
Neighbors or Dynamic Time Warping-based classifi-
cation are used to classify the observed actions. A
more detailed overview is given in (Poppe, 2010).

But also in other areas, where the human is not
observed by a camera but recorded with other modal-
ities like markers fixed on the body, human action
recognition is tackled. In this non-image-based move-
ment recordings, the segmentation of the recorded
movements is next to the classification of high in-
terest. For example in (Fod et al., 2002), human
arm movements were tracked and segmented into so-
called movement primitives at time points where the
angular velocity of a certain number of degrees of
freedom crosses zero. After a PCA-based dimension-
ality reduction, the identified movements were clus-
tered using k-Means. However, this approach is very
sensitive to noise in the input data which results in
over-segmentation of the data. Gong et al., on the
other hand, propose Kernelized Temporal Cut to seg-
ment full body motions, which is based on Hilbert
space embedding of distributions (Gong et al., 2013).
In their work, different actions are recognized using
Dynamic Manifold Warping as similarity measure. In
contrast to the analysis of full body motions, we focus
on the identification and recognition of manipulation
movements which show special patterns in the veloc-
ity which should be considered for segmentation.

Beyond that, HMM-based approaches are often
used in the literature, both for movement segmenta-
tion as well as for movement recognition. For exam-
ple, Kulic et al. stochastically determine motion seg-
ments which are then represented using HMMs (Kuli¢
et al.,, 2012). The derived segments are incremen-
tally clustered using a tree structure and the Kullback-
Leibler distance as segment distance measure. In a
similar fashion, Grive and Behnke represent proba-
bilistically derived segments with HMMs, where seg-
ments that belong to the same movement are simul-
taneously classified into the same class if they can be
represented by the same HMM (Grive and Behnke,
2012). Besides these approaches, solely training-
based movement classification with HMMs is widely
used, e.g. in (Stefanov et al., 2010; Aarno and Kragic,
2008). Because HMMs are expected to perform not
well when few training data is available, we propose
to use kNN instead and compare it with the HMM ap-
proach.
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3 METHODS

In this section we describe the velocity-based move-
ment segmentation algorithm to identify building
blocks in human manipulation behavior as well as
our approach to recognize different known movement
segments in an observed behavior.

3.1 Segmentation of Human Movement
into Building Blocks

We aim to find sequences in human movement that
correspond to elementary building blocks charac-
terized by bell-shaped velocity profiles as shown
in (Morasso, 1981). Therefore, we need a segmenta-
tion algorithm that identifies these building blocks. A
second important property of the algorithm should be
the ability to handle variations in the movements. Hu-
man movement shows a lot of variations both during
the execution by different persons as well as by the
same person. For this reason, it is important that the
algorithm for human movement segmentation finds
sequences that correspond to the same behavior de-
spite differences in their execution.

An algorithm that tackles these issues is the
velocity-based Multiple Change-point Inference
(vMCI) algorithm (Senger et al., 2014). This al-
gorithm fully automatically detects building blocks
in human manipulation movements. It is based on
the Multiple Change-point Inference (MCI) algo-
rithm (Fearnhead and Liu, 2007) in which segments
are found in time series data using Bayesian Infer-
ence. Each segment y; 1.}, starting at time point i and
ending at j, is represented with a linear regression
model (LRM) with ¢ predefined basis functions 0y:

q
it = Y, Bidr +¢, )
=1

where € models the noise that is assumed in the data
and B = (Bi,...,B,) are the model parameters. It is
assumed that a new segment starts if the underlying
LRM changes. This modeling of the observed data
allows to handle technical noise in the data as well
as variation in the execution of the same movement.
To determine the segments online, the segmentation
points are modeled via a Markov process in order that
an online Viterbi algorithm can be used to determine
their positions (Fearnhead and Liu, 2007).

Senger et al. expanded the MCI algorithm for the
detection of movement sequences that correspond to
building blocks characterized by a bell-shaped veloc-
ity profile. To realize this, the LRM of Equation 1
is split to model the velocity of the hand independent
from its position with different basis functions, where
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the basis function for the velocity dimension is cho-
sen in a way that it has a bell-shaped profile. In detail
this means that the velocity y” of the observed data
sequence is modeled by

Y=o, +0p+e, 2)

with weights oo = (aty, 0i2) and noise €. The model has
two basis functions. First, the bell-shaped velocity
curve is modeled using a single radial basis function:

o() = exp {—(‘“2} B
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In order that the basis function can cover the whole
segment, Senger et al. propose to choose half of the
segment length for the width parameter r. The center
c is determined automatically by the algorithm and
regulates the alignment to velocity curves with peaks
at different positions. Additionally, the basis function
1 weighted with o, accounts for velocities unequal to
zero at start or end of the segment. As in the original
MCI method, an online Viterbi algorithm can be used
to detect the segment borders.

vMCI segmentation
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Figure 1: VMCI segmentation result on artificial data.

An example segmentation using the vMCI algo-
rithm is shown in Figure 1. At the top, a one-
dimensional simulated movement can be seen. The
lower figure shows the corresponding velocity. To
simulate two different behavior segments, the move-
ment is slowed down at time point 0.4. For the po-
sition dimension, the algorithm fits LRMs to the data
according to Equation 1 with pre-defined basis func-
tions. In this case autoregressive basis functions are
chosen. The velocity dimension is simultaneously fit
with a LRM as introduced in Equation 2. The algo-
rithm automatically selects the models which best fits
parts of the data. In this case it is most likely that
the data arises from two different underlying models,
which results in a single segmentation point which
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matches, within an acceptable margin, the true seg-
mentation point. In contrast to other segmentation
algorithms, as for example a segmentation based on
the detection of local minima, vVMCI is very robust
against noise in the data, as shown in (Senger et al.,
2014).

3.2 Recognition of Human Movement

There are many different possibilities to classify hu-
man movements, as reviewed in Section 2. In general,
a movement classification algorithm which works
with minimal need for parameter tuning is desirable
to make the classification easily applicable on differ-
ent data. Furthermore, manual efforts can be mini-
mized if the algorithm reliably classifies movement
segments in case that only a small training set is avail-
able. For this reasons we use the kNN classifier for
movement recognition. It has only one parameter, k,
and is able to classify manipulation movements with
a high accuracy with a small training set, as shown in
our experiments.

3.2.1 Feature Extraction

To classify the obtained movement sequences, fea-
tures which reflect the differences between different
behaviors have to be calculated. We use movement
trajectories of certain positions on the demonstrator
as features for the classification. The movements are
recorded in Cartesian coordinates which results in dif-
ferent time series if the same movement is executed
at a different position. Thus, we propose to transpose
the data into a coordinate system which is not global
but relative to the human demonstrator. As reference
point, we use the position of the back (see Figure
2A) at the first time point of a segment, i.e. the data
is transformed into a coordinate system centered at
this point. Additionally, variances in the execution of
the same movement are reduced by normalizing each
movement segment to zero mean.

Next to the transformed and normalized tracking
points of the demonstrator, additional features may be
relevant to successfully classify movement segments.
For example in manipulation movements, such as
pick-and-place tasks, the involved objects and their
spatial reference to the demonstrator are important
features to distinguish between movement classes.
Thus, the distance of the human hand to the manipu-
lated object as well as the object speed are used in the
pick-and-place experiment described in section 4.2
to classify manipulation segments into distinct move-
ments. Depending on the recognition task additional
features, like the rotation of the hand to distinguish
between different grasping positions, can be relevant.

3.2.2 Movement Classification

We propose to use a kNN classifier to distinguish
between different movements. In the kNN classifi-
cation, an observed movement sequence is assigned
to the movement class, which is the most common
among its k closest neighbors of the training exam-
ples. We use the Euclidean distance as distance metric
and account for segments of unequal length by apply-
ing an interpolation to bring all segments to the mean
segment length. Alternatively, dynamic time warp-
ing (DTW) could be used as distance measure. This
would have the benefit that using DTW the segments
are additionally aligned to the same length. But in a
preliminary analysis of kNN classification on manip-
ulation behaviors our approach outperformed a DTW-
based kNN. For the number of neighbors k, we take
k = 1. That means we consider just the closest neigh-
bor for classification because we want to classify with
a small number of training examples. A bigger k
could result in more classification errors due to the
very low number of examples of each class.

4 EXPERIMENTS

In this section, the proposed segmentation and clas-
sification methods are evaluated on real human ma-
nipulation movements tracked by using a motion cap-
turing system. First, the experimental setup including
the evaluation technique used in two different exper-
iments is described in section 4.1. Afterwards, the
presented approach is applied and evaluated on pick-
and-place movements. In a second experiment differ-
ent human demonstrations of a ball-throwing move-
ment are analyzed. For both experiments it is shown
that the vMCI algorithm correctly detects segments
in the recorded demonstrations which correspond to
behavior building blocks with a bell-shaped velocity
pattern. Furthermore, we evaluate the classification
with kNN using small number of training data and
compare the results with an HMM-based classifica-
tion approach.

4.1 Experimental Setup

In the experiments conducted for this paper, human
demonstrations of manipulation movements were
tracked using 7 motion capture cameras. The mo-
tion capturing system measures the 3D positions of
visual markers at a frequency of 500 Hz, which was
down-sampled to 25 Hz. The markers were placed
on the human demonstrator and in the pick-and-place
experiment additionally on the manipulated object.
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Figure 2: Snapshots of the pick-and-place task analyzed in
this work. A: Markers for movement tracking are placed at
the back, the arm and the hand of the demonstrator as well
as on the manipulated object. The images show the grasping
of the object from the shelf (A) which is then placed on
a table standing on the right hand side (B). B: Movement
segment move_obj_table is sketched.

The positions of the markers can be seen in Figure
2A and Figure 3. Three markers were placed on the
back of the demonstrator to determine the position of
the back and its orientation. This is used to trans-
form the recorded data into the coordinate system rel-
ative to the back, as described in Section 3.2. To
track the movement of the manipulating arm, mark-
ers were placed at the shoulder, the elbow, and the
back of the hand. The orientation of the hand is de-
termined by placing three markers instead of one on
it. Grasping movements in the pick-and-place demon-
strations were recorded by using additional markers
which were placed at thumb, index, and middle fin-

58

&) goal position

Figure 3: Snapshot of the ball-throwing task.

ger. Furthermore, two more markers were placed on
the manipulated object in this experiment to deter-
mine its position and orientation. However, the tasks
in our experiments required only basic manipulation
movements (e.g., approaching the object or moving
the object). Thus, just the position of the hand and the
manipulated object were used for segmentation and
recognition, but not their orientation.

After data acquisition, the individual movement
parts of the demonstrations were identified using the
vMCI algorithm described in Section 3.1. The seg-
mentation algorithm was applied on the position and
the velocity of the recorded hand movements. For
this, the recorded positions of each demonstration
were pre-processed to a zero mean and such that the
variance of the first order differences of each dimen-
sion is equal to one, as proposed in (Senger et al.,
2014).

The resulting movement segments were manually
labeled into one of the movement classes defined for
each experiment. However, some of the obtained
segments could not be assigned to one of the move-
ment classes because they contain only parts of the
movement. This could result from errors in the seg-
mentation as well as from demonstrations where a
movement is slowed down before the movement class
ends, e.g. because the subject thought about the ex-
act position to grasp the object. An example can
be seen in the top plot of Figure 4. The concatena-
tion of the first two detected segments belong to the
class approach_forward. Nonetheless, the vMCI al-
gorithm detected two segments because the subject
slowed down the movement right before reaching the
object. These incomplete movement segments were
discarded for the evaluation of the classification ap-
proach. Furthermore, some of the identified move-
ment segments do not belong to one of the pre-defined
movement classes of the experiment. Usually, these
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nonassignable segments belong to small extra move-
ments, that are not part of the main movement task
and thus are not considered in the defined movement
classes. These movement segment were as well not
used for the evaluation of the classification.

Before classification, the original recorded marker
positions of each obtained segment were pre-
processed as described in Section 3.2. Depending on
the manipulation task, additional features were calcu-
lated. As proposed in section 3.2, we classify the ob-
tained segments using the 1NN algorithm. For each
of the two experiments, we evaluate the accuracy of
the INN classification using a stratified 2-fold cross-
validation with a fixed number of examples per class
in the training data. The training set sizes are varied
from 1 example per class to 20 examples per class and
the remaining data is used for testing. Since we want
to show the performance of the classification with
small training set sizes, the maximal number of train-
ing examples per class is kept low. For each number
of examples per class in the training data, the cross-
validation was performed with 100 iterations.

For comparison, the data was also classified us-
ing a HMM-based approach, which is a standard rep-
resentation method for movements in the literature,
see Section 2. In the HMM-based classification, one
single HMM was trained for each movement class.
To classify a test segment, the probability of the seg-
ment to be generated by each of the trained HMMs
is calculated. The label of the most likely underly-
ing HMM is assigned to the segment. The number of
states in the HMMs was determined with a stratified
2-fold cross-validation repeated 50 times with equally
sized training and test sets. As a result, we trained
each HMM with one hidden state. The accuracy of
the HMM-based classification with 1 hidden state per
trained HMM was evaluated like the 1NN classifica-
tion with a stratified 2-fold cross-validation with fixed
numbers of training examples for each class.

4.2 Segmentation and Recognition of
Pick-and-Place Movements

In our first experiment, we evaluated the presented
approach on pick-and-place movements. The task
of the human demonstrator, partly shown in Fig-
ure 2, contained 6 different movements. First, a
box placed on a shelf should be grasped (movement
class: approach_forward) and placed on a table
standing at the right hand side of the demonstrator
(move_obj_table). After reaching a rest position of
the hand (move_to_rest_right), the object had to be
grasped again from the table (approach_right) to
move it back to the shelf (move_obj_shelf). At the

end, the arm should be moved into a final position in
which it loosely hangs down (move_to_rest_down).
Beyond that, short periods of time in which the
demonstrator did not move his arm can be assigned
to the class idle.

Overall, the pick-and-place task was performed
by three different subjects, repeated 6 times by each.
Two of these subjects performed the task again with
4 repetitions while their movements were recorded
with slightly different camera positions and a differ-
ent global coordinate system. This resulted in dif-
ferent positions of the person and the manipulating
object in the scene which should be handled by the
presented movement segmentation and recognition
methods. Thus, 26 different demonstrations from dif-
ferent subjects and with varying coordinate systems
were available to evaluate the proposed approaches.

4.2.1 Results

The vMCI algorithm successfully segmented the tra-
jectories of the pick-and-place demonstrations into
movement parts with a bell-shaped velocity profile.
Three examples of the segmentation results can be
seen in Figure 4. The resulting movement segments
were manually labeled into one of the 7 movement
classes that are present in the pick-and-place task.
This resulted in 155 labeled movement segments with
different occurrences of each class, as summarized in
Table 1.

Table 1: Occurences of each class in the recorded pick-and-
place data.

movement class num. examples
approach_forward 20
move_obj_table 26
move_to_rest_right 25
approach_right 23
move_obj_shelf 26
move_to_rest_down 24
idle 11

As described in section 4.1, next to the positions
of the markers attached on the subject, the distance
from the hand to the object and the object velocity
were calculated as additional features in this experi-
ment. An example result of the classification using
INN is shown in Figure 5. For this example demon-
stration of the pick-and-place task, all segments have
been labeled with the correct annotation using a train-
ing set with 5 examples for each class.

The results of the cross-validation using 1NN and
HMM-based classification are shown in Figure 6. Be-
cause the data contains 7 different classes, an accu-
racy of 14.3% can be achieved by guessing. The
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vMCI segmentation of the hand marker
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Figure 4: Segmentation results of three different demon-
strations. The black lines are the x-, y- and z-position of
the hand. The blue line corresponds to the velocity of the
hand and the red vertical lines are the segment borders de-
termined by the vMCI algorithm.
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Figure 5: Classification result of a demonstration of the
pick-and-place task with INN. The different movement
classes of the task are indicated with different colors along
the color spectrum starting with red for approach_forward
and ending with blue for move_to_rest_down.

INN classification clearly outperforms the HMM-
based classification using training sets with occur-
rences of each class smaller or equal to 20. Already
with 1 example per class an accuracy of nearly 80%
can be achieved using INN. With 10 examples per
class, the accuracy is 97.5% and with 20 examples
per class 99.2%, which is very close to an error-less
classification. In contrast, 14 examples per class are
needed in the HMM-based classification to achieve
an accuracy of 90% in this evaluation. With not
more than 10 examples per class, the accuracy of the
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Figure 6: Comparison of the accuracy of the classifica-
tion of manipulation movement segments using 1NN and
HMM-based classification.

HMM-based classification is considerably below the
achieved accuracy using INN.

These results show that with the proposed 1NN
classification, manipulation movements can be as-
signed to known movement classes with a very small
number of training examples. This means that with
minimal need for manual training data labeling and
no parameter tuning, very good classification results
can be achieved using the proposed approach. Fur-
thermore, the 1NN classification considerably outper-
forms the widely used HMM-based classification in
case that only a small number of training examples is
available.

4.3 Segmentation and Recognition of
Ball-Throwing Movements

In a second experiment, the vMCI segmentation
and the INN classification were evaluated on ball-
throwing demonstrations. The task of the subject was
to throw a ball to a goal position on the ground located
approximately 1.5 m away. The numerous possibili-
ties to throw the ball were limited by the restriction
that the ball should be thrown from above, i.e. the
hand has a position higher than the shoulder before
the ball leaves the hand, see Figure 3. Before and
after the throw, the subject had to move into a rest
position, in which the arm loosely hangs down. The
individual movement parts of each throw could be di-
vided into four different main classes: strike_out,
throw, swing_out and idle. In contrast to the pick-
and-place task, only the movement of the arm was
tracked in this task and not the position of the involved
object, the ball. This is because in this experiment, the
spatial distance of the ball to the demonstrator plays
only a minor role and the movement of the arm has a
much higher relevance to distinguish between move-
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VMCI segmentation of the hand marker
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Figure 7: Segmentation and classification result of one
demonstration of the ball-throwing task.

ment classes. Furthermore, it was not recorded if the
goal position was actually hit by the ball.

The ball-throwing task was demonstrated by 10
different subjects, each performing 24 throws.

4.3.1 Results

As already shown in a similar ball-throwing experi-
ment in (Senger et al., 2014), the vMCI algorithm is
able to identify the different movement parts in the
demonstrations based on the position and velocity of
the hand. In Figure 7 a representative example of the
segmentation result is shown.

To evaluate the classification of the ball-throwing
movements, the resulting segments of all 240 demon-
stration were manually assigned to one of the four
movement classes. Again, each class had a different
occurrence in the available data, as summarized in Ta-
ble 2.

Table 2: Occurences of each class in the ball-throwing data.

movement class | num. examples
strike_out 221
throw 227
swing_out 339
idle 208

In this experiment, only the positions of the mark-
ers attached to the subject, see Figure 3, were used

Accuracy of movement classification
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accuracy

02 : H NN ]
o HMM

1 2 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20

number of examples per class in training data

Figure 8: Comparison of the accuracy of the classification
of ball throwing segments using 1NN and HMM-based clas-
sification.

as features for the automatic movement classification.
Figure 7 shows an example classification result using
INN and 5 examples per class in the training data.
The 5 movement segments were correctly classified
into one of the predefined classes.

The results of the cross-validation comparing
INN with HMM-based classification are visualized
in Figure 8. Like in the pick-and-place experiment,
INN outperforms HMM-based classification in the
case of small training data sets. In this experiment,
containing considerably more demonstrated move-
ments compared to the pick-and-place experiment,
the difference between the classification algorithms is
even more clear. With one example per class in the
training data, an accuracy of 62.9% using 1NN can
be achieved and only 33.8% by using HMM-based
classification. This experiment contains 4 different
classes, i.e. an accuracy of 25% can be achieved
by guessing. Using INN, a classification accuracy
of 80% is accomplished using 4 examples per class
during training. In contrast to this, this accuracy is
not reached using HMM-based classification in this
evaluation. For comparison, the evaluation was addi-
tionally conducted using 100 examples per class dur-
ing training. This resulted in an accuracy of 91.5%
using 1NN, and 77.8% using HMM-based classifi-
cation. This shows that even if more training data
is available, the INN classification outperforms the
HMM-based approach.

S CONCLUSIONS

In this paper, we identified and recognized char-
acteristic movement patterns in human manipula-
tion behavior. We successfully segmented pick-and-
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place and ball-throwing data into movement build-
ing blocks with a bell-shaped velocity profile using
a probabilistic algorithm formerly presented in (Sen-
ger et al., 2014). Furthermore, we showed that using
the simple 1NN classification, the obtained segments
can be reliably classified into predefined categories.
Especially, this can be done using a small set of train-
ing data. In comparison to HMM-based movement
classification, a considerably higher accuracy can be
achieved with small training sets.

For future work, an integrated algorithm for seg-
mentation and classification should be developed, in
which both motion analysis parts influence each other.
Such an approach becomes for example relevant when
extra segments are generated. Extra segments may be
caused from not fluently executed movements of the
demonstrator in situations in which he slowed down
his movement to think about the exact position to
place an object. Such extra segments could be merged
by identifying that only their concatenation belongs to
one of the known movement classes.

To gain a higher classification accuracy, more so-
phisticated feature extraction techniques may be of
high interest. Mainly in the analysis of manipulation
movements, features based on the joint angles should
be evaluated.

Furthermore, it is desirable that the manual ef-
fort needed for classification is further minimized by
classifying the movement segments using an unsu-
pervised approach. Nonetheless, annotations, like
move_object, are needed in many applications, e.g.
to select segments that should be imitated by a robot.
Ideally, this annotation is done without manual inter-
ference, e.g., by analyzing features of the movement
arising from different modalities. Besides the analysis
of motion data, psychological data like eye-tracking
or electroencephalographic-data could be used for
this annotation.

Simple approaches as the one presented here be-
come highly relevant for the development of embed-
ded multimodal interfaces. They allow to use minia-
turized processing units with relatively low process-
ing power and energy consumption. This is most
relevant since in many robotic applications extra re-
sources for interfacing are limited and will thus re-
strict the integration of interfaces into a robotic sys-
tem. On the other hand, wearable assisting devices
are also limited in size, energy and computing power.
Hence, future approaches must not only focus on ac-
curacy but also on simplicity. Apart from that, our
results show that both, accuracy and simplicity can be
accomplished.
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