
Supporting the Standardization Process of Smart City Systems

Marion Gottschalk
OFFIS - Institute for Information Technology, Escherweg 2, 26121 Oldenburg, Germany

1 RESEARCH PROBLEM

The continuous development in information and com-
munication technologies (ICT) and the resulting re-
search area Internet of Things (IoT) enable the con-
nection of more and more hardware and software sys-
tems (DaCosta, 2013). IoT describes a global infras-
tructure for the information society to enable inter-
connecting physical and virtual things based on exist-
ing and evolving ICT (ITU-T, 2012). Regarding the
development of smart cities that constitutes a system
of systems concept using ICT (DKE, 2015), a defined,
or, better still, a standardized way to define and to link
various systems is necessary.

Smart cities are innovative cities that use ICT to
make urban operations and services more efficient for
improving the quality of life (ITU-T FG-SSC, 2014).
An example or rather a use case of a smart city sys-
tem can be “Supporting the traffic flow in cities” (Tra-
gos et al., 2014). The use case describes relevant re-
quirements for all involved components and systems
as well as the communication between different ICT
that can be used for a real time traffic estimation in
cities. For example, traffic cameras can be used for
recording the current traffic volume and analyzing the
data with an analysis software. This data has to be
sent within two seconds from the traffic cameras to
the analysis software for switching lights in time to
keep the traffic flowing.

Nowadays, various companies are developping
new components or systems that can be part of a smart
city. However, components from different companies
are often incompatible with each other. For exam-
ple, Siemens developed a traffic control system on
the basis of their private cloud. The system uses con-
trol units that are installed on single lights to control
these with smart phones or tablets via a secure con-
nection (Wagner, 2014). Another example is the traf-
fic incident management solution by Cisco and AGT
International (CISCO and AGT International, 2014).
They use various sensors (e.g. traffic cameras and in-
pavement vehicle sensor) to analyze the current traffic
volume and to enable a smooth traffic flow as well as
to detect incidents. These companies are likely to de-

fine their own interfaces for single components, e.g.
for their software systems like the Siemens private
cloud. These interfaces enable the interconnection
of their components and software. Reasons for di-
versity are e.g. market power, protection of ideas, or
delimitation to other products. Standardization orga-
nizations try to unify the development of smart city
components and systems by defining and standard-
izing interfaces. For example, it is helpful to create
generic use cases for describing functional require-
ments that show the general interaction between two
components, such as city buses and traffic lights (Tra-
gos et al., 2014), and their interfaces needed. This
kind of use cases can be created by summarizing indi-
vidual use cases, like the functional description by the
Siemens traffic control system and the Cisco and AGT
International traffic incident management system, to
get one generic use case for supporting the traffic flow.
If the generic use cases are public, this approach will
support other companies to adapt their components
and systems for existing implementations.

Smart cities are difficult to realize because they
are complex based on their system of systems con-
cept. They are not implemented in one step, be-
cause cities have to be evolve slowly to smart cities
(DKE, 2015). It already starts with the specifica-
tion process. Each smart city component or sys-
tem has many functional and non-functional require-
ments that have to be matched with each other and
have to be complemented with further requirements
to connected components so-called interface require-
ments. One aim for standardization organizations is
the consistent description of smart city requirements
to get components and systems by different vendors
that are interoperability (DKE, 2015). On the ba-
sis of these requirements, smart city components and
systems can be implemented. If errors occurred or
are detected during the implementation process, it
can be very time consuming and expensive to cor-
rect them (Sommerville, 2009). On the one hand, it
costs much time to detect the reason for errors. On
the other hand, errors frequently influence other func-
tions maybe other components which cause further er-
rors. In addition, experiences on prior projects have

Gottschalk, M.
Supporting the Standardization Process of Smart City Systems.
In Doctoral Consortium (DCSMARTGREENS 2016), pages 17-27

17



shown that errors during the implementation process
often base on faulty requirements and using formal
methods in the requirements specification process can
reduce them (Sommerville, 2009). Hence, it is im-
portant and sensible for standardization organizations
to invest time and money in the specification process
of smart cities to get consistent requirements and to
prevent errors. The following research question was
identified: “How can the management and collection
of complex hardware and software requirements be
supported to get syntactically correct and consistent
requirement specifications?”

Therefore, the research problem is to check the
described requirements for their syntactical correct-
ness and consistency automatically or at least semi-
automatically. Therefore, various techniques from
the requirements specification process can be used;
however, which techniques are suitable for the stan-
dardization process, and for the complex requirement
specification of smart cities in general. In Section 2,
the resulting objectives for this work are described in
more detail. Section 3 gives an overview of require-
ments techniques and further basics, which are impor-
tant for this work. Building on this, the procedure and
methodology for the PhD project follows in Section 4.
The evaluation process and the expected results are
demonstrated in Section 5. Finally, the stage of the
PhD project is shown in Section 6.

2 OUTLINE OF OBJECTIVES

Aim of the PhD project is to review different tech-
niques for checking requirements syntactical correct-
ness and consistency as well as to apply these on com-
plex requirement specifications. According to the re-
search question and the main goal, following objec-
tives for the PhD project can be defined:
• visualizing requirements: the graphical represen-

tation of requirements and their relations supports
requirement engineers to get a better overview of
existing requirements. hence, visualization tech-
niques are also considered to create consistent re-
quirement specifications.

• reducing syntactically incorrect requirements: an
analysis on requirement specifications only works
if the syntax of textual and formal requirements is
correct; therefore, the analysis starts with an syn-
tax check.

• reducing inconsistent requirements: the develop-
ment of a system with inconsistent requirements
often fails and leads to high costs for correcting
them; thus, projects should be supported from the
beginning of the specification process.

• implementing an approach for consistency
checks: considered techniques for creating syn-
tactically correct and consistent requirements are
used to implement a new approach or combine
known approaches for checking requirement
specifications.

• evaluating the approach: the implemented ap-
proach should be checked in the context of smart
city, smart grid, and electrical mobility; there-
fore, described requirements in various project
and standardization groups are used.

If these objectives are reached, the work will have
benefits and relevance for various people and groups.
A syntactically correct and consistent requirements
specification supports the full development process
for each system and improves its quality from the be-
ginning. It supports requirement engineers, system
architects, and customers or experts who set require-
ments for creating a good basis for system designs.
Additionally, costs for developing systems are lower
when errors are avoided during the requirements spec-
ification process.

3 STATE OF THE ART

The research problem comprises two main research
fields: smart cities and requirement specifications for
a consistent description of future cities. In addition,
the use case methodology from the IEC and related
work are presented to demonstrate the current devel-
opment in these fields.

3.1 Smart Cities

As mentioned above, smart cities are systems of sys-
tems (SoS); they include sub-systems like facility
management, smart home, as well as mobility and
logistics (DKE, 2015). Figure 1 shows an overview
of a smart city concept. It demonstrates the men-
tioned sub-systems, which are based on the devel-
opment of the smart city infrastructure architecture
model (SCIAM) (DKE, 2014). An architecture model
is a graphical representation of a use case that shows
business and technical aspects at a glance. The con-
nection of smart city sub-systems have to be done in a
step-by-step implementation to exchange pre-existing
systems by new ones. Urban operations and services
are more efficient and the quality of life is improved
after interconnecting these systems (ITU-T FG-SSC,
2014). The International Telecommunications Union
(ITU) defines a smart city as “an innovative city that
uses ICTs and other means to improve quality of life,

DCSMARTGREENS 2016 - Doctoral Consortium on Smart Cities and Green ICT Systems

18



efficiency of urban operation and services, and com-
petitiveness, while ensuring that it meets the needs of
present and future generations with respect to eco-
nomic, social, environmental as well as cultural as-
pects” (ITU-T FG-SSC, 2014). This definition in-
cludes technical, connecting sub-systems via ICT, as
well as external aspect, the comprehension of eco-
nomic, social, environment, and culture topics, that
should increase the acceptance of all participants in
smart cities. Thus, the planning and implementation
of smart cities shall comply with this definition.

Figure 1: Smart City Concept.

However, the complexity, step-by-step implemen-
tation, and interconnection with external aspects re-
sults in difficulties, such as connecting with exist-
ing systems and matching data protection laws, that
have to be solved before systems like smart cities
can be implemented. Such difficulties are already de-
scribed by Rittel and Weber (Rittel and Webber, 1973)
as dilemmas in a general theory of planning in the
year 1973. They describe the importance for plan-
ing systems and their desired behavior in detail. In
addition, they consider changing systems and laws
that make it difficult to describe and design a future
SoS like smart cities completely, i.e. functionalities
and difficulties have to be described and re-solved
repeatedly during the implementation process (Rit-
tel and Webber, 1973). Thus, this dilemma should
be taken into account for the planning and develop-
ment process of smart cities, and requirements as well
as standards should be described in a way which al-
lows adjustments and simple checks. Considering
the smart city sub-systems and the involvement of
humans, smart cities can be also seen as security-
critical systems (DKE, 2014; Johnson, 2011), as well
as cyber-physical systems from the view of the inter-
connected sub-systems (Wiesner et al., 2015).

3.2 Standards in the Context of Smart
Cities

Various organizations, not only standardization orga-
nizations, address the planning and development of

standards (DKE, 2015). Standardization organiza-
tions on different levels (international and national
level) organize various working groups to discuss sin-
gle topics in the smart city context. Some of the inter-
national standardization organizations are the Inter-
national Organization for Standards (ISO), the Inter-
national Electrotechnical Commission (IEC), and the
International Telecommunication Union (ITU). The
three organizations consider the development of smart
cities from different views, the ISO addresses techni-
cal and economic aspects, the IEC deals with elec-
trical, electric and related technologies, and the ITU
considers telecommunication aspects. All these parts
are important for the development of smart cities, and
thus, it is necessary to arrange their experience that
is already done in the Smart City Study Group (SG 1)
(DKE, 2015). Further standardization organizations
on European (e.g. European Committee for Standard-
ization (CEN), European Telecommunication Stan-
dards Institute (ETSI)) or US (e.g. National Insti-
tute of Standards and Technology (NIST)) level deal
with the topic smart cities and provide their results
for the international organizations. The same applies
for national organizations (e.g. The German Institute
for Standardization (DIN) and The German standard-
ization organization for Electrical, Electronic, and In-
formation Technology (DKE)), their findings are also
discussed on the next higher level. Another organiza-
tion, involved in the standardization process, is the In-
stitute of Electrical and Electronic Engineers (IEEE),
which defines specifications regarding various topics
that are referenced or used by standardization orga-
nizations. These organizations are examples, further
exist. Due to the high number of various organi-
zations, collecting consistent requirements and stan-
dards is difficult and have to be supported.

The importance for describing well-defined re-
quirements to standardize smart city functionalities
can be compared with the requirements specification
process for SoS. Moreover, Sommerville et al. (Som-
merville et al., 2011) define SoS according to the
US Department of Defense (DoD) definition (Sys-
tems and Software Engineering Directorate, 2008) as
“a set or arrangement of systems that results when
independent and useful systems are integrated into a
larger system that delivers unique capabilities”. The
smart city definition by the ITU is similar to this one,
they differ in their accuracy, because a smart city is
only a special kind of SoS. Based on the definition of
smart cities as SoS, techniques from the requirements
specification process in software systems should be
adaptable and are considered here.

Supporting the Standardization Process of Smart City Systems

19



Figure 2: Smart City - Requirement Example.

3.3 Requirements Specification

The high relevance for well-defined requirements in
SoS requires the viewing on various requirements’
definitions and techniques. First, a general definition
for requirements and possibilities is presented. Sec-
ond, quality criteria for requirements are pointed out
for demonstrating relevant aspects in the requirements
specification process. One of these quality criteria is
consistency. How to reach this is described in detail.

3.3.1 Definition and Examples

The term requirements is defined by the IEEE (IEEE,
1990) as follows: “requirements are conditions or
capabilities needed by a user to solve a problem or
achieve an objective. These conditions and capabil-
ities have to be met or possessed by a component or
system to satisfy a contract, standard, specification or
other formally imposed documents.” Thus, require-
ments describe functionalities and rules that are im-
plemented by a component or system to meet user
needs. A requirements list of a system should consti-
tute its complete functionalities, but, it does not con-
tain how these functionalities are implemented.

Requirements have to be written down to com-
municate different viewpoints of users, to check their
consistency, and later, to proof whether the require-
ments are fulfilled. Therefore, various techniques ex-
ist that can be distinguished in three types: natural
language, semi-formal methods, and formal methods
(IEEE, 1990; Rupp, C. and die SOPHISTen, 2014).
For each of these types, an example, based on the
mentioned use case in Section 1 Supporting the traffic
flow in cities, is shown in Figure 2. The requirement
demonstrated is always the same. The natural lan-
guage is the most frequently used method to describe
requirements (Rupp, C. and die SOPHISTen, 2014),
its rules are only based on the usage rather than be-
ing pre-established to the languages use (IEEE, 1990).
The first requirement in Figure 2 shows the usage
of natural language. Semi-formal methods are used

for structuring natural language to facilitate its under-
standing; therefore, text pattern or templates can be
used (Rupp, C. and die SOPHISTen, 2014). A simple
template and an example for the semi-formal method
is also shown in Figure 2. Formal methods often rely
on mathematical, algebraic, or model-based represen-
tations to explain system functionalities (IEEE, 1990;
Sommerville, 2009); therefore, variables for compo-
nents, systems, and activities defined that are set in
relation to each other. The last example in Figure 2
shows an algebraic representation of the requirement.

Which kind of requirements specification is used
has to be decided for every project. The decision
bases on the kind of system for which the require-
ments are defined. Security-critical systems are often
described with formal methods to be sure whether all
states of the system were considered and automatized
analyses were executed. However, formal methods
are hard to learn and time consuming, and thus not
appropriately used (Sommerville, 2009; IEEE, 1998).
Using natural language or semi-formal methods is
easier for describing requirements, but, they are often
ambiguous, which leads to mistakes in the develop-
ment process (Rupp, C. and die SOPHISTen, 2014;
IEEE, 1998). For describing requirements of smart
cities as security- and safety-critical systems in detail,
formal methods are useful for identifying interfaces
and system states. However, general requirements on
smart cities are often defined by experts without an
ICT background, and thus, formal methods are undis-
closed. Though, semi-formal methods like the use
case methodology (IEC, 2015) are used for structur-
ing requirements to facilitates the collection, sorting,
and understanding of these, and it also allows sim-
ple analyses. Thus, requirements in natural and semi-
formal language are considered in this work.

3.3.2 Quality Criteria

In the IEEE Recommended Practice for Software Re-
quirements Specification (IEEE, 1998), quality crite-
ria for requirements are defined as follows:

DCSMARTGREENS 2016 - Doctoral Consortium on Smart Cities and Green ICT Systems

20



• correct: a requirement is correct if it matches
the functionality that the systems shall implement.
This cannot be checked by an automatized pro-
cess, a review has to decide whether a requirement
is correct or not.

• unambiguous: a requirement is unambiguous if it
has only one interpretation, or rather, each part
of the described system has its own uniques term
that is used consistency during the project. There-
fore, a glossary can be used that has to be used and
checked by editors. Otherwise, the application of
requirements specification languages detect many
lexical, syntactic, and semantic errors that base on
ambiguous statements.

• complete: requirements are complete if all func-
tional as well as non-functional requirements of
the planned system are collected.

• consistent: a requirement is consistent if no char-
acteristic, logical, or temporal conflicts exist in it-
self. Additional, requirements have to be conflict-
free between each other, this also means that re-
quirements have to use the same terms to describe
functionalities. Using the same terms makes it
easier to detect same or conflicting requirements.

• ranked for importance and/or stability: require-
ments should be ranked, thus, each requirement
has an identifier to indicate either the importance
or stability. Some requirements may be essential,
conditional, or optional for the final system, i.e.
some requirements are necessary for a successful
implementation and others are nice to have.

• verifiable: a requirement is verifiable if its suc-
cessful implementation is measurable by a person
or machine. Requirements that include terms like
“works well” or “shall usually happen” are non-
verifiable.

• modifiable: requirements are modifiable if any
changes on them can be done easily, completely,
and consistency while retaining the structure and
style of the specification, i.e. they should have a
coherent organization, are not redundant, and are
expressed separately.

• traceable: a requirement is traceable if its origin is
clear (backward traceability) and it is referenced
in later development steps (forward traceability).

The list gives an overview of quality criteria for re-
quirements that have to be considered for a successful
implementation of new systems. The standardization
tries to support the successful development of SoS
trough a template, the so-called use case methodol-
ogy (cf. Section 3.3.4). This template supports the

development of well-structured requirements. How-
ever, due to its extensive description of general and
technical aspects, a manual check of all these crite-
ria is difficult. Thus, aim of this PhD project is to
support the syntactically correct and consistent acqui-
sition and check of requirements for SoS. This shall
be done automatically or rather semi-automatic.

3.3.3 Consistency Checks

As mentioned above, requirements are consistent if
no conflicts within one requirement and between re-
quirements exist (IEEE, 1998), i.e. requirements have
to be characteristic, logical, and temporal consistent.
Characteristic inconsistencies are conflicting objects,
e.g. a requirement says the transfer rate of the traf-
fic camera amounts 98.304.000 Bit/s, and another re-
quirement implies that the data of the motion detector
have to be analyzed. These both requirements assume
two different techniques to record the current traffic
volume, thus, an inconsistency between the applied
object exist. Logical and temporal inconsistencies re-
sult from conflicts between described actions in re-
quirements. For example, one requirement describes
that the data have be to transferred and analyzed, an-
other requirement implies that the data is analyzed
and than transferred, i.e.two requirements describe a
complete different behavior.

Inconsistencies within requirements written in
natural or semi-formal language can be avoided with
different known techniques, e.g. proofreading by a
third-party (Rupp, C. and die SOPHISTen, 2014),
glossaries (IEEE, 1998; Rupp, C. and die SOPHIS-
Ten, 2014; Robertson and Robertson, 2012), and text
mining (Berry and Castellanos, 2007). Proofreading
is the simplest one and is supported by various word
processing software, such as MS Word or browser
add-ons like spell checker (Smart Software, 2016).
However, these tools cannot check whether the de-
scribed requirements consistent or not; therefore, a
human has to check the requirements. Creating a
glossary has to be done manually; however, its consis-
tent use can be tool-supported. For example, the word
lights have different meanings, in the smart city con-
text lights can be traffic lights or street lights, hence,
a clear definition in a glossary is needed. Text mining
uses linguistic analyses for extracting information and
detecting text patterns; therefore, techniques like clus-
tering, classification, and retrieval can be used (Berry
and Castellanos, 2007). This approach can be applied
automatically on requirements.

The use of text mining techniques for consistency
checks operates with similarity checks. For detecting
inconsistencies between requirements, requirements
have to be found that have a high similarity because

Supporting the Standardization Process of Smart City Systems

21



inconsistencies occur frequently in requirements that
touch the same areas of a system (Port et al., 2011).
The process of text mining can be divided into two
phases: text preparation and text analysis (Tan, 1999).
The preparation adapts the text before it is analyzed
to reduce its complexity. These include, for example,
tokenization, stemming, and tagging (Kibble, 2013).
Tokenization splits the text into tokens that can be sin-
gle words or meaningful expression, e.g. traffic flow
and street lights. Stemming removes all affixes, e.g.
supporting is shorten into support. Tagging associates
words with a grammatical category, e.g. flow with
the type noun. A further text preparations are cluster-
ing techniques to group a set of data, so that similar
subjects are grouped together in a particular cluster
while dissimilar subjects are located in different clus-
ters (Tan, 1999). Based on the preparation, a Latent
Semantic Analysis (LSA) can be made that extracts
and represents the contextual-usage meaning of words
by statistical computations applied to a large corpus of
text (Port et al., 2011). With regard to the results of
the LSA, hints for inconsistencies can be given.

Aim of the PhD project is to adapt these tech-
niques to the use case methodology, which is de-
scribed in the next part.

3.3.4 IEC 62559-2: Use Case Methodology

Use Cases are described by the Object Management
Group (OMG)(OMG, 2011) as follows: “Use cases
are a means for specifying required usages of a sys-
tem. Typically, they are used to capture the require-
ments of a system, that is, what a system is sup-
posed to do.”. They are an effective methodology
to describe systems functionality and their bound-
aries (Cockburn, 2000; Rupp, C. and die SOPHIS-
Ten, 2014). The use case methodology is an accepted
method to describe requirements in a structured way
by natural language. Due to the presented template,
editors of the use case do not forget information, e.g.
the detailed description of actors and non-functional
requirements. However, the description of any possi-
bility and all boundaries of a system leads sometimes
to inconsistencies within the use case description.

This methodology is already used by the standard-
ization organization and an own template was devel-
oped for describing future SoS complete and consis-
tent (DKE, 2014; IEC, 2015). Regarding the com-
plexity of use case descriptions, a manual consis-
tency check is difficult and should be tool-supported.
A web-based application to describe and collect use
cases already exist, the Use Case Management Repos-
itory (UCMR). It supports the development process
by various libraries, but it does not have any possi-
bility for an automated consistency check. The IEC

use case template is introduced below to get a first
impression of the methodology.

The use case template is structured in eight parts:
description of the use case, diagrams of use case, tech-
nical details, step by step analysis, information ex-
changed, requirements, common terms and definition,
and custom information. However for explaining the
template in brief, it can also be split in four segments:
general information, functional description, technical
details, and additional information; that are subdi-
vided in further parts. The use case description starts
with general information, they may include an unique
name, objectives and a boundary to other use cases
or scenarios. On this basis, a complete description of
the required functionality is given as continuous text.
In the next step, the functional description is consti-
tuted as step-by-step analysis for different scenarios
whereas information objects and further requirements
are defined. In parallel with these three activities,
terms are defined and additional information are given
for supporting the understanding of the use case.

Figure 3 shows some parts of the use case tem-
plate based on the example Supporting the traffic flow
in cities. The tables Name of use case and Scope and
objectives of use case are part of the first segment,
general information on the use case are given. The
unique identifier is SC-01 and the use case is part of
the domains Mobility and Transport as well as Civil
Security and the zone Process (based on the Smart
City Infrastructure Architecture Model (SCIAM)). In
addition, a comprehensive name should be given for
the use case. The second table demonstrates bound-
aries, limits, and aims of the use case as well as the
link to city business cases. Thus, cities are defined
for which the use case is relevant as well as objec-
tives that should be reached through the use case, e.g.
city buses on schedule and less traffic accidents. Also,
relevant business cases are mentioned e.g. the future
city planning. The third table lists non-functional re-
quirements like the private and data protection laws
that have to be considered by the implementation of
the use case.

3.4 Related Work

In this part, an overview of related work regarding the
topics requirements specification for smart spaces and
consistency checks are given. Various approaches are
considered and described in brief.

The approach by Evans et al. (Evans et al., 2014)
describes a model to gather requirements for spe-
cial systems, in their case an ambient assisted liv-
ing system is considered. They develop a six-step
activity list to collect and describe requirements in

DCSMARTGREENS 2016 - Doctoral Consortium on Smart Cities and Green ICT Systems

22



Figure 3: Use Case Methodology - Example.

a scenario-based process. These activities are: es-
tablish high-level objectives, establish scope, iden-
tify stakeholders, identify tasks / functionalities, iden-
tify system performance quality, and determine stake-
holder profiles. Furthermore, the process is comple-
mented with two further activities for supporting op-
erations and harmonizing requirements parallel to the
mentioned activities. At first glance, it seams sim-
ilar to the use case methodology (cf. Section 3).
Both techniques describe objectives and scopes at the
beginning for a common understanding of require-
ments (or rather use cases). The identification of
stakeholders or rather actors follows the objectives
and scopes. Afterwards, scenarios are identified in
which stakeholders or actors are involved. Regard-
ing the stakeholders or actors further requirements, al-
most non-functional requirements, are identified and
linked with the described functional requirement or
use case. These approaches differ in their given struc-
ture, the use case methodology seams more structured
and detailed as the scenario-based approach by Evans
et al. (Evans et al., 2014). Sutcliffe et al. (Sutcliffe
et al., 2006) also describes a similar scenario-based
approach. They describe their approach as an itera-
tive process whereby the requirements specification
is followed by mock-ups and prototypes to involve all
stakeholders from the beginning in the specification
process. Thus, the requirements description is more
user oriented and scenarios regarding special aspects,
such as cultural and local ones, are created.

The requirements engineering process for cyber-
physical systems has to note mechanical engineering,
electrical engineering, and computer science, i.e. all
relevant aspects for smart city systems are considered
(Wiesner et al., 2015). The approach by Wiesner et

al. considers the requirements engineering process
for future cyber-physical systems with a high num-
ber of components as a dynamic process that has to
be supported by a universal content model and nat-
ural language processing technologies for collecting
requirements. Therefore, domain specific models for
various components and systems as well as their inter-
faces have to be implemented for using such models
and technologies.

If methodologies and technologies reducing the
amount of inconsistent requirements are considered,
then approaches handling with inconsistent require-
ments can be also viewed to get another viewpoint
on it. Some authors are convinced that inconsisten-
cies within requirements can be tolerated when dis-
posal costs are higher than savings for a better un-
derstanding (cf. (Apfelbacher, 2007) and (Parnas and
Clements, 1986)). For these approaches, inconsis-
tencies have to be classified and detected in require-
ments’ specifications to make a decision on their rel-
evance and expected disposal costs. The PhD thesis
by Apfelbacher (Apfelbacher, 2007) describes an ap-
proach how inconsistencies within requirements, con-
cepts, and models for software systems can be de-
tected and how inconsistencies can be avoided from
beginning. First, the classification of inconsistencies
is demonstrated by four inconsistent classes: unno-
ticed, semantical, specification-, and model-based in-
consistencies. These inconsistencies except the un-
noticed one can be detected by different techniques
partly with tool support, while a human have to decide
whether it is an inconsistency or not. Apfelbacher
says that more than one reviser have to check the re-
quirements specification to be sure that important in-
consistencies were removed. The reviser, in the best

Supporting the Standardization Process of Smart City Systems

23



case, are some developer and receiver of the require-
ments, so that both viewpoints of the requirements
specification process are considered. This is partic-
ularly important for checking the model-based incon-
sistencies because these are often part of the concep-
tual product description to be established. This proof-
reading concept can be support by tools, such as UML
tools or word processors, to facilitate and accelerate
the consistency check especially for semantically in-
consistencies. Additionally, templates for the consis-
tency check can be created which contain e.g. check-
lists to remember proofreader on important things e.g.
special specification guidelines.

To avoid inconsistencies from beginning, Apfel-
bacher describes a procedure to create requirements
and conceptual documents. His suggestion is a struc-
tured procedure which based on a good communica-
tion between all participants. It starts with the deter-
mination of the general procedure of the documenta-
tion process and the classification of possible incon-
sistencies so that each project has to decide which
parts are relevant for them. Afterwards, a visual de-
scription of requirements and a concept, e.g. via UML
diagrams, are suggested which should be extended by
notes to improve the understanding. Finally, notes
and diagrams should be prepared, and these docu-
ments should be proofread similar to the procedure
for consistency checks.

The described procedure of creating structured
text and the hint to use tool support are two aspects
which are also considered in this work. However, the
aim is to remove inconsistencies, if they are detected
by a reviser whereas it should his or her decision what
is done with the inconsistency. Though, the classifica-
tion of inconsistencies can be used for detecting and
rating inconsistencies for the reviser.

4 METHODOLOGY

The PhD project is structured by a template for design
science research. Design science research is a prag-
matic research paradigm to solve real-world problems
through the usage of information technology (IT) ar-
tifacts with a high priority on relevance in the appli-
cation domain (Hevner and Chatterjee, 2010). Thus,
the design science research links information systems
research and practice. For example, a real world
problem is the collection of consistent requirements
for systems particularly for complex systems, such as
smart cities (DKE, 2014). These systems are SoS,
i.e. each subsystem has its own requirements list, and
additionally, functional requirements for the complex
system and interface requirements are needed to de-

pict a requirements list for a SoS. The Design Sci-
ence Research Process (DSRP) model by Peffers et al.
(Peffers et al., 2006) is used to consider this real world
problem. The DSRP model describes a conceptual
model for researchers to carry out design science re-
search for information systems and requirements en-
gineering (Peffers et al., 2006). It provides a template
for readers and reviewers to recognize and evaluate
research work which is used for the PhD project (Pef-
fers et al., 2006). The template for the DSRP model
is shown in Figure 4.

The first step of the DSRP model is the problem
identification and motivation which defines a prob-
lem and should show the importance of a problem,
for motivating researchers to pursue a solution and
to accept results. Additionally, it helps to understand
the thinking on the problem. At the end of this step,
the state of the problem and the importance of its so-
lution are clear. The second step is objectives of a
solution. In this step, objectives are inferred from
the problem specification. These objectives can be
quantitative or qualitative, i.e. indications that can be
used to compare the solution with the current state
or whether a new artifact is expected to support the
solution. Therefore, knowledge about the problem
specification and current solutions and their efficacy
are needed. The third step consists of design & de-
velopment, at this point the chosen solution have to
be implemented. Next to the realization of the solu-
tion, this step includes the description of requirements
and the resultant architecture of a solution. There-
fore, theory knowledge is needed to create a solution.
The fourth step is the demonstration. The solution
is applied e.g. in experimentations, simulations, case
studies, etc. to show its functionality and efficiency.
The fifth step is the evaluation. The demonstration
of the solution is observed and metrics and analyses
are used to evaluate the solution. Thereby, the effec-
tiveness and efficiency are considered. If results of
the observation do not meet the expected results, the
process will iterate back to the second or third step to
adapt the expected objectives and implementation as
well as to evaluate the results again (also called De-
sign Process). Otherwise, the process ends with the
sixth step, the Communication; however, this step can
be reached from each step to share ideas, results, and
new findings (Peffers et al., 2006).

Based on the above mentioned process, this work
is structured by the DSRP model. During the first
step, difficulties in the standardization process for
SoS were observed in standardization workgroups
and read in various reports (DKE, 2014; DKE, 2015).
These discoveries and the application of software en-
gineering techniques, such as the use case method-

DCSMARTGREENS 2016 - Doctoral Consortium on Smart Cities and Green ICT Systems

24



Figure 4: Design Science Research Process Model (according to (Peffers et al., 2006)).

ology (cf. Section 3), led to the a research question
for supporting the collection and management of re-
quirements (cf. Section 1). Syntactical correct and
consistent requirements can support the requirements
specification or rather the use case methodology, thus,
these both properties and existing approaches are con-
sidered in this work. After creating an overview of
existing techniques and approaches, the design & de-
velopment process starts with a requirements specifi-
cation and follows with an implementation. It should
also be pointed out that literature is reviewed and
models as well as prototypes are implemented. The
demonstration of the tool should be done as stan-
dalone tool for checking requirements that are not cre-
ated as use cases, e.g. the requirements specification
of the tool itself, and as link to a UCMR. For the eval-
uation metrics are used to measure the amount of de-
tected incorrect and inconsistencies after executing a
consistency check. In addition, interviews with users
of the UCMR are carried out. In parallel with these
five steps, ideas and results are presented on work-
shops, proceedings, and standardization workgroups.

5 EXPECTED OUTCOME

The use case methodology (cf. Section 3) shall be
extended by an application for consistency checks.
This application shall be implemented for the UCMR;
however, the extension shall also be an independent
application for executing consistency checks for re-

quirements lists that do not base on the use case ap-
proach. Figure 5 shows the concept of the UCMR and
an included consistency check. The UCMR is a web-
based application for creating, collecting, and man-
aging use cases by different experts. Additionally, it
allows an import of use cases as XML or HTML files,
as well as an export. The consistency check shall be
an external application that is integrated within the
UCMR to provide a final check before use cases are
stored or rather shared with other experts. The con-
sistency check shall also create a report, which can be
exported by the experts as HTML file.

Figure 5: Design.

Results of this work assist customer or experts
who create requirements (e.g. various experts, such as
ICT and domain experts for smart homes, smart grids,
smart cities, etc.), requirements engineers who man-
age requirements, and system architects who work

Supporting the Standardization Process of Smart City Systems

25



with these requirements. Next to the requirements im-
proved, the development of new standards that base
on requirements for future systems can be supported;
thus, standardization organizations are further benefi-
ciaries. Additionally, all parties should be supported
through visualization techniques during the require-
ments specification process to create an overview of
existing requirements and their relations, maybe it
can support the completeness of requirement speci-
fications.

6 STAGE OF THE RESEARCH

Currently, I am reviewing literature for existing tech-
niques to reduce syntactically incorrect and incon-
sistent requirements. Concurrently, techniques for
visualizing requirements are considered. Based on
the literature review, requirements for the consistency
check applications are collected and recorded. Re-
garding on the shown DSRP model, the work is at the
second step objectives of a solution, and regarding on
the defined objectives in Section 2, the stage of re-
search is as follows:

• visualizing requirements: The literature review
for visualizing techniques is at the beginning;
thus, papers that give an overview of visualizing
requirements were read (Khairuddin and Hashim,
2008; Heim et al., 2008; Lamsweerde, 2009).

• reducing syntactically incorrect requirements:
The literature review for techniques to avoid syn-
tactically incorrect requirements is also at the
beginning, difficulties are described in (IEEE,
1998).

• reducing inconsistent requirements: To get con-
sistent requirements various techniques for the
different kind of requirement descriptions (nat-
ural language, semi-formal method, and formal
method) already exist. Some of these techniques
were considered and described on the survey, e.g.
simple proofreading (Rupp, C. and die SOPHIS-
Ten, 2014), using a glossary (IEEE, 1998; Rupp,
C. and die SOPHISTen, 2014; Ludewig, 2007),
Text Mining (Berry and Castellanos, 2007), Soft-
ware Cost Reduction method (Heitmeyer et al.,
1996), etc.

• implementing an approach: Based on the litera-
ture review a requirements list, design, and imple-
mentation are created and linked with the UCMR.

• evaluating the approach: First validation data
were collected. The first validation shall be done
with the describe requirements for the consis-

tency check application (self-review). Further val-
idations base on use cases from the DISCERN
project (Discern, 2016) and various results from
German standardization organizations.

REFERENCES

Apfelbacher, R. (2007). Tolerierbare Inkonsistenzen in
Konzeptbeschreibungen. PhD thesis, University of
Postdam.

Berry, M. W. and Castellanos, M., editors (2007). Survey of
Text Mining: Clustering, Classication, and Retrieval,
volume 2. Springer.

CISCO and AGT International (2014). AGT and Cisco
Traffic Incident Management Solution: Improving
Traffic Safety and Efficiency. Technical report,
CISCO and AGT International.

Cockburn, A. (2000). Wrting Effective Use Cases. Addison-
Wesley Professional.

DaCosta, F. (2013). Rethinking the Internet of Things: a
scalable approach to connecting everything. Apress.

Discern (2016). Discern - Distributed Intelligence
for Cost-effective and Reliable Solutions.
http://www.discern.eu/ last visit on 28th January
2016.

DKE (2014). The German Standardization Roadmap Smart
City. Technical Report 1, DKE.

DKE (2015). The German Standardization Roadmap Smart
City. Technical Report 1.1, DKE.

Evans, C., Brodie, L., and Augusto, J. C. (2014). Require-
ments Engineering for Intelligent Environments. In
International Conference on Intelligent Environments.

Heim, P., Lohmann, S., Lauenroth, K., and Ziegler, J.
(2008). Graph-based Visualization of Requirements
Relationships. In Requirements Engineering Visual-
ization, pages 51–55. IEEE.

Heitmeyer, C., Jeffords, R., and Labaw, B. (1996). Auto-
mated consistency checking of requirements specica-
tions. In ACM Transactions on Software Engineering
and Methodology (TOSEM).

Hevner, A. and Chatterjee, S. (2010). Design Research
in Information Systems. In Integrated Series in
Information Systems 22, pages 9–21. Springer Sci-
ence+Business Media.

IEC (2015). IEC 62559-2:2015 Use case methodology -
Part 2: Definition of the templates for use cases, actor
list and requirements list.

IEEE (1990). Standard: IEEE Std 610 - IEEE Standard
Glossary of Software Engineering Terminology.

IEEE (1998). IEEE Recommended Practice for Software
Requirements Specification.

ITU-T (2012). Overview of the Internet of things. Technical
Report Y.2060, ITU.

ITU-T FG-SSC (2014). Smart sustainable cities: An analy-
sis of definitions . Technical report, ITU-T.

Johnson, C. (2011). Achieving Systems Safety, chapter Cy-
berSafety: On the Interactions between CyberSecurity

DCSMARTGREENS 2016 - Doctoral Consortium on Smart Cities and Green ICT Systems

26



and the Software Engineering of Safety-Critical Sys-
tems, pages 85–95. Springer.

Khairuddin, N. N. and Hashim, K. (2008). Requirements
Visualization Techniques: A Comparative Analysis.
In Proceedings of the 8th Conference on Applied
Computer Science, ACS08.

Kibble, R. (2013). Introduction to natural language process-
ing. Technical report, University of London.

Lamsweerde, A. v. (2009). Requirements Engineering:
From System Goals to UML Models to Software Spec-
ifications. Wiley.

Ludewig, J. (2007). Software Engineering. dpunkt Verlag.
OMG (2011). Unified Modeling Language. Technical re-

port, OMG.
Parnas, D. L. and Clements, P. C. (1986). A Rational Design

Process: How and Why to Fake It. IEEE Transactions
on Software Engineering, (2):251–257.

Peffers, K., Tuunanen, T., Gengler, C. E., Rossi, M., Hui,
W., Virtanen, V., and Bragge, J. (2006). The De-
sign Science Research Process: A Model for Produc-
ing and Presenting Information System Research. In
DESRIST, pages 83–106.

Port, D., Nikora, A., Hayes, J. H., and Huang, L. (2011).
Text Mining Support for Software Requirements:
Traceability Assurance. In System Sciences (HICSS).

Rittel, H. W. and Webber, M. M. (1973). Dilemmas in a
general theory of planning. Policy sciences.

Robertson, S. and Robertson, J. (2012). Mastering the
Requirements Process - Getting Requirements Right.
Addison-Wesley.

Rupp, C. and die SOPHISTen, editor (2014). Requirements-
Engineering und -Management. Hanser Verlag.

Smart Software (2016). Spell Checker for Chrome.
Sommerville, I. (2009). Software Engineering, volume 9,

chapter Formal Specification. Addison Wesley.
Sommerville, I., Cliff, D., Calinescu, R., Keen, J., Kelly,

T., Kwiatkowska, M., McDermid, J., and Paige, R.
(2011). Large-scale complex IT systems. Communi-
cations of the ACM, 55(7):71–77.

Sutcliffe, A., Fickas, S., and Sohlber, M. M. (2006). PC-RE:
a method for personal and contextual requirements en-
gineering with some experience. Requirements Eng.

Systems and Software Engineering Directorate (2008). Sys-
tems Engineering Guide for Systems of Systems.
Technical report, Office to the Deputy Under Sec-
retary of Defense for Acquisition and Technology,
Washington, DC.

Tan, A.-H. (1999). Text Mining: Promises and Challenges.
In South East Asia Regional Computer Confederation.

Tragos, E. Z., Angelakis, V., Fragkiadakis, A., Gundlegard,
D., Nechifor, C., Oikonomou, G., Pöhls, H. C., and
Gavras, A. (2014). Enabling Reliable and Secure IoT-
based Smart City Applications. In The First Interna-
tion Workshop on Pervasive Systems for Smart Cities.

Wagner, S. (2014). Verkehrssteuerung über die Siemens
private cloud”. Technical report, Siemens.

Wiesner, S., Baalsrud Hauge, J., and Thoben, K.-D. (2015).
Challenges for Requirements Engineering of Cyber-
Physical Systems in Distributed Environments. In

Advances in Production Management Systems: Inno-
vative Production Management Towards Sustainable
Growth.

Supporting the Standardization Process of Smart City Systems

27


