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Abstract: Physiological games use classification algorithms to extract information about the player from physiological 
measurements and adapt game difficulty accordingly. However, little is known about how the classification 
accuracy affects the overall user experience and how to measure this effect. Following up on a previous 
study, we artificially predefined classification accuracy in a game of Snake where difficulty increases or 
decreases after each round. The game was played in a laboratory setting by 110 participants at different 
classification accuracies. The participants reported their satisfaction with the difficulty adaptation algorithm 
as well as their in-game fun, with 85 participants using electronic questionnaires and 25 using paper 
questionnaires. We observed that the classification accuracy must be at least 80% for the physiological 
game to be accepted by users and that there are notable differences between different methods of measuring 
the effect of classification accuracy. The results also show that laboratory settings are more effective than 
online settings, and paper questionnaires exhibit higher correlations between classification accuracy and 
user experience than electronic questionnaires. Implications for the design and evaluation of physiological 
games are presented. 

1 INTRODUCTION 

1.1 Classification in Physiological 
Games 

Computer games represent an important application 
of physiological computing. In such “physiological 
games”, physiological measurements are used to 
detect player boredom, frustration or anxiety and 
adapt the game difficulty accordingly – decrease 
difficulty in case of high frustration/anxiety and 
increase it in case of boredom  (Gilleade et al. 2005; 
Liu et al. 2009; Chanel et al. 2011). This can be 
done for entertainment purposes, but can also be 
used in serious applications such as ensuring an 
appropriate level of exercise intensity in physical 
rehabilitation (Koenig et al. 2011). Such difficulty 
adaptation based on physiological measurements has 
been shown to be more effective than adaptation 
based on game performance (Liu et al. 2009). 

In order to adapt game difficulty, it is necessary 
to first identify the level of player boredom, 
frustration or anxiety from the physiological 

responses. This is generally done with 
psychophysiological classification algorithms such 
as discriminant analysis, support vector machines or 
neural networks (Novak et al. 2012). These 
algorithms take physiological measurements as the 
inputs, and output the current state of the user. In 
most practical cases, this user state has two possible 
classes (e.g. low / high anxiety) or three possible 
classes (e.g. low / medium / high frustration). 
Difficulty is then adapted using simple rules – 
increase difficulty in case of low frustration, and 
decrease it in case of high frustration. 

No psychophysiological classification algorithm 
is perfect, and mistakes are always made when 
trying to identify the state of the user from 
physiological measurements. The classification 
accuracy is usually evaluated offline (with 
previously recorded data) and ranges from as low as 
60% (Novak et al. 2011) to as high as 90% (Liu et 
al. 2009). The “ground truth” for such evaluations is 
the user’s self-reported level of frustration, anxiety 
or boredom. This level is obtained via questionnaires 
that are administered at regular intervals throughout 
the game. Classification accuracy is then defined as 
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the percentage of times the computer and the user 
report the same user state. Since this user state is 
linked to difficulty adaptation via simple rules, 
classification accuracy can be alternatively defined 
as the percentage of times the computer and the user 
agree on how difficulty should be adapted (Novak et 
al. 2014). 

In addition to evaluation with previously 
recorded data, some studies have also examined 
classification in real time during gameplay and have 
mainly achieved accuracies around 80% (Liu et al. 
2009; Shirzad and Van der Loos 2016; Liu et al. 
2008). These studies reported that users were largely 
satisfied with difficulty adaptation, suggesting that a 
classification accuracy around 80% is sufficient for 
physiological games. However, other questions now 
arise: Would a lower accuracy have been sufficient 
as well? Would a higher accuracy have increased 
user satisfaction further? 

1.2 Effect on User Experience 

The question of how classification accuracy affects 
the overall user experience remains surprisingly 
underexplored in physiological computing. The 
majority of studies have focused only on a single 
classification accuracy, as described above. 
However, for future development of physiological 
computing, it is critical to know the minimal 
acceptable classification accuracy for different 
applications as well as the extent to which 
classification accuracy improves users’ satisfaction 
with the system. This would allow developers to, for 
example, determine whether a system is ready for 
public release or whether the psychophysiological 
classification accuracy should be improved using 
additional sensors or better classification algorithms.  

A recent study explored the effect of different 
classification accuracies on user experience in a 
simulated physiological game (Novak et al. 2014). 
Study participants played the classic Snake game on 
the Internet, with no physiological sensors attached. 
Whenever a new game round began, participants 
were asked whether they would prefer to increase or 
decrease difficulty. No option was given to keep 
difficulty at the same level. The game then simulated 
a classification accuracy by doing what the user 
wanted in a certain percentage of situations. For 
example, to simulate a 100% classification accuracy, 
the game always changed difficulty as requested by 
the user. On the other hand, to simulate a 50% 
classification accuracy, the game changed difficulty 
in the direction requested by the user in only half of 
the cases, and changed it in the other direction in the 

other half of the cases.  
The study (Novak et al. 2014) found a significant 

correlation between classification accuracy and 
satisfaction with the difficulty adaptation algorithm 
(r=0.43). However, there was practically no 
correlation between classification accuracy and in-
game fun (r=0.10). This surprising result suggested 
that the accuracy of user state classification in 
physiological games does not matter very much. 

However, the aforementioned study also suffered 
from several methodological weaknesses. Most 
notably, participants were able to drop out in the 
middle of the study, and dropouts were not included 
in the analysis. It is thus likely that participants who 
did not have fun in the game simply dropped out, 
skewing the results. Furthermore, participants were 
unevenly distributed into groups, and the 
questionnaires, which were delivered over the 
Internet, had not been previously validated.  

1.3 Contribution of Our Paper 

Due to these methodological weaknesses, we must 
wonder whether psychophysiological classification 
accuracy truly has no effect on in-game fun or 
whether the effect was simply not properly 
measured. The high dropout rates and uneven group 
sizes could be easily addressed in a laboratory study. 
A lab setting supervised by an experimenter would 
also avoid the potential issue of participants not 
paying attention to Internet-based instructions 
(Oppenheimer et al. 2009). Furthermore, it would 
allow the questionnaires to be delivered either 
electronically or on paper, which could affect the 
results.  

Our study therefore extends the previous Novak 
et al. (2014) study to a laboratory setting where 
dropout rates are very low and participants wear an 
inactive physiological sensor to simulate an actual 
physiological computing experience. The same 
questionnaire items are reused to enable comparison 
to the previous study. Since little research has been 
done on measuring the effect of psychophysiological 
classification, our research contributes to the 
development of evaluation methods in the field of 
physiological computing.  

2 MATERIALS AND METHODS 

2.1 Participants 

114 participants were recruited for the study. Due to 
data collection issues (crashes, incomplete 
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questionnaires), data from 4 participants were 
discarded, resulting in 110 valid participants total. 
They were recruited primarily among students and 
staff of the University of Ljubljana, Slovenia, with 
additional participants recruited by word of mouth. 
There were 74 men and 39 women, mean age 26.4 
years, standard deviation 8.5 years. 

Participants were divided into two groups: the 
first 85 participants completed the study with 
electronic questionnaires and the remaining 25 
completed it with paper-and-pencil questionnaires.  

Within each group, participants were evenly 
divided into five subgroups corresponding to five 
psychophysiological classification accuracies: 
33.3% (2/6), 50% (3/6), 66.7% (4/6), 83.3% (5/6) 
and 100%. Each participant played the physiological 
game with the classification accuracy assigned to 
them, as described in the next section.  

2.2 Experiment Protocol 

The experiment was conducted at the University of 
Ljubljana, Slovenia. Upon arrival, the experimenter 
explained to the participant that the goal of the study 
was to test the performance of a physiology-based 
game difficulty adaptation algorithm. The game was 
demonstrated and the participant was allowed to 
play it briefly. They were told that the game 
difficulty would be changed according to 
engagement level measured using a physiological 
sensor and intelligent machine learning algorithms. 
They were also told that the game would 
periodically ask them for their opinion on difficulty 
adaptation, but that this opinion would only be used 
to evaluate and further improve the algorithm – it 
would not affect the decisions taken by the difficulty 
adaptation.  

If the participant consented to participate, a skin 
conductance sensor was attached to the distal 
phalanges of the second and third fingers of the 
nondominant hand. The experimenter pretended to 
calibrate the sensor to give the impression that the 
participant’s physiological responses would actually 
be recorded, but in reality the sensor was turned off 
for the duration of the study. Its purpose was simply 
to mimic a realistic physiological gaming situation. 
After the ‘calibration’, a few pre-game questions 
were asked (section 2.4). 

The participant played the game for seven 
rounds. At the end of each round except the last one, 
the participant was asked if they would prefer to 
increase or decrease difficulty. No option was given 
to stay at the same difficulty. Once the participant’s 
preference was input, the computer chose whether to 

change difficulty the way the participant wanted. 
The probability of doing what the participant wanted 
was defined by the classification accuracy assigned 
to the participant (section 2.1). For example, at 
66.7% classification accuracy, the computer changed 
difficulty the way the participant wanted after 4 out 
of 6 rounds and changed difficulty in the opposite 
direction after 2 out of 6 rounds.  

This computer behaviour was different from 
what participants were told would happen (that 
physiological measurements would be used to 
change difficulty), but the deception was necessary 
for the purpose of the experiment. Artificially 
defining the classification accuracy (as the 
percentage of times the computer does what the 
player wants) allowed us to study the effects of 
classification accuracy in a controlled setting. Since 
the ground truth for psychophysiological 
classification is generally the player’s self-reported 
state or preference, the artificially defined agreement 
percentage serves as an appropriate stand-in for 
actual classification accuracy (Novak et al. 2014). 

After the seventh round, the participant 
completed a questionnaire about their overall game 
experience (section 2.4). They were then debriefed 
about the true purpose and protocol of the study. 

2.3 The Game 

The game was reused from the Novak et al. (2014) 
study. It is a variant of the classic Snake game where 
the player controls a snake that moves across the 
screen at a certain speed (Fig. 1). The player cannot 
slow down or speed up the snake, but can turn it left 
or right with the left and right arrows on the 
keyboard. 

The game is divided into rounds. Each round 
begins with a very short snake and a piece of food at 
a random position on the screen. When the snake 
collides with the food, the food disappears, the 
player gets 100 points, the snake grows longer, and a 
new piece of food appears at a random position. 
When the snake collides with itself or the edge of 
the playing field, it dies and the round ends. 

In the first round, the game begins at a random 
difficulty level between 2 and 6. The difficulty level 
affects the speed with which the snake moves across 
the playing field: it needs approximately 7 seconds 
to cross the entire field at level 1, 2 seconds at level 
6, and 1 second at level 10. The difficulty is 
increased or decreased by one level after each round 
as described in the previous section. 
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Figure 1: The Snake game. The playing field is colored 
black and bordered with gray. The snake is green with a 
blue head. The food (single square) is red. 

2.4 Questionnaires 

To directly compare our results with those of the 
previous Novak et al. (2014) study, the same 
questions were reused even though they have not 
been extensively validated. Participants were 
divided into two groups as described in section 2.1: 
one group used electronic questionnaires and the 
other used paper-and-pencil questionnaires. In the 
electronic questionnaires, multiple-choice questions 
were answered by clicking on the desired answer 
and visual analog scales were answered by using the 
mouse to drag a horizontal slider that started in the 
exact middle of the scale. In the paper 
questionnaires, multiple-choice questions were 
answered by circling the desired answer and visual 
analog scales were answered by marking the desired 
answer on a horizontal line. For both types of visual 
analog scales, answers were converted to values 
between 0 and 100. 

Before playing the game, participants were asked 
about their gender, age, and how often they play 
computer games (options: "never", "less than 1 
hour/week", "1-2 hours/week", "2-5 hours/week", 
and "more than 5 hours/week"). Participants were 
also asked how difficult they prefer games to be and 
how easily frustrated they are. These two questions 
were answered using a visual analog scale marked 
"not at all" on one end and "very difficult" or "very 
easily" on the other end.  

After playing the game, participants were asked: 
- “How fun was the game?”  
- “How frustrating was the game?” 
- “How satisfied are you with the decisions of the 

difficulty adaptation algorithm?” 
 

- “Would you recommend this difficulty 
adaptation algorithm for practical use?” 

- “Would you play this game again with the same 
difficulty adaptation algorithm?” 
The first three questions were answered using 

visual analog scales and the last two were answered 
yes or no. 

2.5 Data Analysis 

Spearman correlations between classification 
accuracy and answers to post-game questions as well 
as between pre- and post-game answers were 
calculated.  The analysis was done separately for the 
group that used electronic questionnaires and the 
group that used paper-and-pencil questionnaires. 
The threshold for statistical significance was set at p 
= 0.05.  

3 RESULTS 

The correlation between classification accuracy and 
satisfaction with the difficulty adaptation algorithm 
was significant for both the electronic questionnaire 
group (ρ = 0.58, p < 0.001) and for the paper-and-
pencil group (ρ = 0.74, p < 0.001). The correlation 
between classification accuracy and in-game fun 
was significant for the paper-and-pencil group (ρ = 
0.53, p = 0.009), but not for the electronic group (ρ 
= 0.21, p = 0.06). These correlations are illustrated 
in Figures 2 and 3. The correlation between 
classification accuracy and in-game frustration was 
not significant for either group (electronic group: ρ 
= -0.19, p = 0.08; paper-and-pencil group: 
ρ = 0.24, p = 0.24). 

The percentage of players that would recommend 
a particular difficulty adaptation algorithm for 
practical use or play the game again with the same 
difficulty adaptation algorithm is shown in Table 1. 

Finally, in the group that used electronic 
questionnaires, age was negatively correlated with 
how often the participant plays computer games (ρ = 
-0.34, p = 0.002). No other significant correlations 
between pre- and post-game questionnaire answers 
were found in either group. In particular, no 
influence of age or gender was found on user 
experience with our specific game.  
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Figure 2: Satisfaction with the difficulty adaptation 
algorithm, measured using electronic questionnaires (85 
participants) and paper-and-pencil questionnaires (25 
participants). Error bars represent standard deviations. 

 
Figure 3: In-game fun as a function of classification 
accuracy, measured using electronic questionnaires (85 
participants) and paper-and-pencil questionnaires (25 
participants). Error bars represent standard deviations. 

4 DISCUSSION 

4.1 Minimum Acceptable Accuracy 

Classification accuracy was strongly correlated with 
satisfaction with the difficulty adaptation algorithm, 
demonstrating that participants clearly do notice the 
 

accuracy of a psychophysiological classification 
algorithm in a physiological game. Both types of 
questionnaires showed a strong jump in user 
satisfaction when classification accuracy increased 
from 66.7% (4/6) to 83.3% (5/6), as seen in Figure 
2. Similarly, Table 1 indicates that both groups have 
a positive user experience with psychophysiological 
classification accuracies of 83.3% (5/6) and 100%, 
but not with lower accuracies. 

Based on these results, we can posit that the 
minimum acceptable accuracy in such a 
physiological game is approximately 80%, which is 
similar to the threshold suggested by the previous 
Novak et al. (2014) study. Lower accuracies result in 
lower satisfaction with the difficulty adaptation. 
Designers of physiological games should thus aim to 
achieve a psychophysiological classification 
accuracy of at least 80% in order for their game to 
be accepted by end-users.  

Interestingly, the difference between accuracies 
of 83.3% and 100% is small, as seen in Figures 2-3 
and Table 1. This suggests that users are willing to 
accept occasional mistakes made by the 
psychophysiological classification algorithm as long 
as a single mistake is not critical enough to spoil the 
entire experience. Similar observations have been 
made in related fields such as games controlled with 
active brain-computer interfaces (van de Laar et al. 
2013). This suggests that efforts to increase 
psychophysiological classification accuracy above 
90% are likely worthwhile only if they require a 
small investment. For example, adding a simple skin 
temperature sensor to increase accuracy from 90% to 
95% may be worthwhile since the sensor is 
inexpensive, unobtrusive and requires minimal 
signal processing. Conversely, adding a 
multichannel EEG system for the same increase in 
accuracy would likely not be worth it, as the small 
increase in user satisfaction with the classification 
accuracy would be offset by the increased cost, 
signal processing complexity, and setup time. 

 

Table 1: Percentage of participants who answered “yes” to the two post-game questions, as a function of classification 
accuracy. Presented separately for participants who used electronic questionnaires (N=85) and participants who used paper-
and-pencil questionnaires (N=25). 

  Questionnaire 
type 

Classification accuracy 

  2/6 3/6 4/6 5/6 6/6 

Would you recommend this difficulty 
adaptation algorithm for practical use? 

Electronic 25% 43.8% 47.3% 95.2% 87.5% 

Paper-and-pencil 0% 40% 40% 80% 80% 

Would you play this game again with the 
same difficulty adaptation algorithm? 

Electronic 41.7% 43.8% 68.4% 76.2% 87.5% 

Paper-and-pencil 20% 20% 60% 60% 80% 
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4.2 Differences between Experiment 
Settings and Questionnaire Types 

4.2.1 Comparison of Results 

The effect of psychophysiological classification 
accuracy on user experience in the Snake game has 
now been evaluated in three ways: Novak et al. 
(2014) studied it online with electronic 
questionnaires while we examined it in a lab setting 
with electronic and paper-and-pencil questionnaires. 

All three approaches found significant 
correlations between classification accuracy and 
satisfaction with the difficulty adaptation algorithm. 
However, the correlation was weakest in the online 
study of Novak et al. (ρ = 0.43), medium in our 
electronic questionnaires (ρ = 0.58) and highest in 
our paper-and-pencil questionnaires (ρ = 0.74). 
Interestingly, the correlation between classification 
accuracy and in-game fun was not significant for 
either the previous Novak et al. study (ρ = 0.10) or 
our own group that used electronic questionnaires (ρ 
= 0.21). However, it was highly significant for our 
paper-and-pencil questionnaire group (ρ = 0.53).  

The link between classification accuracy and 
user experience in our laboratory study was stronger 
than in the online setting of the previous Novak et al. 
(2014) study. Additionally, though results are not 
completely reliable due to the unbalanced number of 
participants, the paper-and-pencil questionnaires 
indicated a stronger relationship between 
classification accuracy and in-game fun than 
electronic questionnaires. This is somewhat 
surprising, as the measured relationship between 
classification accuracy and satisfaction with the 
difficulty adaptation algorithm is similar for both 
types of questionnaires (Figure 2).  

Nonetheless, assuming that results of paper-and-
pencil questionnaires are the more valid ones (as 
discussed in the next section), they clearly show that 
increasing the accuracy of psychophysiological 
classification increases the amount of fun that 
players have in a physiological game. This is 
contrary to the surprising result of the previous 
Novak et al. (2014) study, which found only a minor 
effect of classification accuracy on in-game fun and 
thus asked whether increasing classification 
accuracy is even worthwhile. Our study instead 
shows that classification accuracy has a strong effect 
on in-game fun, but that it can be difficult to 
measure properly. We must thus ask ourselves: what 
is the reason for the difference between online and 
lab settings, and between electronic and paper-and-
pencil questionnaires? 

4.2.2 Possible Explanations 

We believe that our lab setting produced better 
results than the previous online setting of Novak et 
al. (2014) due to the much lower dropout rate (3.5% 
in our study, 40% in the previous study). Authors of 
the previous online study acknowledged that their 
high dropout rate likely skewed results, as 
participants who did not enjoy the game simply quit 
playing rather than fill out the final questionnaires. 
This would explain the generally better results of our 
questionnaires, as a more representative sample of 
user experience has been obtained. A second 
possible explanation is that participants in the online 
study may not have paid attention to the instructions, 
a problem common to all Web-based research 
(Oppenheimer et al. 2009). 

The difference between paper-and-pencil 
questionnaires and electronic questionnaires in our 
study is more surprising. Having examined the 
individual results in detail, we believe that it is due 
to a weakness in the electronic visual analog scales. 
Specifically, the slider of the electronic visual 
analog scale for in-game fun is initially set to the 
exact middle value, and the participant can adjust the 
answer by moving the slider. 10 of 80 participants 
did not move the slider at all; 17 of 80 moved it to 
the very far left or the very far right. Conversely, in 
the pencil-and-paper version, only 1 of 25 
participants placed the mark at approximately the 
middle of the scale, and 2 of 25 placed the mark at 
approximately the far left. We performed a follow-
up qualitative examination of the results of the 
Novak et al. (2014) study and found a similar trend 
among the 261 participants there: many either left 
the slider at the default value or dragged it to one 
extreme. This issue can be at least partially avoided 
by not providing a starting setting for the electronic 
visual analog scale and by discouraging participants 
from selecting extreme values. 

Here, we also acknowledge that the observed 
difference between electronic and paper-and-pencil 
questionnaires requires deeper experimental 
investigation. We had originally planned to use only 
electronic questionnaires, but later added paper-and-
pencil questionnaires so that we could check the 
effect of questionnaire type. However, the two 
participant groups have very different sizes, and 
more participants should be tested with paper-and-
pencil questionnaires to ensure that the ‘better’ result 
of such questionnaires is not simply a statistical 
fluke.  
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4.2.3 Implications 

The differences between questionnaires and settings 
have important implications for future studies of 
user experience in physiological computing. First, 
our study shows that the experimental paradigm of 
simulating (artificially predefining) classification 
accuracy does allow user experience to be studied in 
physiological games, as it captures the effect of 
psychophysiological classification accuracy on in-
game fun. Since no actual physiological sensors are 
strictly necessary for this, it is tempting to perform 
studies online and obtain a large number of 
participants. However, it is critical to avoid high 
dropout rates, as they may bias results. This could be 
done using a monetary reward, as is common on, 
e.g., Amazon Mechanical Turk (Paolacci et al. 
2010). On the other hand, such monetary rewards 
could decrease the ecological validity of the study, 
as participants should play computer games for fun 
rather than money. 

Furthermore, though the different items on the 
questionnaire appear to be valid for this 
physiological game, the method of their presentation 
is critical – as seen by the difference between 
electronic and paper-and-pencil questionnaires. 
Admittedly, the results are not entirely reliable due 
to the unbalanced number of participants in the two 
questionnaire groups. Nonetheless, if future studies 
of user experience in physiological games wish to 
use similar questionnaires, they should carefully 
evaluate their method of presentation in different 
settings. Alternatively, future studies could instead 
use better-established user experience questionnaires 
such as the Intrinsic Motivation Inventory (McAuley 
et al. 1989) or the Game Experience Questionnaire 
(http://www.gamexplab.nl). Finally, future studies 
could omit self-report questionnaires entirely and 
instead use more objective methods of measuring the 
effect of a physiological game. For instance, in a 
physiological game for physical rehabilitation 
(Koenig et al. 2011; Shirzad and Van der Loos 
2016), the outcome of rehabilitation could be used as 
an objective metric of the game’s effectiveness and 
should strongly depend on the game’s ability to 
correctly identify the user’s psychological state.   

4.3 Other Physiological Games 

While our study has been performed only with a 
single physiological game, we believe that the 
results would generalize to other games to some 
degree. They would best generalize to physiological 
games in which difficulty is always increased or 

decreased by one level, as in the Snake game. They 
should also, to some degree, generalize to games 
that allow difficulty to stay the same or to games 
that can change difficulty by more than one level. 
However, the minimum necessary classification 
accuracy would likely increase in games in which a 
single erroneously made change can have very 
negative consequences (e.g. player’s avatar 
immediately dies due to a mistake made by the 
classification algorithm).  

A significant disadvantage of our study is that it 
only examines user experience in a single brief 
gameplay session. If users play a game for multiple 
longer sessions, they may become more aware of the 
behavior of the physiological game, which could 
also alter their perception of the classification 
algorithm (Fairclough 2009). All other previous 
studies of user experience in physiological games 
have also only focused on single sessions (Liu et al. 
2009; Shirzad and Van der Loos 2016; Liu et al. 
2008; Novak et al. 2014), and multisession studies 
are critical to characterize the evolving relationship 
between the physiological game and the player. 

5 CONCLUSIONS 

Our study found a significant effect of 
psychophysiological classification accuracy on user 
experience in a physiological game. Both in-game 
fun and satisfaction with the difficulty adaptation 
algorithm increased with classification accuracy. 
The minimum acceptable accuracy for a practical 
physiological game is approximately 80%, as lower 
accuracies result in a poor user experience. 

We also found that a laboratory setting captures 
user experience better than an online setting, and 
that paper-and-pencil questionnaires are more 
effective than electronic questionnaires when visual 
analog scales are involved. These results contribute 
to the development of physiological game evaluation 
methods, though significant work still needs to be 
done in order to determine optimal methods of 
measuring user experience in physiological 
computing.  
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