A Spatio-temporal Approach for Video Caption Extraction

Liang-Hua Chen1, Meng-Chen Hsieh1 and Chih-Wen Su2

1Department of Computer Science and Information Engineering, Fu Jen University, New Taipei, Taiwan
2Department of Information and Computer Engineering, Chung Yuan University, Chung Li, Taiwan

Keywords: Video Content Analysis, Caption Detection, Spatio-temporal Slices.

Abstract: Captions in videos play an important role for video indexing and retrieval. In this paper, we propose a novel algorithm to extract multilingual captions from video. Our approach is based on the analysis of spatio-temporal slices of video. If the horizontal (or vertical) scan line contains some pixels of caption region then the corresponding spatio-temporal slice will have bar-code like patterns. By integrating the structure information of bar-code like patterns in horizontal and vertical slices, the spatial and temporal positions of video captions can be located accurately. Experimental results show that the proposed algorithm is effective and outperforms some existing techniques.

1 INTRODUCTION

The advances in low cost mass storage devices, higher transmission rates and improved compression techniques, have led to the widespread use and availability of digital video. Video data offers users of multimedia systems a wealth of information and also serves as a data source in many applications including digital libraries, publishing, entertainment, broadcasting and education. The usefulness of these applications depends largely on whether the video of interest can be retrieved accurately within a reasonable amount of time. Therefore, various video content analysis techniques have been proposed to index or retrieve the large amounts of video data. These techniques are based on the analysis of visual, audio and textual information in the videos. Among them, text can provide concise and direct description of video content. If textual part of the video can be extracted and recognized automatically, it will be a valuable source of high-level semantics for indexing and retrieval. On the other hand, the current optical character recognition (OCR) techniques are more robust than speech recognition and visual object recognition techniques. This facilitates the automatic annotation of video content using the extracted text.

In general, there are two types of text in video: scene text and caption text. The scene text is an integral part of the scene captured by the camera such as signpost, billboard, banner and so on. The caption text is artificially embedded in video frame during video editing. Usually, it is closely related to the content of the video. For example, the captions in newscast video summarize relevant names, locations and times of the reported events. In comparison to text segmentation for document image, the problem of extracting caption from video is more difficult. Some factors include (1) complex background, (2) lower resolution (small size) of text, (3) unknown text color and (4) degraded image quality caused by lossy compression method. Therefore, the quality of text in video is not suitable to be processed by conventional document image analysis technique.

Current techniques for video caption detection can be broadly classified into three categories (Tang et al., 2002). The first one is the connected component based methods (Mariano and Kasturi, 2000; Ye et al., 2005; Liu et al., 2010; Gonzalez et al., 2012). This category assumes that text regions have uniform colors and satisfy certain size, shape and spatial alignment. However, these methods are not effective when text touches other graphical objects or text is embedded in complex background. The second category treats text as a type of texture (Li et al., 2000; Zhong et al., 2000; Kim et al., 2001; Wang and Chen, 2006; Qian et al., 2007; Pan et al., 2011). Thus, the classic texture classification methods are applied to detect text regions. These methods are computationally expensive. Besides, it is hard to find accurate boundaries of text regions and false alarms often exist if the background
contains texture that display the similar structure as
text regions. The third category consists of edge
based methods which assume text regions have high
contrast against the background (Hua et al., 2001;
Lienhart and Wernicke, 2002; Chen et al., 2003;
Wang et al., 2004; Lyu et al., 2005; Tasi et al., 2006;
Shivakumara et al., 2008; Gui et al., 2012; Huang et
al., 2014). Therefore, those areas with dense edges
are detected as text regions. These methods are less
reliable for the detection of text with large font size.
In most of the above works, text in video is treated
mainly the same way as that in still image. Although
some works use the short duration of temporal
information (Tang et al., 2002; Wang et al., 2004;
Wang and Chen, 2006), they do not fully exploit the
spatio-temporal information in video. To utilize the
long duration of temporal information, in this paper,
we propose a caption extraction algorithm based on
the analysis of spatio-temporal slices of video.

2 BACKGROUND AND
MOTIVATION

A spatio-temporal slice is a collection of scans in the
same selected position of every frame of a video as a
function of time (Ngo et al., 2001). Two common
selection methods of scans are horizontal scan and
vertical scan. Assuming the content of a video is
represented by \(f(x,y,t)\), a horizontal spatio-temporal
slice is defined as

\[
X-T(x, t) = f(x, y', t)
\]

where \(y'\) is a constant, and a vertical spatio-temporal
slice is defined as

\[
Y-T(t, y) = f(x', y, t)
\]

where \(x'\) is a constant.

Our approach to caption detection is based on the
following observation: If the horizontal (or vertical)
scan line contains some pixels of caption region then
the corresponding spatio-temporal slice will have
bar-code like patterns. Figure 1 illustrates this
phenomenon where X-T slice and Y-T slice has bar-
code like patterns in vertical direction and horizontal
direction respectively. In each slice, there are several
groups of patterns corresponding to different text
captions. It is also noted that the structure of bar-
code like patterns indicates the spatio-temporal
information of caption as follows.

- The length of a bar-code like pattern corresponds
to the duration time of a caption.
- In X-T slice, the length (in x-axis direction) of
each group of patterns corresponds to the width
of a caption.
- In Y-T slice, the length (in y-axis direction) of
each group of patterns corresponds to the height
of a caption.

Therefore, we may integrate the information in X-T
and Y-T slices to locate the captions in video. The
proposed algorithm is made up of two components:
caption localization and character extraction. Each is
described in the following two sections.

3 CAPTION LOCALIZATION

Since our caption localization algorithm is based on
the analysis of spatio-temporal slices, the main
issues are: (1) How to determine whether a
spatiotemporal slice contains bar-code like patterns or
not and (2) How to integrate the information in X-
and Y-T slices to locate video caption. These two
issues are addressed as follows.

For a given X-T slice, we detect vertical edges
by Sobel operator \(G_y\) and apply Hough transform to
detect straight lines. If 90\% of the detected lines are
vertical (the orientation of line is between 85\° and
95\°), then this slice is identified as the one
containing bar-code patterns. In the similar way, we
can use Sobel operator \(G_x\) and Hough transform to
determine whether a Y-T slice contains bar-code
like patterns or not.

\[
G_x = \begin{bmatrix}
-1 & 0 & 1 \\
-2 & 0 & 1 \\
-1 & 0 & 1
\end{bmatrix}
\]

\[
G_y = \begin{bmatrix}
1 & 2 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 1
\end{bmatrix}
\]

Given a sequence of video frames, we sample
horizontal spatio-temporal (X-T) slices every 5
pixels along the y-axis (from bottom to top) until
detecting the one that contains bar-code like
patterns. A line tracing process is performed on the
date image of this slice. Any line segment with
length less than a threshold is identified as noise and
removed from the edge image. Figure 2 shows the
filtered edge image. Meanwhile the starting point
and ending point of each line segment are recorded.
Then all starting points are clustered based on their
Y coordinates. Each ending point is assigned to the
same cluster as its corresponding starting point.

Figure 3 shows the clustering result of all starting
and ending points. By analyzing the points of the
same cluster, the width of its corresponding caption
can be estimated. Likewise, we sample vertical
spatio-temporal (Y-T) slices every 5 pixels along the
x-axis (from left to right) until detecting the one that
contains bar-code like patterns. Using the same
technique, the height of a caption can also be estimated.

The objective of caption localization is to determine a bounding box of each text caption. Assuming the X-T slice (sampled at $Y = y$) estimates the width of a caption is W and the Y-T slice (sampled at $X = x$) estimates the height of a caption is H, the lower left corner of bounding box is $(x' - \epsilon, y' - \epsilon)$ and the upper right corner of bounding box is $(x' + W, y' + H)$. Currently, ϵ is set to be 7.

While the bounding box may contain multiple text strings, a refinement process is needed. Sobel edge detector is applied to the original image frame inside the bounding box to obtain the contour map of characters. Then, we accumulate the horizontal projection of contour map. The valley of projection profile indicates the position of separate line. Finally, the vertical projection profiles of each separated region are also constructed to get more accurate bounding box. Figure 4 illustrates this process.

4 CHARACTER EXTRACTION

The goal of character extraction is to convert the color image inside the bounding box into the OCR-ready binary image, where all pixels of the characters are in black and others are in white. Our approach is based on the observation that characters embedded in video are mostly uniform in color. Using the k-mean clustering algorithm, all the pixels are classified based on their RGB values. In this step, we get binary images $B_k = 1, \ldots, k$ which indicates the location of each cluster. Then a certain binary image is selected as target image by integrating character contour information. A distance transform is applied to the edge image (resulting from Sobel edge detector) to get a distance map D. The value of distance map at each pixel is the distance from that pixel to the nearest character contour. Let

$$V_i = \frac{1}{N_i} \sum \sum \beta_i(x, y) \times D(x, y)$$

where N_i is the number of pixels belonging to cluster i. If $V_f = \min\{V_1, \ldots, V_k\}$, then binary image B_f is the target image for OCR.

5 EXPERIMENTAL RESULTS

The proposed algorithm is tested by five video sequences whose durations vary from 4 minutes to 30 minutes. The resolutions of video frames are 480×360 and 640×360. The video types include movies, cartoons and newscasts. The languages are multilingual, i.e., the character set in the videos involves English, French, Italian, Chinese and Japanese. The total number of captions is 1596. Depending on the content of video, the duration time of each caption may last for 2-12 seconds. Figure 5 and 6 show some experimental results of caption detection. However, there are some false detections and missed detections. The missed detections are due to two factors. One is that the colors of caption and background are very similar. The other is that the filtering process on the edge image degrades the structure of bar-code like pattern. The false detections are mainly caused by some high contrast objects which remain in the same location of video frames for a long duration. Finally, some experimental results of character extraction are shown in Figure 7.

The performance of caption detection is usually measured by the following two metrics:

\[
\text{Recall} = \frac{D}{D + MD}, \quad \text{Precision} = \frac{D}{D + FD}
\]

where D is the number of captions detected correctly, MD is the number of missed detection and FD is the number of false detection. For performance comparison, we also implement the connected components based algorithm (Gonzalez et al., 2012), texture based algorithm (Pan et al., 2011) and edge based algorithm (Huang et al., 2014). To compare four approaches fairly, the parameters of each algorithm are tuned to achieve the best performance. As shown in Table 1, our approach is, in overall, better than these conventional approaches in term of recall and precision.

6 CONCLUSIONS

We have presented a novel algorithm to extract captions from video. Our approach is based on the analysis of spatio-temporal slices of video. Unlike previous approaches which use the short duration of temporal information, our approach fully exploits the spatiotemporal information in video. Therefore, the location and duration of captions can be estimated accurately. Another advantage is that our algorithm is multilingual, i.e., it does not depend on the appearance and font of characters. Compared with related works, our approach is simple yet effective. Finally, our future work should also be
directed towards the detection of special effect captions which are moving texts or nonhorizontally aligned texts.

REFERENCES

APPENDIX

Table 1: Performance comparison for caption detection.

<table>
<thead>
<tr>
<th>Test Video ID</th>
<th>The Proposed Approach</th>
<th>Component Based Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Recall</td>
<td>Precision</td>
</tr>
<tr>
<td>(1)</td>
<td>93.07%</td>
<td>89.56%</td>
</tr>
<tr>
<td>(2)</td>
<td>94.92%</td>
<td>91.30%</td>
</tr>
<tr>
<td>(3)</td>
<td>88.24%</td>
<td>78.94%</td>
</tr>
<tr>
<td>(4)</td>
<td>90.44%</td>
<td>87.88%</td>
</tr>
<tr>
<td>(5)</td>
<td>91.38%</td>
<td>85.74%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test Video ID</th>
<th>Texture Based Approach</th>
<th>Edge Based Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Recall</td>
<td>Precision</td>
</tr>
<tr>
<td>(1)</td>
<td>88.42%</td>
<td>84.71%</td>
</tr>
<tr>
<td>(2)</td>
<td>90.77%</td>
<td>88.42%</td>
</tr>
<tr>
<td>(3)</td>
<td>85.36%</td>
<td>75.31%</td>
</tr>
<tr>
<td>(4)</td>
<td>86.21%</td>
<td>81.35%</td>
</tr>
<tr>
<td>(5)</td>
<td>83.46%</td>
<td>77.74%</td>
</tr>
</tbody>
</table>
A Spatio-temporal Approach for Video Caption Extraction

Figure 1: The horizontal and vertical slices containing captions.

Figure 2: The filtered edge map.

Figure 3: The clustering result.

Figure 4: The process of partitioning caption that contains multiple text lines.
Figure 5: Caption localization for different languages.

Figure 6: Caption localization for multiple text lines.

Figure 7: Some experimental results of character extraction.