
ISE: A High Performance System for Processing Data Streams

Paolo Cappellari1, Soon Ae Chun1 and Mark Roantree2

1City University of New York, New York, U.S.A.
2Insight Centre for Data Analytics, School of Computing, Dublin City University, Dublin, Ireland

Keywords: Data Stream Processing, High-performance Computing, Low-latency, Distributed Systems.

Abstract: Many organizations require the ability to manage high-volume high-speed streaming data to perform analysis
and other tasks in real-time. In this work, we present the Information Streaming Engine, a high-performance
data stream processing system capable of scaling to high data volumes while maintaining very low-latency.
The Information Streaming Engine adopts a declarative approach which enables processing and manipulation
of data streams in a simple manner. Our evaluation demonstrates the high levels of performance achieved
when compared to existing systems.

1 INTRODUCTION

Processing data originating from streaming sources
has become a requirement for modern organizations.
Driven by the need for more timely results, and hav-
ing to deal with an increasing availability of real-time
information, companies are looking at ways of in-
cluding data stream processing into daily operations,
including real-time alerts, real-time analytics and as
support for data integration. To develop a robust plat-
form for streaming applications, there are three broad
requirements:

• The system must be capable of managing high
volumes of streaming data even when the rate at
which data generated is extremely high;

• results of steaming calculations, on which organi-
zation base decisions, should be available as soon
as possible, ideally in real-time;

• designers must be proficient in parallel computa-
tion or high-performance programming.

Existing streaming systems mainly focus on the
problems of scalability, fault-tolerance, flexibility,
and on the performance of individual operations, e.g.
(Akidau et al., 2013; Zaharia et al., 2012; Balazin-
ska et al., 2008; Teubner and Müller, 2011). Our
contribution is the delivery of a scalable, low-latency
data stream processing system. Unlike other research
in this area, we focus on the provision of a com-
plete and comprehensive solution for the rapid devel-
opment and execution of scalable high-performance,
low-latency, real-time data stream processing applica-

tions. We provide a declaration-based application de-
velopment environment that requires no prior knowl-
edge of parallel computation or high-performance
programming. A comprehensive evaluation is pro-
vided to demonstrate the performance of our system.

In the reminder of this paper, we will refer to our
proposed solution as Information Streaming Engine,
or ISE. ISE follows a similar design philosophy of
other distributed stream processing systems. As with
other approaches, ISE can scale seamlessly to use
available computational resources, parallelizing the
data processing, but it differentiates from other ap-
proaches in a number of ways: (i) it offers built-in op-
erators optimized for high-performance environments
that go beyond the semantics of relational operators;
(ii) targets high-performance both in terms of hard-
ware and software, by supporting the best perform-
ing hardware while reducing the software layers sep-
arating the computation from the execution; (iii) al-
lows rapid development of high-performance stream-
ing application by shielding users from the (tricky)
details of the parallel computing paradigm and the
high-performance environments, and (iv) application
and cluster specification details are exposed and visi-
ble as simple text files (rather than code in some pro-
gramming language).
The paper is organized as follows. In Sec. 2, we de-
fine the constructs and properties of our approach.
In Sec. 3, we present the architecture of system. In
Sec. 4, we illustrate how to specify data processing.
In Sec. 5, we discuss the experimental setting and the
performance results. In Sec. 6, we provide a compar-

Cappellari, P., Chun, S. and Roantree, M.
ISE: A High Performance System for Processing Data Streams.
DOI: 10.5220/0005938000130024
In Proceedings of the 5th International Conference on Data Management Technologies and Applications (DATA 2016), pages 13-24
ISBN: 978-989-758-193-9
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

13

ison of our approach against other works. Finally, in
Sec. 7 we present our conclusions.

2 STREAMING MODEL

Streaming sources generate a (potentially infinite) se-
quence of data elements, comprising the data stream.
A data element describes a single event from the in-
put source point of view, such as a sensor reading, a
social media post, a stock price change, etc.

In this section, we describe the ISE model through
its constructs, operators and properties. Data stream
processing systems run continuously: once data pro-
cessing is launched it never ends, indefinitely wait-
ing for (new) data to be available for processing (Car-
ney et al., 2002; Chandrasekaran and Franklin, 2002;
Madden et al., 2002). Results are also generated con-
tinuously. For example, an organization may want to
monitor posts on social media mentioning their prod-
ucts (e.g. Twitter) and retain (i.e. filter) only those
posts containing one of their products in the post text;
then further data manipulation can be applied to real-
ize products’ statistics, real-time alerts, analytics, etc.

2.1 Model Constructs

In general, stream data applications consist of a se-
quence of data manipulation operations, where each
operation performs a basic transformation to a data
element, and passes results to the operation next in
the sequence. Examples of basic transformations
are: filtering data elements outside our scope of in-
terest, calculating data aggregates over time, corre-
lating data from different streams, or enriching data
elements with contextual information from a local
repository. When multiple basic transformations are
chained together in a pipeline fashion, they create so-
phisticated, complex, transformations. More gener-
ally, a complex transformation is a workflow, where
multiple pipelines coexist and are combined. These
workflows can be represented as direct acyclic graphs
(DAGs) and are also referred to as data flow diagrams
or topologies (Carney et al., 2002). The ISE model
was developed using the following constructs:

Tuple. A tuple is used to model any data element in
a stream. It is composed of a list of values de-
scribing the occurrence of an event. For instance,
in the Twitter stream, a status update is an event;
each status update has multiple values associated
with it, including: the status update text, the user-
id of the author, the location, and others1.

1Twitter object field guide: https://dev.twitter.com/over

Stream. A stream is a sequence, potentially infinite,
of events described in data elements, that is, tu-
ples. Tuples in a stream conform to a (known)
schema, that is: the values in each tuple in the
same stream are instances of a known set of at-
tributes, each having a specific data type. For
instance, tuples generated from the status update
stream on Twitter have all the same structure, al-
though different values.

Operator. An operator is a data processing step that
processes each tuple received from one (or more)
input stream(s) by applying a transformation to
the tuple’s data to generate a new tuple in the out-
put stream. The operators offered in ISE are de-
tailed later in this section. For now, we discuss
two important parameters that are associated with
each operator: parallelism and protocol.

Parallelism. The parallelism defines how many in-
stances of an operator collaborate to realize a data
processing step. In order to process large amounts
of data, the processing must be distributed across
multiple computational resources (cores, CPUs,
machines). In a topology, each operator has its
own degree of parallelism.

Protocol. The protocol defines how tuples are
passed between the instances of contiguous opera-
tors in a topology. For instance, depending on the
nature of the transformation, a tuple can be passed
to just one instance or to all instances of the next
operator in the topology. ISE supports four rout-
ing modes for protocol: round-robin, direct, hash
and broadcast. In round-robin mode, tuples from
an upstream node’s output port are distributed to
all instances of the downstream node in a round-
robin fashion. Round-robin distributes the data
evenly across all the downstream resources. Di-
rect mode defines a direct and exclusive connec-
tion between one instance of the upstream node
and one instance of the downstream node. This
routing strategy is effective when pipelined oper-
ators require the same degree of parallelism. The
hash mode routes tuples on the basis of a (key)
value within the tuple itself. This permits an ap-
plication to collect data having the same key in the
same resource. However, it may lead to uneven
usage of downstream resources. With the broad-
cast routing strategy, every output tuple from a
single instance of an upstream node, is copied
to all instances of the downstream node. This
mechanism is useful in multiple scenarios, such
as synchronizing or sharing specific pieces of data

view/api/tweets

DATA 2016 - 5th International Conference on Data Management Technologies and Applications

14

among all processes. Details on topology specifi-
cation and implementation are provided in Sec. 4.

Topology. A topology describes how the data stream
flows from the input source(s) through the op-
erators to the output. It is modeled as a DAG,
where nodes represent operators, and edges de-
scribes how tuples move between operators.

ISE provides a declaration-based approach to data
stream processing development using the constructs
listed above. Users create a topology specification
using a set of built-in operators optimized for high-
performance distributed environments. Specifying a
transformation or a topology does not require any pro-
gramming. Furthermore, all details of a topology,
its transformations, parallelism and resources are ex-
posed in specification (text) files. Higher level tools,
such as GUI or languages (e.g. (Falt et al., 2014)), can
be used to generate, edit and maintain such specifica-
tions. The objective of this section is not to propose
another language, but to expose the lower-level de-
tails of how topologies are specified when provided
as input to an data streaming processing engine.

2.2 Operators

This section presents some of the operators offered
in ISE. The portfolio of operators is wide enough to
enable designers to realize very complex transforma-
tions. The rationale for providing a set of built-in
operators is: (i) application designers can focus on
the transformation workflow and ignore the operator’s
implementation details; (ii) the operator semantic is
guaranteed and consistent across the whole system,
and (iii) each operator’s implementation delivers the
best possible performance; and (iv) new operators can
be developed and added to the system, if and when
necessary. ISE currently offers the following opera-
tors: Functor, Aggregate, Join, Sort, Interface, Format
Converter, Datastore, Control and Utility.

The Functor operator applies a transformation
that is confined and local to the tuple currently be-
ing processed. Many transformations can be thought
as specializations of the Functor operator. Examples
included in ISE are:

• Projection: Reduces the stream to a subset of its
attributes; similar to the SQL projection operator.

• Selection: Using a potentially complex condition,
it splits the input stream in two: one stream con-
taining tuples satisfying the condition, the other
stream with those not satisfying the condition.

• Function: Implements multiple operations includ-
ing: adding constants or a sequence attribute to
the stream; text-to/from-date conversion; math

(addition, division, modulo, etc.) and string func-
tions (find, contains, index-of, etc.) between one
or more attributes in the tuple.

• Tokenizer: Breaks a value from an input tuple into
multiple parts (tokens) based on a pattern used for
matching. It creates a new output tuple for each
token where the output tuple is a copy of the input
tuples and the matched tuple.

• Delay: Holds each tuple for a specified interval
before forwarding it unaltered.

The Aggregate operator groups and summarizes
tuples from the input stream. It implements the SQL-
like aggregations: average, sum, max, min and count.
The operator requires a window definition that speci-
fies when and for how long (or how many) tuples from
the stream to include in the aggregation.

The Join operator correlates tuples from two
streams according to a join condition. This is simi-
lar to the relational join: when values from two tu-
ples, each from a different stream, satisfy a (poten-
tially complex) condition, the input tuples are merged
to produce a new tuple in the output stream. Similar
to Aggregate, this operator requires the definition of
a window specifying what tuples from each stream to
include in the join evaluation.

The Sort operator sorts the tuples within a
“chunk” of the input stream in lexicographical order
on the specified set of attributes. The number of tu-
ples that comprise the chunk, is specified in a window
definition.

The Datastore operator enables the stream to in-
teract with a repository to retrieve, lookup, store and
update data. The repository can be a database, a text
file or an in-memory cache. Currently, ISE supports
the following:

• DB_Statement: executes an arbitrary SQL state-
ment against a database.

• Lookup: retrieves data matching a key value from
the current tuple from a lookup datastore (either a
file or a database).

The Interface operator enables ISE to create
streams of data from external data sources to gen-
erate into topologies and to create end-points where
processed data can be accessed by consumer appli-
cations. Consumer applications can be external or
within ISE (e.g. other topologies). Currently, ISE
provides:

• Twitter_Connector: Receives data from the Twit-
ter stream.

• Salesforce_Connector: Receives data from an or-
ganization’s Salesforce stream.

ISE: A High Performance System for Processing Data Streams

15

• Http_Connection: Retrieves data from a generic
HTTP end-point.

• ZMQ_in, ZMQ_out: Receives/Delivers streams
from/to ZeroMQ2 end-points, a brokerless high-
performance message passing system. ZeroMQ
end-points are used to expose result data from
a topology to consumer applications, including
other topologies.

The FormatConverter provides data format con-
version between the tuple and other formats when
processing data within a topology. ISE offers XML
and JSON conversion, where values to extract or to
format in either XML or JSON can be specified via
an XPath-like syntax.

The Control operator is used to control the sta-
tus and perform administrative actions on individual
operators or on the a whole topology. Some of the
control messages are: sync all operators, get operator
status, force operator cache flush, etc.

Additional operators can be added as part of a
Utility category to support special operations. Cur-
rently, the ISE has the geo-coding operator, to trans-
form a location name into latitude and longitude.

2.3 ISE Sample Application

Fig. 1 illustrates a sample topology analyzing Twitter.
Here, the rounded rectangles represent the nodes in
the topology. Edges between nodes describe how the
stream’s tuples flow from one transformation to the
next. The operator applied by each node is depicted
with a symbol (see the legend) within the rectangle,
along with its degree of parallelism (within parenthe-
sis). The specific operation performed by the operator
is detailed with bold text just below each node. On top
of each node, an italic text provides a brief explana-
tion of the operation applied in the node. Note that
the Selection operator outputs two streams: the solid
edge denotes the stream of tuples satisfying the con-
dition; the dashed edges are the stream of tuples not
satisfying the condition. When one or the other out-
put stream from Selection is not used, the edge is not
shown in the illustration.

The topology in Fig. 1 describes a streaming ap-
plication that analyzes the Twitter stream by produc-
ing three output streams: one providing tweets gener-
ated by users from a known list, a second providing
tweets mentioning products (from a known list) en-
riched with geo-location information, and a third pro-
viding the number of times the product is mentioned,
grouped by category. Data flows into the topology
by the Twitter Connector operator that connects

2ZeroMQ http://zeromq.org/

to the Twitter stream and delivers each tweet to the
next operator in the chain. Tweets are provided in
JSON format and thus, tuples are passed to the JSON
Parser operator that convert data from JSON into a
tuple format. The next step removes some attributes
that are not necessary for the application, before cre-
ating two replicas of the stream: one stream focusing
on user identifiers, the other with products.

On the user identification stream, additional steps
are required. The selection step filters tweets (tuples)
not authored from the users provided in a list; the
JSON encoder converts each tuple into a JSON for-
mat; and finally, the ZMQ-Endpoint makes the stream
available to consumer applications via ZeroMQ.

On the product stream, additional transformations
also occur. It is worth noting the lookup, aggrega-
tion and geo-coding functions. The lookup function
enriches each tuple by adding the category a prod-
uct belongs to; where a mapping product-to-category
must be provided. The aggregation function counts
how many times a product is mentioned at regular in-
tervals; the geo-tagging function converts a location
name into latitude and longitude where they are not
already present in the tuple.

3 THE ISE ARCHITECTURE

ISE was conceived with high-performance environ-
ments in mind. Nevertheless, ISE can run on a wide
variety of computational resources, from a standard
desktop to a shared memory or shared nothing system
to a geographically distributed cluster. Fig. 2 shows
the main ISE components: the Resource Manager,
Clustering, the Data Operators, Monitoring, the Sys-
tem Interface, the Application Specification and the
Resource Configuration repositories.

The transformation operators as well as the user
space components have been developed from scratch
in c/c++. Components such as the resource man-
ager, the computation clustering and the monitoring
tool, are based on the following open source libraries:
Slurm(Slurm, 2015), MVAPICH2(MVAPICH2, The
Ohio State University, 2015), and Ganglia(Ganglia,
2015), all of which are well established projects in
high-performance computing.

At the core of the system there is the Clustering
component, which can be decomposed in two sub-
components: (i) parallelism and data movement, and
(ii) data operations. The first takes care of manag-
ing parallel processes and moving data between them;
the second implements the data processing operation,
enforcing the semantics of these operations across
the parallel processes. With regards to the former,

DATA 2016 - 5th International Conference on Data Management Technologies and Applications

16

Figure 1: Topology for Twitter Case Study.

Figure 2: Architecture: Logical View.

we adopt an implementation of the Message Pass-
ing Interface (MPI), specifically MVAPICH2, in or-
der to optimize the advantage of using these high-
performance environments. MPI is a message pass-
ing system designed to support the development of
parallel distributed applications. MPI is designed to
achieve high performance, scalability, and portability.
MVAPICH2 distinguishes itself from the other MPI
implementations because it is one of the best perform-
ing and because of its support for the most recent and
performing hardware, such as Infiniband(Infiniband,
2015), a high-performance inter-connector, designed
to be scalable and featuring high throughput and low
latency. More precisely, the Parallelism and Data
Movement component builds on top of Phish (Plimp-
ton and Shead, 2014), that in turns uses MPI. Phish
is library to develop topologies composed of executa-
bles, providing an abstraction on parallelism and mes-

sage delivery. Together with Phish, ISE has a Data
Operators component which offers a set of built-in op-
erations, including selection, projection, join, etc.

In general, multiple streaming topologies run on a
cluster. A clusters can accommodate multiple topolo-
gies that run concurrently. However, since resources
are limited, there is the need for managing and mon-
itoring such resources. Components Resource Man-
ager and Resource Monitoring achieve these goals.
The Resource Manager is built on top of Slurm
(Slurm, 2015). Slurm is a high-performance, scalable
and fault-tolerant cluster resource manager. Slurm
provides functionality to execute, manage and mon-
itor distributed parallel applications and is used in
many of the most powerful computers in the world.
It facilitates the management of available computa-
tional resources and the allocation and deployment of
streaming topologies. Among the features it provides,
is topology relocation to other resources and a fault-
tolerance mechanism. Ganglia (Ganglia, 2015) is our
resource monitoring system: it is highly scalable and
works in high-performance computing settings.

The System Interface component includes tools
such as: the development environment, the result vi-
sualization, and monitoring and administrative tools.
The Application Specification repository maintains
all defined topologies, allowing users to store, retrieve
and update topology specifications. The Resource
Configuration maintains the configuration of the re-
sources available on the computational cluster.

ISE: A High Performance System for Processing Data Streams

17

4 TOPOLOGY SPECIFICATION

This section illustrates how topologies are specified
in ISE. The specification is composed of three main
parts: the specification of the DAG composing the
topology; the operator configuration for each node in
the topology; and a set of deployment options to spec-
ify the execution model. ISE accepts topology speci-
fication as text files. These files are exposed, thus can
be edited directly or via higher level tools.

4.1 Topology Syntax

A topology is modeled as a DAG. To define a DAG
composing a topology in ISE we need to specify: (i)
the list of all nodes in the DAG, each with its associ-
ated operator, (ii) the connections between the nodes,
and the associated protocol; and (iii) the degree of
parallelism of each node.

With reference to Fig. 1, Listing 1 shows
an excerpt of the topology specification to illus-
trate how nodes in a DAG are declared in ISE.
The excerpt focuses on the bottom right part of
Fig. 1, specifically on nodes: Geo-coordinates
not null?, Lookup Product Category, Geo-code
location name, and the right-most Convert to
JSON. For convenience, above nodes are re-
named to add_product_category, has_geo_info,
geo_code, and product_json_encode, respectively.

Product stream , nodes
...
operator

add_product_category
datastore -mpi
${product_category_lookup_conf}

operator
has_geo_info
functor -mpi
${has_geo_info_conf}

operator
geo_code
geocode -mpi
${geo_code_conf}

operator
product_json_encode
format_converter -mpi
${product_json_encode_conf}

...

Listing 1: List of Nodes in a Topology.

Each instruction in the topology specification follows
the expression syntax outlined in Definition 1.

Definition 1 (Node).
ope rator

<node-label>
<operator-executable-path>

<node-configuration-path>

This can be explained as follows:

• operator is a ISE keyword that declares the pres-
ence of a node in the DAG, and indicates the be-
ginning of the definition of such node;

• node-label specifies the mnemonic name to as-
sociate with the node being defined. A node name
is used within the topology specification to refer
to the specific node when defining connections
with other nodes and parallelism;

• operator-executable specifies the operator as-
sociated with the node; specifically, it indicates
the (relative) path to the operator’s executable;

• node-configuration specifies the behaviour of
the operator, that is the operator’s configuration;
specifically, it is the (relative) path to a file con-
taining the operator’s configuration details for the
node being defined.

Details on how to specify an operator’s configuration
are presented in the Sec. 4.2. In Listing 1, line 3 de-
fines a node with label add_product_category, that
is associated with operator Datastore, whose configu-
ration is in file product_category_lookup_conf. It
implements a lookup from a database, retrieving the
product category associated with a particular prod-
uct, that enriches each tuple by adding the category
a product belongs to. Similarly, line 5 defines node
has_geo_info that implements a Functor operator
whose configuration is in file has_geo_info_conf.
This node corresponds to Geo-coordinates not
null?, and it routes tuples to the geo-coding opera-
tion or to the JSON converter, depending on whether
the tuple has geo-information already or not.

The second part of the topology specification de-
fines how tuples are routed from one node to the other
in the topology, that is the edges in the topology DAG.
Listing 2 shows an excerpt of the specification illus-
trating the linking of the nodes in Listing 1.

Definition 2 (Route).
rou te

<upstream-node-label:port>
<protocol>
<downstream-node-label:port>

Each expression follows the syntax in Definition 2,
where:

• route is the ISE keyword that denotes the begin-
ning of an edge declaration that will directly con-
nect two nodes in the topology;

• upstream-node-label is the label of one node
participating in the connection, specifically the
upstream node;

DATA 2016 - 5th International Conference on Data Management Technologies and Applications

18

• protocol specifies a routing strategy between the
nodes being connected: direct, round-robin, hash
or broadcast;

• downstream-node-label is the label of the other
node participating in the connection, specifically
the downstream node; node;

• port specifies which port each node will use to
send/receive tuples.
The specification in Listing 2 shows the part

of the topology in Fig. 1 that links the product
category lookup and the geo-coding steps. Specif-
ically, all tuples from the add_product_category
node are passed to has_geo_info via port number
1 (for each). Then, node has_geo_info splits
the stream in two: those tuples having geo-data
(i.e. latitude and longitude) are passed to node
product_json_encode via port 1, for the JSON
conversion. All remaining tuples are passed to
node geo_code via port 2, to evaluate the latitude
and longitude from a location name (then tuples
are sent to the same JSON conversion step). For
simplicity of presentation, all edge declarations use
the protocol roundrobin to exchange tuples between
the instances of the involved nodes.

Product stream , connections
...
route

add_product_category:1
roundrobin
has_geo_info:1

route
has_geo_info:1
roundrobin
product_json_encode:1

route
has_geo_info:2
roundrobin
geo_code:1

route
geo_code:1
roundrobin
product_json_encode:1

...

Listing 2: Connections Between Nodes in a Topology.

Listing 3 illustrate the final part of a topology
specification: the parallelism of each operator (node).
Definition 3 (Parallelism).

parallelism <node-label> <degree>

The syntax for parallelism is shown in Definition 3,
where:
• parallelism is the ISE keyword indicating the

beginning of a parallelism declaration for a node
in the topology;

• node-label indicates the node to which the par-
allelism is applied;

• degree specifies how many instances (i.e. runtine
processes) to instantiate for the target node.

From Listing 3, we can see that nodes
add_product_category, has_geo_info,
geo_code, and product_json_encode have
parallelism 3,2,5,2, respectively. The rationale in
choosing a degree of parallelism is based on the
amount of data to process and on the cost of the
operation. In this example, because the lookup and
the geo-code operation are expected to be heavier
(i.e. slower) than the others, a higher degree of
parallelism is required. Note that values in Listing 3
are for illustration purpose. Real-world deployments
these values have, in general, much higher values.

Product stream , distribution
...
parallelism add_product_category 3
parallelism has_geo_info 2
parallelism geo_code 5
parallelism product_json_encode 2
...

Listing 3: Parallelism of Nodes in a Topology.

4.2 Operator Configuration

This section focuses on how to provide a configura-
tion to a node in a topology. Each operator has a
different signature, meaning its executable expects a
different set of arguments to represent the operator’s
behavior at runtime. The first part of the signature is
common to all operators: it represents the metadata of
the input and output streams. The second part of the
signature is operator dependent: each operator has a
different set of parameters. Listings 4 and 5 shows
snippets of an operator’s configuration file for the Ag-
gregate node example in Fig. 1. Listing 4 shows the
schema of tuples for the input and the output streams.
In this case, the stream is “reduced” from four input
attributes to just two in output.

Listing 5 shows how the aggregation is speci-
fied. The first part specifies the grouping criteria:
values from the input streams are grouped on the
attribute ProductCategory. The second part spec-
ifies the aggregate to run; the input attribute; and
the output attribute generated. In the case, the node
will count the occurrences of ProductName for each
category group, and provide the result in attribute
count_products.

ISE: A High Performance System for Processing Data Streams

19

"in": [
{"name": "TweetCreationDate"

, "type": "String"}
,{"name": "ProductName"

, "type": "String"}
,{"name": "ProductCategory"

, "type": "String"}
,{"name": "TweetLocation"

, "type": "String"}
]

,"out": [
{"name": "ProductCategory"

, "type": "String"}
,{"name": "count_products"

, "type": "Integer"}
]

...

Listing 4: A Node Input and Ouput Stream Metadata.

...
,"groupby": [

{"attribute": "ProductCategory"}
]

,"aggregate": [
{"input_attribute_name":

"ProductName"
,"operation": "count"
,"output_attribute_name":

"count_products"}
]

...

Listing 5: An Operator Configuration.

For operators requiring a window definition, there is
an additional part in the configuration file, not shown
here for the sake of brevity. ISE supports arbitrarily
complex windows, including those based on: wall-
clock intervals, number of observed tuples, desig-
nated progressing attribute in the stream, and exter-
nal events (e.g. control messages). Designers can use
conditions to specify how often to open a window and
when to close a window; multiple conditions can be
specified and grouped where required.

4.3 Topology Deployment

Once a topology is defined at the logical level, it must
be associated with the physical resources to use at
runtime (CPUs, cores, amount of memory, etc.) and
how such resources should be used. For instance, it
is possible to declare whether a resource should be
allocated exclusively or not; what policy to use to dis-
tribute the workload over the cluster; how much mem-
ory to use, etc. Listing 6 illustrates a snippet of a de-
ployment specification. Directives are prefixed with

#ISE_ and suffixed with either RM or MPI: the first suf-
fix is a directive to the resource manager; the second
is a directive to the MPI library.

Topology name
2 #ISE_RM --job-name=UsersAndProducts

4 # Cluster partition to use
#ISE_RM --partition=development

6

Cluster nodes to allocate
8 #ISE_RM --nodes=3

10 # Processes to allocate
#ISE_RM --ntasks=13

12

Node sharing policy
14 #ISE_RM --share

16 # Core sharing policy
#ISE_RM --overcommit

18

Message passing policy
20 #ISE_MPI --interrupt

...

Listing 6: Topology Deployment Specification.

The Node sharing policy, Listing 6 line 15, spec-
ifies if a node should be allocated exclusively to a
topology. This type of configuration is useful where
topologies have operators that can exploit the intra-
node communication mechanism which is faster. It is
also useful when the computation should not be af-
fected by external factors such as another topology
taking part of the machine resources. The Core shar-
ing policy, Listing 6 line 18, defines whether a CPU
core should run a single process exclusively or not.
In high-performance settings, many application de-
fault to exclusively allocating one process per core, in
order to extract the maximum possible performance.
There are many scenarios where such a policy is not
ideal, perhaps because it is known that the stream will
not require all resources or because computational re-
sources are limited. In such cases, it is preferable to
share the core with multiple processes, perhaps be-
longing to multiple topologies. Note that when re-
source sharing is enabled in ISE, topologies are not
suspended and queued, as in some supercomputing
environments: they are always active. However, shar-
ing resources implies that the CPU is subject to the
context switch overhead. Note also that ISE does not
spawn threads: it only uses processes. This greatly
simplifies the computation distribution and manage-
ment and does not impact performance in Linux en-
vironments, where the cost of managing a thread or
process is basically equivalent.

The message passing policy, Listing 6 line 21, de-

DATA 2016 - 5th International Conference on Data Management Technologies and Applications

20

fines how a receiving process should check whether
new data is available for processing. At the concep-
tual level, message passing can be thought of as a
queuing mechanism. This policy specifies if the re-
ceiving process should actively check the queue, thus
consuming resources, or if it must rely on an inter-
rupt mechanism for notification. In general, the ac-
tive polling mechanism is more convenient when new
messages arrive at a rate that is close to or matching
the process maximum throughput. When the num-
ber of messages is relatively low compared to the
throughput, one may want rely on an interrupt mech-
anism so that the resources are temporarily released
and are utilizable by some other process.

5 EVALUATION

The evaluation of our system focuses on latency and
scalability Latency is the interval of time elapsing
between the input (solicitation) and the output (re-
sponse) of a system, a critical metric for real-time
data processing systems. For systems like ISE, it is
important to scale to large numbers of computational
resources while maintaining latency as low as possi-
ble.

We compare our performance to Google’s Mill-
Wheel(Akidau et al., 2013). MillWheel is the most
performing system among those providing a complete
data streaming processing solution. We have created
a replica of the test scenario used in MillWheel, pro-
vided the differences between the platforms. This is
a simple two step processing topology where: the
first step implements a basic operation; and the sec-
ond step collects the processed records. We tested
the topology with multiple state-less operators, in-
cluding: projection (drop some attributes from the
stream), selection (evaluate stream values against
conditions), addition of a constant to the stream
(e.g. timestamp), etc. At a minimum, each step per-
forms the following operations:

• Access all the input fields in the incoming record
in order to simulate a generic scenario where the
designer can pick any value in the stream.

• Perform a basic operation on at least one field of
the input record.

• Assemble the output record (each received field)
plus a new one if it exists and forward the new
record to next step in the topology.

Latency is measured as the time that elapses from
when a record is received by the processing step to
when a processed record is received by the subsequent
collector process. Note that the collector processes

are also distributed, thus latency accounts for both the
time to process a record and for the time that it takes
to the processed record to reach the next step in the
topology. Experiments have been conducted on the
CUNY’s High Performance Computing center. Each
node is equipped with 2.2 GHz Intel Sandybridge pro-
cessors with 12 cores, has 48GB of RAM and uses the
Mellanox FDR interconnect.

Fig. 3 shows the latency distribution for record
processing and delivery when running over 100
CPUs. Input data is evenly distributed across all
CPUs and scaled up as the topology parallelism
scales. An analysis of the experimental results shows
that the median record latency is 1.2ms, and 95% of
the records are processed and delivered within 3 mil-
liseconds.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
0%

5%

10%

15%

20%

25%

ms

R
e
co

rd
 P

e
rc

e
n
ta

g
e

Figure 3: Record Processing and Delivery Latency Percent-
age.

Compared to Google’s MillWheel (Akidau et al.,
2013), ISE delivers better performance. In fact, with
strong productions and exactly-once disabled in Mill-
Wheel, the median record processing time in Mill-
Wheel is 3.6 milliseconds (ms) compared to 1.2ms
in ISE, approximately one third of the time. Also,
if we look at the 95th-percentile latency, MillWheel
exhibits a 30ms latency, while ISE requires just 3ms.
Basically, ISE performs 3x better than MillWheel (a
200% performance increase) on the median latency
test and 10x better on the 95th percentile test (a 900%
performance increase).

In cluster environments, the same number of pro-
cesses can be distributed over a fewer number of ma-
chines, each with many cores, or over many machines
with fewer cores. Fig. 4 shows the results of studying
how the number of machines affects record latency.
We have set up a test to run 4 sets of distributed pro-
cessing, using 8, 24, 48 and 96 CPUs. Let us refer
to these sets as Set8, Set24, Set48 and Set96, respec-
tively. Each of the above sets has been run multiple
times over a different number of machines, with the
condition that as the number of machines increases,
the number of cores per machine decreases. For in-

ISE: A High Performance System for Processing Data Streams

21

stance, Set8 (distribution over 8 CPUs), has been run
with the following configurations: 1 machine with
8 cores, 2 machines with 4 cores, 4 machines with
2 cores, and 8 machines with 1 core. The mecha-
nism is similar for the other sets. As illustrated in
Fig. 4, the best configuration is when all processes
are grouped together on the same machines or when
they are highly distributed across different machines.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

8

24

48

96

Nodes

m
s

Figure 4: Record Processing and Delivery Latency Time by
Number of Nodes Used.

There are many situations in which a streaming
topology under-utilizes resources. ISE adapts very
well in this scenario, allowing users to specify if and
how to share resources at run time. To test resource
sharing, we launched multiple instances of the same
topology on a single machine, a consumer grade lap-
top, with an Intel i7 i7-4810MQ, with 4 physical cores
and multi-threading (8 threads in total). We were able
to run up to 5000 concurrent processes. Sharing re-
sources is useful for low rate data processing sce-
narios, where multiple topologies can co-exist on the
same machines, thus minimizing the amount of hard-
ware resources required.

All performance comparison with MillWheel have
been carried out on the basis of the reports from the
MillWheel’s authors: MillWheel has not been made
available, so we were not able to deploy it on the
CUNY’s HPCC to run direct a comparison.

6 RELATED RESEARCH

Real-time analytic systems are a requirement for most
modern organizations, the goals of which are two-
fold: provide valuable insights in real-time, and sup-
port batch-oriented and data integration tasks.

Examples of recent real-time analytical systems
include Google Percolator (Peng and Dabek, 2010),
and Limmat (Grinev et al., 2011). The core ap-
proach of these systems is to extend the map-reduce
paradigm with push-based processing. Basically, new
data can be pushed into the process and new output

can be computed incrementally on top of the cur-
rent process state, e.g. aggregates for current win-
dows. A more direct modification of Hadoop is
the Hadoop Online Prototype (HOP) (Condie et al.,
2010). This approach modifies the Hadoop archi-
tecture to allow the execution of pipelined operators.
While improving real-time analytic support on map-
reduce based solutions, these works still rely on the
batch processing paradigm and are thus, inherently
limited in pursuing low latency processing. Projects
Spark-Streaming(Zaharia et al., 2012) and Twitter
Trident(Trident, 2012) can be considered to be in this
category as well since they are both micro-batch ori-
ented. However, our ISE approach focuses instead
on low-latency and a high-performance environment,
neither of which is tackled in these research projects.
Spark-Streaming and Trident both offer a set of pre-
defined operators. However, topology design still re-
quires program code development. ISE offers rela-
tional and ETL-like operations exposed so that de-
signers do not have to develop programming code
which leads to a far quicker deployment of topolo-
gies. In addition, ISE supports complex window def-
initions which are not available in these projects.

S4 (Neumeyer et al., 2010), IBM InfoSphere
Streams (InfoSphere streams, 2015), and Twitter
Storm (Toshniwal et al., 2014) are systems that specif-
ically target event-based data streaming processing.
Unlike the systems described above, these do not rely
on batch processing. The S4 streaming system devel-
oped at Yahoo!, offers a programming model similar
to Map-Reduce. In S4, data is routed from one op-
eration to the next on the basis of key values. IBM
InfoSphere Streams offers a set of predefined opera-
tion that designers assemble in workflows, similar to
ISE. The focus, however, is developing applications
where designers have direct control over the quality
of the service. Twitter Storm offers a framework to
route data through processes, similarly to Phish. ISE
offers additional abstractions, such as the data trans-
formation operators, that speed-up topology develop-
ment time while avoiding the introduction of errors in
the operators’ implementation and guaranteeing best
possible performance.

MillWheel(Akidau et al., 2013) is a Google
project for real-time steam processing that specifi-
cally targets low-latency performance. This approach
relies on a key-based computational model where
streams are abstracted as triples composed of a key, a
content and a timestamp. Computation is centralized
on keys but can be parallelized over different keys.
ISE offers greater flexibility in these areas because
the designer can choose whether to base the computa-
tion on keys or not. Moreover, as shown in our evalu-

DATA 2016 - 5th International Conference on Data Management Technologies and Applications

22

ation, ISE delivers better performance.
There is a large collection of work focusing on

improving the performance of individual operators.
In particular, the join (Carney et al., 2002; Chan-
drasekaran and Franklin, 2002; Madden et al., 2002;
Kang et al., 2003; Motwani et al., 2003; Teubner and
Müller, 2011; Gedik et al., 2007) and the aggregate
(Li et al., 2005). In contract, the aim of ISE is to de-
velop a platform for defining general streaming com-
putations to be executed in high performance envi-
ronments. Other research efforts address the broader
picture by proposing novel techniques for operators
as part of the development of streaming computation
frameworks (Abadi et al., 2005; Zaharia et al., 2012).

In (Gui and Roantree, 2013b; Gui and Roantree,
2013a), the approach used for optimizing XML data
streams was to build a tree-like topology to model
the structure of the incoming XML stream. It in-
troduced a topological cube methodology, built on
a multidimensional metamodel for building XML
cubes. This research included the ability for recur-
sive analytics, demonstrated using two different forms
of recursive structures with both direct recursion and
indirect recursion. While this approach has simi-
lar goals and approach, the ISE system is designed
to scale, adopts an easier to use scripting approach,
and can facilitate JSON sources unlike their approach
which only uses XML. Systems such as Borealis
(Abadi et al., 2005; Balazinska et al., 2008) Medusa
(Cherniack et al., 2003), and TelegraphCQ (Chan-
drasekaran et al., 2003) focus on distributed data pro-
cessing. However, the workload distribution strat-
egy is at the granularity of query: these systems dis-
tribute the workload by allocating queries to individ-
ual nodes. While this approach achieves scalability
with the number of queries, it is limited in the amount
of data an individual query can support, i.e. the par-
allelism. In recent years, systems have been proposed
that address the intra-query scalability problem, such
as StreamCloud (Gulisano et al., 2010). While ISE
follows a similar design philosophy to that of dis-
tributed stream processing systems, it is different in
many aspects: it is not limited to relational operators;
besides a single query scalability, ISE embraces scal-
ability also from the resource management and mon-
itoring perspective; it targets high-performance envi-
ronments; and empowers non-expert users to rapidly
develop streaming applications.

7 CONCLUSIONS

In this paper, we presented ISE, a high performance
framework for developing scalable, low-latency, data

streaming applications. Our research provides a
high-performance environment and a declarative lan-
guage for application development based on ISE. The
declarative approach allows developers to expose the
details of both data processing and resource allocation
at both logical and physical levels.

ISE targets high-performance requirements but is
also portable to commodity clusters. The framework
was tested in terms of latency and scalability perfor-
mance and compared with other real time process-
ing approaches and our evaluation demonstrated the
high performance of ISE when compared to existing
streaming environments.

ISE is currently in use in both academic and real-
world scenarios. There are a number of topologies
analyzing the Twitter stream, ranging from keyword
monitoring to searches for specific users, from alerts
based on conditions to more classic word counting,
word frequency and sentiment analysis. Other topol-
ogy examples include traffic data monitoring using
the numerous bike sharing systems in various cities
throughout the world. Traffic data is then used to an-
alyze patterns and make predictions. For instance, we
have a topology that in real-time predicts the number
of bikes (or available docks for parking) for all sta-
tions in the bike sharing network. Such prediction is
updated in real-time as fresh data is collected, that is
every minute: bikers can decide to reroute depending
on their position relative to their destinations.

REFERENCES

Abadi, D. J., Ahmad, Y., Balazinska, M., Çetintemel, U.,
Cherniack, M., Hwang, J., Lindner, W., Maskey, A.,
Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., and
Zdonik, S. B. (2005). The design of the borealis
stream processing engine. In CIDR, pages 277–289.

Akidau, T., Balikov, A., Bekiroglu, K., Chernyak, S.,
Haberman, J., Lax, R., McVeety, S., Mills, D., Nord-
strom, P., and Whittle, S. (2013). Millwheel: Fault-
tolerant stream processing at internet scale. PVLDB,
6(11):1033–1044.

Balazinska, M., Balakrishnan, H., Madden, S., and Stone-
braker, M. (2008). Fault-tolerance in the borealis
distributed stream processing system. ACM Trans.
Database Syst., 33(1).

Carney, D., Çetintemel, U., Cherniack, M., Convey, C.,
Lee, S., Seidman, G., Stonebraker, M., Tatbul, N.,
and Zdonik, S. B. (2002). Monitoring streams - A
new class of data management applications. In VLDB
2002, Proceedings of 28th International Conference
on Very Large Data Bases, August 20-23, 2002, Hong
Kong, China, pages 215–226.

Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin,
M. J., Hellerstein, J. M., Hong, W., Krishnamurthy,
S., Madden, S., Reiss, F., and Shah, M. A. (2003).

ISE: A High Performance System for Processing Data Streams

23

Telegraphcq: Continuous dataflow processing. In Pro-
ceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, San Diego, Cal-
ifornia, USA, June 9-12, 2003, page 668.

Chandrasekaran, S. and Franklin, M. J. (2002). Streaming
queries over streaming data. In VLDB 2002, Proceed-
ings of 28th International Conference on Very Large
Data Bases, August 20-23, 2002, Hong Kong, China,
pages 203–214.

Cherniack, M., Balakrishnan, H., Balazinska, M., Carney,
D., Çetintemel, U., Xing, Y., and Zdonik, S. B. (2003).
Scalable distributed stream processing. In CIDR.

Condie, T., Conway, N., Alvaro, P., Hellerstein, J. M.,
Gerth, J., Talbot, J., Elmeleegy, K., and Sears, R.
(2010). Online aggregation and continuous query
support in mapreduce. In Proceedings of the ACM
SIGMOD International Conference on Management
of Data, SIGMOD 2010, Indianapolis, Indiana, USA,
June 6-10, 2010, pages 1115–1118.

Falt, Z., Bednárek, D., Krulis, M., Yaghob, J., and Zavoral,
F. (2014). Bobolang: a language for parallel streaming
applications. In The 23rd International Symposium on
High-Performance Parallel and Distributed Comput-
ing, HPDC’14, Vancouver, BC, Canada - June 23 - 27,
2014, pages 311–314.

Ganglia (2015). Ganglia. http://ganglia.sourceforge.net/.
[Online; accessed 24-November-2015].

Gedik, B., Yu, P. S., and Bordawekar, R. (2007). Executing
stream joins on the cell processor. In Proceedings of
the 33rd International Conference on Very Large Data
Bases, University of Vienna, Austria, September 23-
27, 2007, pages 363–374.

Grinev, M., Grineva, M. P., Hentschel, M., and Kossmann,
D. (2011). Analytics for the realtime web. PVLDB,
4(12):1391–1394.

Gui, H. and Roantree, M. (2013a). Topological xml data
cube construction. International Journal of Web En-
gineering and Technology, 8(4):347–368.

Gui, H. and Roantree, M. (2013b). Using a pipeline
approach to build data cube for large xml data
streams. In Database Systems for Advanced Appli-
cations, pages 59–73. Springer Berlin Heidelberg.

Gulisano, V., Jiménez-Peris, R., Patiño-Martínez, M., and
Valduriez, P. (2010). Streamcloud: A large scale
data streaming system. In 2010 International Con-
ference on Distributed Computing Systems, ICDCS
2010, Genova, Italy, June 21-25, 2010, pages 126–
137.

Infiniband (2015). Infiniband. http://www.infinibandta.org/.
[Online; accessed 24-November-2015].

InfoSphere streams (2015). InfoSphere streams. http://
www-03.ibm.com/software/products/en/infosphere-
streams. [Online; accessed 19-October-2015].

Kang, J., Naughton, J. F., and Viglas, S. (2003). Evaluating
window joins over unbounded streams. In Proceed-
ings of the 19th International Conference on Data En-
gineering, March 5-8, 2003, Bangalore, India, pages
341–352.

Li, J., Maier, D., Tufte, K., Papadimos, V., and Tucker, P. A.
(2005). Semantics and evaluation techniques for win-

dow aggregates in data streams. In Proceedings of the
ACM SIGMOD International Conference on Manage-
ment of Data, Baltimore, Maryland, USA, June 14-16,
2005, pages 311–322.

Madden, S., Shah, M. A., Hellerstein, J. M., and Raman,
V. (2002). Continuously adaptive continuous queries
over streams. In Proceedings of the 2002 ACM SIG-
MOD International Conference on Management of
Data, Madison, Wisconsin, June 3-6, 2002, pages 49–
60.

Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu,
S., Datar, M., Manku, G. S., Olston, C., Rosenstein,
J., and Varma, R. (2003). Query processing, approx-
imation, and resource management in a data stream
management system. In CIDR.

MVAPICH2, The Ohio State University (2015). MVA-
PICH2, The Ohio State University. http://
mvapich.cse.ohio-state.edu/. [Online; accessed 24-
November-2015].

Neumeyer, L., Robbins, B., Nair, A., and Kesari, A. (2010).
S4: Distributed stream computing platform. In Pro-
ceedings of the 2010 IEEE International Conference
on Data Mining Workshops, ICDMW ’10, pages 170–
177, Washington, DC, USA. IEEE Computer Society.

Peng, D. and Dabek, F. (2010). Large-scale incremental
processing using distributed transactions and notifica-
tions. In 9th USENIX Symposium on Operating Sys-
tems Design and Implementation, OSDI 2010, Octo-
ber 4-6, 2010, Vancouver, BC, Canada, Proceedings,
pages 251–264.

Plimpton, S. J. and Shead, T. M. (2014). Streaming data an-
alytics via message passing with application to graph
algorithms. J. Parallel Distrib. Comput., 74(8):2687–
2698.

Slurm (2015). Slurm. http://slurm.schedmd.com/. [Online;
accessed 24-November-2015].

Teubner, J. and Müller, R. (2011). How soccer players
would do stream joins. In Proceedings of the ACM
SIGMOD International Conference on Management
of Data, SIGMOD 2011, Athens, Greece, June 12-16,
2011, pages 625–636.

Toshniwal, A., Taneja, S., Shukla, A., Ramasamy, K., Pa-
tel, J. M., Kulkarni, S., Jackson, J., Gade, K., Fu, M.,
Donham, J., Bhagat, N., Mittal, S., and Ryaboy, D. V.
(2014). Storm@twitter. In International Conference
on Management of Data, SIGMOD 2014, Snowbird,
UT, USA, June 22-27, 2014, pages 147–156.

Trident (2012). Trident. http://storm.apache.org/
documentation/Trident-tutorial.html. [Online; ac-
cessed 24-November-2015].

Zaharia, M., Das, T., Li, H., Shenker, S., and Stoica, I.
(2012). Discretized streams: An efficient and fault-
tolerant model for stream processing on large clus-
ters. In 4th USENIX Workshop on Hot Topics in Cloud
Computing, HotCloud’12, Boston, MA, USA, June 12-
13, 2012.

DATA 2016 - 5th International Conference on Data Management Technologies and Applications

24

