
Formal Methods in Collaborative Projects

Anna Zamansky1, Guillermo Rodriguez-Navas2, Mark Adams3 and Maria Spichkova4

1Information Systems Department, University of Haifa, Carmel Mountain, 31905, Haifa, Israel
2School of Innovation, Design and Engineering, Malardalen University, Högskoleplan 1, 72218 Västeras, Sweden

3Proof Technologies Ltd, 119 Comer Rd, Worcester WR2 5JD, U.K.
4School of Science, RMIT University, 414-418 Swanston Street, 3001, Melbourne, Australia

Keywords: Formal Methods, Collaboration, Industrial Applications.

Abstract: In this paper we address particular aspects of integration of formal methods in large-scale industrial projects,
namely collaborative aspects. We review recent works addressing such aspects, identify some current trends
and discuss directions for further research.

1 INTRODUCTION

The discussion on the feasibility and usefulness of
formal methods (FM) in practice has been going on
for over four decades. For all this time formal meth-
ods have been perceived as “difficult, expensive and
not widely useful” despite their widely acknowledged
advantages. Their understandability, comprehensibil-
ity and scalability have been hypothesized as hinder-
ing factors for FM adoption in industry. In “40 years
of formal methods” (Bjørner and Havelund, 2014) ad-
mit that despite numerous books, publications, con-
ferences and user groups, the gap between academic
research in FM and its integration in large indus-
trial projects is yet to be bridged. Moreover, de-
spite that fact that FM are encouraged by safety stan-
dards, this encouragement does not provide any con-
crete methodology for application of FM. And yet, as
stated by Abrial, adopting formal methods in a soft-
ware company is more a strategical and methodologi-
cal issue than a technical one (Abrial et al., 1991).

This leads to the consideration of an important as-
pect of integration of FM in industrial projects, which
has received less attention thus far. Development of
complex software products is a collaborative effort.
Collaboration in software engineering is usually un-
derstood as artifact-based or model-based collabora-
tion, where the focus of activity is on the produc-
tion of new models, the creation of shared meaning
around the models, and elimintation of error and am-
biguity within the models (Whitehead et al., 2010).
Collaboration involves communication of many dif-
ferent stakeholders, as well as the use of different de-

scriptions with a large range of levels of formality.
This leads to the natural question what is the role of
FM with respect to collaboration? Does collabora-
tion make applying FM more difficult? Are there im-
plicit collaboration models in the existing FM? Is the
lack of support of collaborative aspects of FM an ad-
ditional hindrance to the adoption of FM in industry?
How can FM support these interactions?

The aim of this paper is to make a first step to-
wards answering the above questions by highlight-
ing collaborative aspects of FM in large-scale indus-
trial software projects. We start by briefly reviewing
some recent large-scale industrial projects in which
FM have been successfully applied. Then we discuss
some particular aspects of large-scale projects which
are directly related to collaboration. We finish with
a summary, highlighting also potential directions for
future research.

2 FORMAL METHODS IN
LARGE-SCALE PROJECTS

Industrial adoption of formal methods (or lack of
thereof) has been a major concern in the FM com-
munity for decades and numerous works have been
written on the topic. Several papers in the nineties dis-
cussed common myths of FM (Hall, 1990; Bowen and
Hinchey, 1995a) and FM commandments (Bowen and
Hinchey, 1995b; Bowen and Hinchey, 2006; Bowen
and Hinchey, 2005). Numerous surveys on indus-
trial use of FM have been published, among the most

396
Zamansky, A., Rodriguez-Navas, G., Adams, M. and Spichkova, M.
Formal Methods in Collaborative Projects.
In Proceedings of the 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering (ENASE 2016), pages 396-402
ISBN: 978-989-758-189-2
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



recent ones (Craigen et al., 1993; Bloomfield et al.,
2000; Woodcock et al., 2009).

Understandability and comprehensibility of FM
have been hypothesized for years as hindering fac-
tors of industry takeup of FM. Interestingly, empiri-
cal studies show no decisive evidence for this hypoth-
esis. (Zimmerman et al., 2002) investigated how vari-
ous factors of state-based requirements specification
language design affect readability using aerospace
applications: no decisive conclusions were reached.
(Snook and Harrison, 2001) presents an empirical
study of practitioners’ views related to understand-
ability and usability of formal methods. In contrast
to popular opinions, all the experienced interviewees
agreed that typical software engineers have no real
difficulties with understanding formal notations.

The more difficult thing, in most opinions, was
finding useful abstractions from which models can be
created. (Andronick et al., 2012; Fitzgerald et al.,
1995) also agree that FM capabilities is readily ac-
quired by technical experts; in particular, it may be
easier to train domain experts in formal methods than
formal methods practitioners in the domain.

Scalability of FM in large-scale projects is con-
sidered another important concern. The challenges
in managing large-scale proofs were discussed in
(Bourke et al., 2012). The authors draw on expe-
riences from two large-scale projects involving for-
mal proofs: the pervasive system-level verification of
Verisoft (Alkassar et al., 2009), and the operating sys-
tem microkernel verification in the L4.verified project
(Klein et al., 2009).

Lightweight formal methods (Jones et al., 1996;
Jackson, 2001) seem a particularly promising ap-
proach in this respect. The idea is to concentrate just
on the areas of biggest risk, and aim to establish just
partial properties, or even just find errors missed by
conventional software testing, rather than establish to-
tal absence of error. (Atzeni et al., 2014) report on
experiences from applying model checking to the au-
thentication system of a large scale security-oriented
project. One of the lessons learnt is that lightweight
verification does not necessarily require special ex-
perts and can be assigned to the testing team, who
have an extensive knowledge of the system and priori-
tising errors. Similar insights are described in (Ben-
nion and Habli, 2014), where model checking was ap-
plied to aero-engine monitoring software.

One of the recent successes in formal specification
is reported in (Zave, 2012), where Alloy was applied
to model and analyze a ring-maintenance protocol. A
more expressive language, TLA+ has recently begun
to be employed for checking correctness of Amazon
Web Services (Newcombe et al., 2015). The use of a

lightweight formal technique of Analytical Software
Design is reported in (Osaiweran et al., 2015) report
on the experiences with the embedding of ASD into
the development processes.

Large-scale projects usually involve not a single
representation level, but a stack of methods and tools,
where the transition between them might be very chal-
lenging. Several approaches attempted to overcome
this obstacle. For instance, the Ptolemy approach
introduces a general way to combine heterogeneous
models of embedded systems, cf. (Eker et al., 2003).
To our best knowledge, the first work on achieving
a pervasive formal development process for embed-
ded applications starting with informal textual spec-
ification and leading to verified machine-code was
done within the Verisoft-Automotive project (a part of
Verisoft), cf. (Botaschanjan et al., 2008), covering the
entire seamless pervasive development process. This
project was done in collaboration between TU Mu-
nich, Saarland University and BMW Group.

The first steps towards a methodology for devel-
opment of verified embedded system have been done
in (Botaschanjan et al., 2006; Botaschanjan et al.,
2005). For example, a typical setting found in the
automotive domain, a time-triggered operating and
communication bus system, has been verified (Kühnel
and Spichkova, 2007). Earlier results of the Verisoft
project have shown the methodology for later verifi-
cation phases, in particular the relation between the
application model and its execution environment, e.g.
the operating system. The successor project, Verisoft-
XT (Spichkova et al., 2012) was done in collabora-
tion between TU Munich and Robert Bosch GmbH.
Its core part developing a Cruise Control System with
focus on system architecture and system verification.
Verisoft-XT led to a development methodology for
safety-critical systems with focus on the tool chain,
which is employed in the design, implementation and
verification phases of the methodology.

Another two projects on embedding formal and
semi-formal methods in the automotive industrial de-
velopment cycle were done in collaboration between
TU Munich and DENSO Corporation, cf. (Feilkas
et al., 2009; Feilkas et al., 2011). The core of both
projects was elaboration of top-down methodologies
for the development of automotive software systems
and adapting them to the case studies provided by
DENSO Corporation: an Adaptive Cruise Control
system with Pre-Crash Safety functionality, and a
keyless-entry system for smart vehicles.

Formal Methods in Collaborative Projects

397



3 EXISTING WORK ON
COLLABORATIVE SOFTWARE
DEVELOPMENT

Collaboration in software engineering is attracting in-
creasing attention as projects relying on distributed
development of software artifacts are becoming more
popular. There is a wide recognition for the need of
tools and methodologies to support collaborative de-
velopment (De Jonge et al., 2001; Whitehead et al.,
2010). The term groupware has been recently coined
(Bani-Salameh and Jeffery, 2014) in order to refer to
toolsets that support not only the technical aspects of
distributed software engineering, but also the human
and social activities inherent to any collaborative soft-
ware project.

The relevance of groupware has been particularly
recognized in the area of Global Software Engineer-
ing (GSE), in which development teams can be lo-
cated in different countries, typically different con-
tinents, potentially raising cultural and communica-
tion difficulties that may have strong impact on the
product quality and final cost. These challenges were
reported in several surveys and systematic literature
studies, which include discussions on existing tool
support.

The most comprehensive review is probably
(Portillo-Rodrı́guez et al., 2012), which reports a
number of central activities for GSE: support to in-
formal communication (e.g. screen sharing, video-
conference, chat), visualization of project evolution,
knowledge sharing (e.g. document sharing, require-
ments peer review, wiki) , distributed design (e.g. sce-
nario creation, annotation of diagrams, CASE tool for
UML models), distributed code review and code man-
agement. Other studies reporting similar results are
(Lee et al., 2006) and (Trkman et al., 2013).

Interestingly, none of the consulted surveys makes
any reference to any formal method or tool, and
the two activities that are in principle more prone
to formalization (knowledge sharing and distributed
design) seem to be implemented at best with semi-
formal approaches such as, for example, scenario cre-
ation and UML designs. Particularly, we noticed that
the term “formal” is often used in contraposition to
“colloquial”. For instance, (Lee et al., 2006) encour-
ages the use of formal communication, meaning ei-
ther exchange of formal (i.e. written) text documents
or formal meetings (i.e. with agenda and minutes)
instead of informal communication (casual conversa-
tions). This observation is a good indicator of the little
penetration that FM has had in this research area.

There are, however, some papers that report, or at
least suggest, utilization of FM in the context of GSE.

(Kuhrmann et al., 2013) suggests the use of software
process metamodels (like SPEM) in order to specify
the artifacts and data exchanged by each software pro-
cess, thus abstracting away from local software pro-
cesses and allowing composability and consistency
analysis. (Cheng et al., 2009) proposes development
of a new requirements vocabulary for self-adaptive
systems that would introduce flexibility in the require-
ments specification, capturing uncertainty and mak-
ing it easier for distributed implementation. (Zhim-
ing et al., 2014) proposed an interesting scheme of
modeling agents, which would monitor and assess the
quality of the cooperation and assist the agents to find
out better solutions, for instance reassigning roles.

4 COLLABORATIVE ASPECTS
OF FORMAL METHODS

Given the relatively small interest that the application
of FM has generated in this research field, there is an
urgent need to address questions related to how social,
cognitive, economic and managerial aspects of FM
can be adapted to better support collaborative work.
In particular,

• The use of FM in a collaborative project implies
communication between an FM expert (or team
of experts) with other stakeholders with different
backgrounds. How can such communication be
supported and improved?

• FM applications involve tasks and artifacts differ-
ent than those in traditional software engineering.
How can we evaluate and increase productivity,
and what tool support is needed?

• Management of FM projects plays a crucial role
in bridging the gap between academic stand-alone
projects and large-scale collaborative projects.
What managerial factors should be addressed in
the context of FM?

In what follows we briefly review existing works
that are relevant to the points mentioned above.

4.1 Communication

Application of FM in collaborative projects requires
an interplay between formal and informal methods,
which use different levels of formality in descriptions.
For example, in the SACEM project (Guiho and Hen-
nebert, 1990) a difficulty was reported in in commu-
nication between the verifiers and other engineers,
who were not familiar with the formal specification
method. This had to be overcome by providing the

COLAFORM 2016 - Special Session on Collaborative Aspects of Formal Methods

398



engineers with a natural language description derived
manually from the formal specification.

Informal descriptions are easier to understand by
non-expert stakeholders, but they may give rise to
ambiguity, incompleteness or inconsistency; formal
ones are more difficult to learn and require extensive
mathematical training, but they provide mathematical
rigor. Semi-formal approaches using diagrammatic
or other visual notations, such as UML, fall some-
where in the middle of this range. There are numerous
works that focus on formalizing a given type of infor-
mal or semi-formal descriptions. In what follows we
mention some approaches with a particular focus on
improving communication between stakeholders with
different backgrounds.

(Knight et al., 2001) addresses the need to inte-
grate both natural language text and formal language
descriptions during the process of specification and
provides a toolset suitable for industrial development,
in which natural language is viewed as an integral and
essential part of a specification.

(Maier and Hess, 2014) highlights this need in the
context of interaction design: formal models are cru-
cial for analyzing elicited requirements and design-
ing a product that satisfied these requirements. Non-
formal methods, like an open requirements elicitation
in form of workshops or interviews may fail gaining
all necessary information if there is no formal model
which builds the basis for the non-formal methods. In
this work non-formal methods, based on a conceptual
formal model are developed that are easy to apply by
non-experts.

(Schuts and Hooman, 2015) describe another ap-
proach to improve communication between stake-
holders by proposing a formal modelling approach for
the concept phase, using a light-weight modelling tool
to formalize system behaviour, decomposition and in-
terfaces and evaluating it Philips HealthTech.

Industrial data show that about 50 percent of prod-
uct defects result from flawed requirements and up to
80 percent of rework efforts can be traced back to re-
quirement defects (Wiegers, 2001). It would be inter-
esting to investigate how many of these requirement
defects are in fact communication problems/mistakes,
which can be potentially reduced by applying FM.

4.2 Productivity

Considerations of time- and cost-effectiveness of ap-
plying FM are crucial in large-scale collaborative
projects. This leads to the need for evaluation and, ul-
timately, reduction of the cost of FM efforts in terms
of time and money. (Andronick et al., 2012) points
out the lack of good understanding of what to mea-

sure in projects using formal methods. (Jeffery et al.,
2015) proposes a concrete research agenda on met-
rics, cost models and estimation methods for large-
scale projects employing FM.

The study in (Staples et al., 2014) addresses the
issue of proof productivity: data on size of proofs and
human effort was extracted from the history of the de-
velopment of nine projects associated with seL4 mi-
crokernel; lines of proof were found to be very highly
correlated with human effort, the limitations of this
measure are also discussed.

(Freitas and Whiteside, 2014) introduce proof pat-
terns, which aimed to provide a common vocabulary
for solving formal methods proof obligations by cap-
turing and describing solutions to common patterns of
proof. The aim is to enable less experiences proof en-
gineers to identify common situations and tackle them
using proof patterns.

Another issue which is directly related to increas-
ing effectiveness of FM use in collaborative projects
is proof reuse. Several techniques have been consid-
ered, such as incremental proof reuse (Beckert and
Klebanov, 2004), global abstraction methods (Huang
et al., 1994), constructive methods (such as ones used
in KIV (Balser et al., 2000)), and similarity-based
methods (Melis and Schairer, 1998).

4.3 Tool Support

For FM to be beneficiary for software development
projects, they must be fully integrated into the soft-
ware lifecycle. This means that appropriate tool sup-
port is a crucial factor. Lack of appropriate tool sup-
port was indeed hypothesized as one of the main
obstacles for a wider adoptions of FM in industry.
As noted in (Bjørner and Havelund, 2014), in their
early usage the first formal specification languages,
VDM and Z, did not provide even the simplest syntax
checker, so that “the mere thought that three or more
programmers need collaborate on code development
occurred much too late in those circles”. Means are
now finally being taken to remedy this situation. For
instance, the VSTTE (Verified Software: Theories,
Tools and Experiments) initiative aims to advance the
state of the art in the science and technology of soft-
ware verification through the interaction of theory de-
velopment, tool evolution, and experimental valida-
tion.

Although empirical data shows that the majority
of product defects result from problems traced to re-
quirements (Wiegers, 2001), tool support for the spec-
ification phase has so far been scarce. Recent spec-
ification development tools are IBMs RuleBase PE
(RuleBase, 2015), and the academic tool RAT (Bloem

Formal Methods in Collaborative Projects

399



et al., 2007). These tools enable the designer to ex-
plore a specification’s properties. (Knight et al., 2001)
describes another toolset developed with the intent of
providing comprehensive facilities for creating formal
specifications in production software development.

A crucial lesson learnt in the verification expe-
rience of (Bourke et al., 2012) is the importance of
proof automation, because it decreases the cognitive
load on the analyst as well as shortening proof scripts
and thus reducing maintenance costs. Both projects
used Isabelle/HOL prover, which can be soundly ex-
tended with customised automation. Another finding
is that automated support to help analysts find theo-
rems to use in their proof scripts can greatly increase
productivity.

A recent line of research of human factors in FM
aims to support the human expert in applying FM,
producing methodologies and tools for making FM
more comprehensible, easy to use, readable, while
hiding complexity and reducing errors.(Spichkova,
2013), e.g., introduced the idea of applying ideas from
engineering psychology at the specification phase of
system development, aiming to increase readability
and reduce chances of errors. These ideas can be ex-
tended to the domain of collaborative FM by develop-
ing intuitive and easy-to-use technological platforms
for collaborative speficiation and verification efforts.

4.4 Management

(Mandrioli, 2015) points out to too little attention to
the managerial and political aspects as one of the main
factors hindering adoption of FM in industry. Indeed,
information on managerial factors of FM in collab-
orative projects is scarce. (Stidolph and Whitehead,
2003) provides guidelines in deciding whether a par-
ticular project is a good candidate for the use of FM
and describes some of the management issues to be
considered when running such projects.

(Andronick et al., 2012) reports on process and
management aspects of a recent landmark formal ver-
ification project of the microkernel seL4. To the best
of our knowledge, this is the only report to provide a
full descriptive model of the verification process. The
paper further stresses the need for decision-making
tools for FM project management, which are currently
not available.

5 SUMMARY

In this position paper we have reviewed some recent
large-scale projects which applied FM, and discussed
some important collaborative aspects of such projects.

It is our hope that this paper will stimulate discus-
sion on research agenda to better address collabora-
tive aspects of FM, pointing out gaps that can be filled
through collaboration between academy and industry.

ACKNOWLEDGEMENTS

This work was partially funded by the Israel Science
Foundation under grant agreement no. 817/15 and
by the Swedish Governmental Agency for Innovation
Systems (VINNOVA) under project 2013-01299.

REFERENCES

Abrial, J.-R., Lee, M. K., Neilson, D., Scharbach, P., and
Sørensen, I. H. (1991). The b-method. In VDM’91
Formal Software Development Methods, pages 398–
405. Springer.

Alkassar, E., Hillebrand, M. A., Leinenbach, D. C.,
Schirmer, N. W., Starostin, A., and Tsyban, A. (2009).
Balancing the load: Leveraging semantics stack for
systems verification. Journal of Automated Reason-
ing: Special Issue on Operating Systems Verification,
42, Numbers 2-4:389–454.

Andronick, J., Jeffery, R., Klein, G., Kolanski, R., Staples,
M., Zhang, H., and Zhu, L. (2012). Large-scale for-
mal verification in practice: A process perspective.
In Software Engineering (ICSE), 2012 34th Interna-
tional Conference on, pages 1002–1011. IEEE.

Atzeni, A., Su, T., and Montanaro, T. (2014). Lightweight
formal verification in real world, a case study. In Ad-
vanced Information Systems Engineering Workshops,
pages 335–342. Springer.

Balser, M., Reif, W., Schellhorn, G., Stenzel, K., and
Thums, A. (2000). Formal system development with
kiv. In Fundamental approaches to software engineer-
ing, pages 363–366. Springer.

Bani-Salameh, H. and Jeffery, C. (2014). Collaborative and
social development environments: A literature review.
Int. J. Comput. Appl. Technol., 49(2):89–103.

Beckert, B. and Klebanov, V. (2004). Proof reuse for de-
ductive program verification. In Software Engineering
and Formal Methods, 2004. SEFM 2004. Proceedings
of the Second International Conference on, pages 77–
86. IEEE.

Bennion, M. and Habli, I. (2014). A candid industrial
evaluation of formal software verification using model
checking. In Companion Proceedings of the 36th
International Conference on Software Engineering,
pages 175–184. ACM.

Bjørner, D. and Havelund, K. (2014). 40 years of formal
methods. In FM 2014: Formal Methods, pages 42–
61. Springer.

Bloem, R., Cavada, R., Pill, I., Roveri, M., and Tchalt-
sev, A. (2007). Rat: A tool for the formal analysis of

COLAFORM 2016 - Special Session on Collaborative Aspects of Formal Methods

400



requirements. In Computer aided verification, pages
263–267. Springer.

Bloomfield, R., Craigen, D., Koob, F., Ullmann, M., and
Wittmann, S. (2000). Formal methods diffusion: Past
lessons and future prospects. In Computer Safety, Re-
liability and Security, pages 211–226. Springer.

Botaschanjan, J., Broy, M., Gruler, A., Harhurin, A.,
Knapp, S., Kof, L., Paul, W., and Spichkova, M.
(2008). On the correctness of upper layers of au-
tomotive systems. Formal aspects of computing,
20(6):637–662.

Botaschanjan, J., Gruler, A., Harhurin, A., Kof, L.,
Spichkova, M., and Trachtenherz, D. (2006). To-
wards Modularized Verification of Distributed Time-
Triggered Systems. In FM 2006: Formal Methods,
pages 163–178. Springer.

Botaschanjan, J., Kof, L., Kühnel, C., and Spichkova, M.
(2005). Towards Verified Automotive Software. In
2nd International ICSE workshop on Software. ACM.

Bourke, T., Daum, M., Klein, G., and Kolanski, R. (2012).
Challenges and experiences in managing large-scale
proofs. In AISC/MKM/Calculemus, pages 32–48.

Bowen, J. P. and Hinchey, M. G. (1995a). Seven more
myths of formal methods. IEEE software, 12(4):34–
41.

Bowen, J. P. and Hinchey, M. G. (1995b). Ten command-
ments of formal methods. Computer, 28(4):56–63.

Bowen, J. P. and Hinchey, M. G. (2005). Ten command-
ments revisited: a ten-year perspective on the indus-
trial application of formal methods. In Proceedings of
the 10th international workshop on Formal methods
for industrial critical systems, pages 8–16. ACM.

Bowen, J. P. and Hinchey, M. G. (2006). Ten command-
ments of formal methods... ten years later. Computer,
39(1):40–48.

Cheng, B. H., Lemos, R., Giese, H., Inverardi, P., Magee,
J., Andersson, J., Becker, B., Bencomo, N., Brun, Y.,
Cukic, B., Marzo Serugendo, G., Dustdar, S., Finkel-
stein, A., Gacek, C., Geihs, K., Grassi, V., Karsai, G.,
Kienle, H. M., Kramer, J., Litoiu, M., Malek, S., Mi-
randola, R., Müller, H. A., Park, S., Shaw, M., Tichy,
M., Tivoli, M., Weyns, D., and Whittle, J. (2009).
Software engineering for self-adaptive systems: A re-
search roadmap. In Cheng, B. H., Lemos, R., Giese,
H., Inverardi, P., and Magee, J., editors, Software
Engineering for Self-Adaptive Systems, pages 1–26.
Springer-Verlag, Berlin, Heidelberg.

Craigen, D., Gerhart, S., and Ralston, T. (1993). An in-
ternational survey of industrial applications of formal
methods. In Z User Workshop, London 1992, pages
1–5. Springer.

De Jonge, M., Visser, E., and Visser, J. M. (2001). Collab-
orative software development. Citeseer.

Eker, J., Janneck, J. W., Lee, E. A., Liu, J., Liu, X., Ludvig,
J., Neuendorffer, S., Sachs, S., and Xiong, Y. (2003).
Taming heterogeneity - the ptolemy approach. In Pro-
ceedings of the IEEE, pages 127–144.

Feilkas, M., Fleischmann, A., Hölzl, F., Pfaller, C.,
Rittmann, S., Scheidemann, K., Spichkova, M., and
Trachtenherz, D. (2009). A Top-Down Methodology

for the Development of Automotive Software. Tech-
nical Report TUM-I0902, TU München.

Feilkas, M., Hlzl, F., Pfaller, C., Rittmann, S., Schtz, B.,
Schwitzer, W., Sitou, W., Spichkova, M., and Tra-
chtenherz, D. (2011). A Refined Top-Down Method-
ology for the Development of Automotive Software
Systems - The KeylessEntry-System Case Study.
Technical Report TUM-I1103, TU München.

Fitzgerald, J. S., Larsen, P. G., and Larsen, P. (1995). For-
mal specification techniques in the commercial devel-
opment process. In Position Papers from the Work-
shop on Formal Methods Application in Software En-
gineering Practice, International Conference on Soft-
ware Engineering (ICSE-17), Seattle.

Freitas, L. and Whiteside, I. (2014). Proof patterns for for-
mal methods. Springer.

Guiho, G. and Hennebert, C. (1990). Sacem software val-
idation. In Software Engineering, 1990. Proceed-
ings., 12th International Conference on, pages 186–
191. IEEE.

Hall, A. (1990). Seven myths of formal methods. Software,
IEEE, 7(5):11–19.

Huang, X., Kerber, M., Richts, J., and Sehn, A. (1994).
Planning mathematical proofs with methods. Elek-
tronische Informationsverarbeitung und Kybernetik,
30(5/6):277–291.

Jackson, D. (2001). Lightweight formal methods. In FME
2001: Formal Methods for Increasing Software Pro-
ductivity, pages 1–1. Springer.

Jeffery, R., Staples, M., Andronick, J., Klein, G., and Mur-
ray, T. (2015). An empirical research agenda for un-
derstanding formal methods productivity. Information
and Software Technology, 60:102–112.

Jones, C. B., Jackson, D., and Wing, J. (1996). Formal
methods light. Computer, 28(4):20–22.

Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock,
D., Derrin, P., Elkaduwe, D., Engelhardt, K., Kolan-
ski, R., Norrish, M., Sewell, T., Tuch, H., and Win-
wood, S. (2009). sel4: Formal verification of an os
kernel. In Proceedings of the ACM SIGOPS 22Nd
Symposium on Operating Systems Principles, SOSP
’09, pages 207–220, New York, NY, USA. ACM.

Knight, J. C., Hanks, K. S., and Travis, S. R. (2001). Tool
support for production use of formal techniques. In
Software Reliability Engineering, 2001. ISSRE 2001.
Proceedings. 12th International Symposium on, pages
242–251. IEEE.

Kühnel, C. and Spichkova, M. (2007). Fault-Tolerant Com-
munication for Distributed Embedded Systems. In
Software Engineering and Fault Tolerance, Series on
Software Engineering and Knowledge Engineering.

Kuhrmann, M., Fernández, D. M., and Gröber, M. (2013).
Towards artifact models as process interfaces in dis-
tributed software projects. In Proceedings of the 2013
IEEE 8th International Conference on Global Soft-
ware Engineering, ICGSE ’13, pages 11–20, Wash-
ington, DC, USA. IEEE Computer Society.

Lee, G., DeLone, W., and Espinosa, J. A. (2006). Ambidex-
trous coping strategies in globally distributed software
development projects. Commun. ACM, 49(10):35–40.

Formal Methods in Collaborative Projects

401



Maier, A. and Hess, S. (2014). We need non-formal meth-
ods based on formal models in interaction design.
In Building Bridges: HCI, Visualization, and Non-
formal Modeling, pages 150–164. Springer.

Mandrioli, D. (2015). On the heroism of really pursu-
ing formal methods. In Formal Methods in Software
Engineering (FormaliSE), 2015 IEEE/ACM 3rd FME
Workshop on, pages 1–5. IEEE.

Melis, E. and Schairer, A. (1998). Similarities and reuse of
proofs in formal software verification. In Advances in
Case-Based Reasoning, pages 76–87. Springer.

Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker,
M., and Deardeuff, M. (2015). How amazon web ser-
vices uses formal methods. Communications of the
ACM, 58(4):66–73.

Osaiweran, A., Schuts, M., Hooman, J., Groote, J. F., and
van Rijnsoever, B. (2015). Evaluating the effect of
a lightweight formal technique in industry. Inter-
national Journal on Software Tools for Technology
Transfer, pages 1–16.

Portillo-Rodrı́guez, J., Vizcaı́no, A., Piattini, M., and
Beecham, S. (2012). Tools used in global software
engineering: A systematic mapping review. Inf. Softw.
Technol., 54(7):663–685.

RuleBase, I. (2015). Ibm rulebase homepage.
Schuts, M. and Hooman, J. (2015). Formalizing the concept

phase of product development. In FM 2015: Formal
Methods, pages 605–608. Springer.

Snook, C. and Harrison, R. (2001). Practitioners’ views
on the use of formal methods: an industrial survey by
structured interview. Information and Software Tech-
nology, 43(4):275–283.

Spichkova, M. (2013). Design of formal languages and
interfaces:formal does not mean unreadable. IGI
Global.

Spichkova, M., Hölzl, F., and Trachtenherz, D. (2012). Ver-
ified System Development with the AutoFocus Tool
Chain. In 2nd Workshop on Formal Methods in the
Development of Software, WS-FMDS.

Staples, M., Jeffery, R., Andronick, J., Murray, T., Klein,
G., and Kolanski, R. (2014). Productivity for proof
engineering. In Proceedings of the 8th ACM/IEEE In-
ternational Symposium on Empirical Software Engi-
neering and Measurement, page 15. ACM.

Stidolph, D. C. and Whitehead, J. (2003). Managerial is-
sues for the consideration and use of formal meth-
ods. In FME 2003: Formal Methods, pages 170–186.
Springer.

Trkman, M., Vrhovec, S., Vavpoti?, D., and Krisper, M.
(2013). Defending the need for a new global soft-
ware approach: A literature review. In Informa-
tion Communication Technology Electronics Micro-
electronics (MIPRO), 2013 36th International Con-
vention on, pages 199–202.

Whitehead, J., Mistrı́k, I., Grundy, J., and van der Hoek, A.
(2010). Collaborative software engineering: Concepts
and techniques. In Collaborative Software Engineer-
ing, pages 1–30. Springer.

Wiegers, K. E. (2001). Inspecting requirements. Sticky-
Minds. com.

Woodcock, J., Larsen, P. G., Bicarregui, J., and Fitzgerald,
J. (2009). Formal methods: Practice and experience.
ACM Computing Surveys (CSUR), 41(4):19.

Zave, P. (2012). Using lightweight modeling to understand
chord. ACM SIGCOMM Computer Communication
Review, 42(2):49–57.

Zhiming, C., Zhe, Y., Menghan, W., and Jiangling, Y.
(2014). The agents coordination and templates aggre-
gation in distributed modeling. International Journal
of Hybrid Information Technology, 7(2):369–378.

Zimmerman, M. K., Lundqvist, K., and Leveson, N. (2002).
Investigating the readability of state-based formal re-
quirements specification languages. In Proceedings of
the 24th International Conference on Software engi-
neering, pages 33–43. ACM.

COLAFORM 2016 - Special Session on Collaborative Aspects of Formal Methods

402


