
Towards Design-time Simulation Support for Energy-aware Cloud
Application Development

Christophe Ponsard, Renaud De Landtsheer, Gustavo Ospina and Jean-Christophe Deprez
CETIC Research Centre, Avenue Jean Mermoz 28, 6041 Gosselies, Belgium

Keywords: Energy Efficiency, Cloud, Sustainability, Green-IT, Discrete Event Simulation, Self-adaptation.

Abstract: Cloud application deployment is becoming increasingly popular for the removal of upfront hardware costs,
the pay-per-use cost model and their ability to scale. However, deploying software on the Cloud carries both
opportunities and threats regarding energy efficiency. In order to help Cloud application developers learn and
reason about the energy consumption of their application on the server-side, we have developed a framework
centred on a UML profile for relating energy goals, requirements and associated KPI metrics to application
design and deployment elements. Our previous work has focused on the use of such a framework to carry out
our run-time experiments in order to select the best approach. In this paper, we explore the feasibility of a
complementary approach for providing support at design time based on finer grained deployment models, the
specification of Cloud and energy adaptation policies and the use of a discrete event simulator for reasoning
on key performance indicators such as energy but also overall performance, delay and costs. The goal is to
support the Cloud developer in pre-selecting the best trade-off that can be further tuned at run-time.

1 INTRODUCTION

The expansion of ICT both at professional and per-
sonal levels induces the processing and exchange of
increasingly larger amounts of data, increasing con-
nectivity of all devices (mobile devices, Internet of
Things) and higher penetration in all domains. This
would raise the energy required to run ICT to a dra-
matic level if ICT energy efficiency was not improv-
ing simultaneously. However, because of this contin-
uous increasing of energy consumption (Internet Sci-
ence NoE, 2013) and in order to reach another level of
energy saving, it is required to consider the software
layer. Several initiatives have already studied how to
reduce energy consumption of mobile or embedded
devices. For the Cloud Computing domain, an impor-
tant amount of work has focused on lower layers such
as the physical infrastructure (Dougherty et al., 2012)
or on the infrastructure virtualisation layer (Mastelic
et al., 2014). A systematic survey of sustainability
showed a dedicated attention to Cloud as well as a
number of proposals turned to the energy efficiency
of software application (Penzenstadler et al., 2014).
However much remains to be done, especially to help
developers to learn how much energy is consumed by
their application on the server-side.

In order to structure our work we will refer to
the previously defined reference framework detailed

in (Deprez et al., 2012). This framework is composed
of three levels:

Requirements Level - We use the Goal-Question-
Metric (GQM) paradigm (Basili et al., 1994). In pre-
vious work (Deprez and Ponsard, 2014), we have
shown how developers can formulate energy-related
goals and questions in order to gain a more precise
knowledge of the energy consumed by various fea-
tures/components of their application. We also make
the link with a number of already identified energy-
related metrics (Bozzelli et al., 2013).

Design Level - To capture the information in a
way that is both standard for the analyst and easy
to process in further steps, a UML profile was de-
fined (Ponsard et al., 2015). This profile enhances the
analysis process of a Cloud application with energy
awareness both for the development of a new appli-
cation or the migration of an existing application to
the Cloud. It also enables the automated deployment
of measurement probes to monitor the specified Key
Performance Indicators (KPI) and report them at the
GQM level.

Run-time Level - Probes collect the specified data
and report them to a monitoring infrastructure part of
the energy-aware Cloud stack. For this purpose we
currently use the ASCETiC Cloud stack deployed in
specific test beds (ASCETIC, 2013).

So far, our work has mostly been oriented towards

398
Ponsard, C., Landtsheer, R., Ospina, G. and Deprez, J-C.
Towards Design-time Simulation Support for Energy-aware Cloud Application Development.
In Proceedings of the 6th International Conference on Cloud Computing and Services Science (CLOSER 2016) - Volume 2, pages 398-404
ISBN: 978-989-758-182-3
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

run-time approach to collect data about the energy
behavior as well as other key non-functional require-
ments such as performance and response time that re-
quire some form of trade-off. While this approach is
the most precise given it collects real data, it suffers
from some drawbacks. First, it is necessary to reach
the deployment phase to collect data: although Cloud
architectures are quite flexible, this arrives quite late
in the process and it reduces the set of alternatives
for deployment configuration and might rule out more
fundamental design alternatives. Second, it is diffi-
cult to experiment with self-adaptation policies, espe-
cially when considering the most abstract SaaS level.
Third, collecting data might also be difficult and be
subject to some measurement bias. Given that our ap-
proach already proposed a strong design-level mod-
elling, we felt that it might be interesting to propose
complementary tools supporting the assessment of ar-
chitectural alternatives directly at the design level.
Our approach does not aim at being very precise; it
only aims at reducing the design space for the SaaS
level developer. At the technical level, the idea is
to rely on simple Cloud simulations not requiring
a full blown Cloud simulation like CloudSim (Cal-
heiros et al., 2011) or GreenCloud (Kliazovich et al.,
2010).

Figure 1: Extended design-time approach.

Our extended approach is highlighted in Figure 1,
where the contribution discussed in this paper is high-
lighted in gray. It includes a new simulation tool and
relies on an extended UML model. This extension
mainly consists of refinement of the existing deploy-
ment view with:
• more information enabling the estimations of dif-

ferent kinds of requirements (throughput, delay,
energy per requests). Those can be produced by
the run-time layer through unit tests.

• self-adaptation policies, in order to determine the
dynamic behavior, e.g. to scale but also to pre-
serve energy.

• variability points, enabling to compare different
alternatives. Such variability points can be struc-
tural ones or related to adaptation policies.

The purpose of this paper is mainly to assess the
feasibility of the approach which relies on three tech-
nological locks. First it is necessary to map the de-
ployment model into a realistic simulation model.
Second it is necessary to define queries on this model
and evaluate them efficiently. Third the results should
be precise enough, compared to run-time simulation,
to be useful.

This paper aims at partially solving these three
technological locks. Section 2 details the finer
grained simulation model and engine on which our
UML deployment model is mapped. Section 3
describes the query language that is used to effi-
ciently express the targeted non-functional require-
ments. Section 4 details the first experiments we con-
ducted so far using an Open Source discreet event
simulator (DES) and a Photo Album web-application.
Section 5 discusses some related work. Finally, sec-
tion 6 draws some conclusions about our experience
so far and identifies further work.

2 FROM UML TO SIMULATION
MODEL

The main elements of Cloud application are repre-
sented in a simulation meta-model which allows us
to define concrete models that are simulated in a Dis-
crete Event Simulation engine. This model is close
to a UML deployment diagram and maps easily with
it. It introduces some refinement needed for the sim-
ulation such as the need to define interfaces between
processes, either as buffers of storage devices. Those
can be made transparent in the mapping process but
are still explicit in our current version of the engine.
We detail two main elements: structural parts and dy-
namic parts (policies driving specific behaviors such
as scaling up and down).

2.1 Structural Modelling

In our approach, a Cloud application is modeled as
flows of requests through processes and buffers/data
stores. We do not specialise further our description
although there are well-known classes of architectural
processes in Cloud application such as load balancers,
authentication gateways, workload schedulers, etc.
We let those be organised at a higher ”pattern” layer.

Batch Processes are data processing services
working as much as they can as they are fed by input

Towards Design-time Simulation Support for Energy-aware Cloud Application Development

399

data (or requests) to produce some output results. In-
put data is received from one or different sources (and
possibly requiring to wait for a specific resource),
processed for some time that can be defined using a
stochastic function, and finally the produced outputs
are dispatched to their respective destinations, either
an input buffer of another process or a data store.

Continuous Processes are pipelined processes: re-
quests are continuously picked from input data stores
and pass through a number of steps before being out-
put.

Splitting Processes are similar to batch processes,
except that they have several sets of outputs and when
it completes, one set of output is selected and the pro-
duced items are dispatched to associated output. A
splitting process can also represent a batch process
that has a failure rate.

Parallel Processes are a variant of the above pro-
cesses where several lines of the same process are
running in parallel (either as threads or in different
machines but with a dedicated processing resource).
Specific adaptation policies can also be associated to
dynamically change the level of parallelism of a pro-
cess.

Buffers and Stores represent any kind of memory
device able to store data. They have a maximum ca-
pacity. When this capacity is reached, they either
overflow and lose data (e.g. rotating buffer), or block
the upfront processes until it is able to cope with the
request. Processes should always be isolated either
by a store (indirect coupling) or a buffer (direct cou-
pling).

Figure 2: Concepts of our process modelling languages.

Data items flowing in processes and stores are
indistinguishable at a given point of the processing
chain. Yet, they have some intrinsic features: some
items might come from a given process, others might
have higher priority, etc. These intrinsic features can
influence on the behavior of some processes, such
as processing higher priority items first. This notion
of intrinsic features also leads to the natural distinc-
tion between two different types of stores, namely:
First In-First Out (FIFO) stores and Last In-First Out
(LIFO) stores.

2.2 Process Activation and
Self-adaptation Policies

Policies are also integrated in our model, together
with activation policies that are able to turn a process
on or off. To model these two concepts, we introduce
the notion of activable and activation. An activable
is something that can be enabled through an activa-
tion. We also associate a magnitude with the activa-
tion, that is, an integer. An activable can be a process
or an external request. In the case of a process, the ac-
tivation represent the number of batches that the pro-
cess is allowed to execute. In the case of an order, the
magnitude represent the number of requests.

Activable entities can be activated based on three
types of rules that are also part of our modelling
framework:
• regular activations, that perform the activation on

a regular basis, based on a period of time;

• request-based activations, that perform the activa-
tion when a request is received;

• monitoring activations, that perform the activation
when some conditions are met, possibly in a fu-
ture time.

While the first and second class are useful to sim-
ulate loads, the later is the most interesting to specify
the dynamic behaviour of the Cloud application as de-
scribed later.

3 TRANSLATING ENERGY
RELATED REQUIREMENTS
INTO MODEL QUERIES

The goal of our approach is to perform queries related
to non-functional requirements (NFR) on factory sim-
ulations, especially to measure energy and specific
trade-offs e.g. related to performance. These queries
are meant to be performed on single runs of simu-
lation occurring inside the Monte-Carlo engine which
aggregates the queries results over the runs, which can
then be queried afterwards to obtain statistics like the
mean, median, extremes, and variance.

Our query language can roughly be split into
six sets of primitives, namely: probes on processes,
probes on stores, logic operators, temporal logic op-
erators, arithmetic operators, and temporal arithmetic
operators. Arithmetic and logic operators differ by
their return types; they return numeric and boolean
values, respectively. Since this query language runs
over simulated time, we take the convention that the
value of the queries are computed at the end of the

TEEC 2016 - Special Session on Tools for an Energy Efficient Cloud

400

trace on which they are evaluated. The full semantics
of our query languages has been reported for an appli-
cation in the supply chain domain in (De Landtsheer
et al., 2016). It relies on the |= notation: t |= P is
the value of expression P when evaluated at position
t of the current trace. In this section, we highlight the
adaptation of this language to the Cloud model ele-
ments presented in the previous section.

3.1 Probes for Processes

The probes on processes are atomic operators that ex-
tract basic metrics from processes of the simulation
model. Suppose that p is such a process, the follow-
ing probes are supported:
• t |= total(p) the total number of instances in the

process pool at time t.

• t |= running(p) the number of running instances
in the process pool at time t.

• t |= processedRequests(p) the total number of re-
quests processed by the process between the be-
ginning of the trace, and time t.

• t |= incommingRequests(p) the number of incom-
ing requests to the process between the beginning
of the trace, and time t. For a process with mul-
tiple lines, it sums up the started batches of each
line.

• t |= totalWaitDuration(p) the total duration where
the process was not running between the start of
the trace, and time t. for a process with multiple
lines, it sums up the waiting time of each line.

3.2 Probes for Buffers and Stores

The probes on stores are atomic operators that extract
basic metrics from stores of the simulation model.
Suppose that s is such a store:

• t |= empty(s) true if the store s is empty at time t,
false otherwise.

• t |= content(s) the number of items in the store s
at time t.

• t |= capacity(s) the maximal capacity of s. This is
invariant in time.

• t |= relativeCapacity(s) the relative content of
store s at time t, that is: the content of the stock
divided by the capacity of the store.

• t |= totalPut(s) the number of items that have been
put into s between the beginning of the simulation
and time t, not counting the initial ones.

• t |= totalFetch(s) the number of items that have
been fetched from s between the beginning of the

simulation and time t.

• t |= totalLostByOverflow(s) the number of items
that have been lost by overflow from s between
the beginning of the trace, and time t. If s is a
blocking store, this number will always be zero.

3.3 Operators

Complex queries can be built using queries in Object
Constraint Language (OCL) enriched with the follow-
ing operators, some of them also referring to one or
more states of the considered trace:
• logical: true, false,not(!),and(&),or(‖),<,>, ...

• temporal logic: hasAlwaysBeen,hasBeen,since, ...

• arithmetic: +,−,∗,/,sum, ...

• temporal arithmetic: delta,cumulatedDuration,
time,min,max,avg, integral...

4 FIRST EXPERIMENTS ON A
CASE STUDY

Our first validation experiments have consisted in
checking the ability to model our photo album case
study in our simulation framework. This includes:
using the given structural primitives, precisely de-
scribing queries related to specific requirements (es-
pecially energy and performance related), modelling
some dynamic policies, and running a simulation
based on an Open Source simulation engine.

4.1 Case Study Description

Figure 3: Extended design-time approach.

Photo Album is a 3-tier web application that is de-
signed to be desktop-like on-line photo manager (Tse-
bro et al., 2009). It provides social services for up-
loading photos, storing and previewing them, creating
albums and sharing them with other users. The visu-
alisation layer is implemented in JavaScript while the
business logic in Java runs on the server-side and a
database for storing issue data can run on the same
server or on a different machine. It is very represen-
tative of applications that can be deployed on a Cloud
by SaaS models that can benefit of the PaaS and IaaS
layers elasticity/reconfigurability features. Figure 3

Towards Design-time Simulation Support for Energy-aware Cloud Application Development

401

present two typical (and related) use cases on this sys-
tem: uploading a media item and compiling an album.

4.2 Structural Modelling

In order to model the Photo Album, we introduced the
following model elements which are also depicted in
Figure 4:
• an external user pool simulating an external load

on the system with some stochastic behavior

• a FRONT process responsible of authentication
and redirecting the request to the relevant service
with a non-blocking buffer in front of it to cope
with peak requests.

• an UPLOAD process simulates the media upload.
It features high delay (between 1 and 2 min to
complete to upload).

• a COMPILE process to compile an album which
is triggered on demand or when a new media up-
load as occurred.

• an overflowing store is used to simulate an infinite
storage space available for the two previous pro-
cessed (no matter whether it overflows, this fact
can be discarded in the analysis). The energy cost
to write in the store is related to the size attribute
of the data transferred to it.

Figure 4: Photo album model.

4.3 Implementation

The described model was implemented using the Dis-
crete Event Simulation (DES) engine of the Open
Source OscaR library (OscaR, 2012). OscaR is a
multi-purpose library completely written in Scala and
composed of several complementary tools for opera-
tional research. The OscaR.DES engine is very effi-
cient at computing the evolution of a system by eval-
uating changes only when they occur and updating
complex expressions on the system. The engine can
also be encapsulated into a web server and also fea-
tures a graphical web-client initially developed for
simulating supply chains (De Landtsheer et al., 2016).
Note that the server time granularity is arbitrary and
that simulators can dynamically adapt to the lowest
granularity. The overall performance is related to the
frequency of fined grained events.

4.4 Expressiveness

In order to assess the expressiveness we considered
the capture of the following specific energy, perfor-
mance and responsiveness requirements:
• total energy (on whole system):

sum(Process.allInstances()

->select(p:Process|p.energy*p.processedRequests))

• missed request ratio (on the FRONT process):

FRONT.processedRequests/FRONT.incommingRequests

• average response time (on a chain):

avg(sum(ProcessChain.allInstances()

->select(p:Process | p.runtime)))

We also assessed how self-adaptation policies
could be captures in the model. Such policies are cap-
tured using activation policies associated with specific
model elements. Policies are expressed in the form
WHEN condition T HEN action. The condition part
is a query on the model while the action part is some
modification on the model instances such as changing
some parameter (Process.add/removeInstance). We
considered the following policies:

• Scale up the pool of UPLOAD processed when its
buffers are filling up:

WHEN MEDIA_buf.capacity\>0.8*MEDIA_buf.MAX

THEN MEDIA.addInstance(1)

• Scale down for energy efficiency:

WHEN HasAlwaysBeen(MEDIA.running\<0.8*MEDIA.total,10min)

$THEN MEDIA.removeInstance(1)

• Enforce maximal update frequency of album com-
pilation:

WHEN HasBeen(changed(STORE.data(album)),3min)

THEN AVOID COMPILE(album)

Most of the policies can be supported out of the
box by the DES engine except for negative activation
policies (AVOID keyword in the last policy). We feel
it is important to be able to capture such policies for
enforcing energy behavior restrictions.

4.5 Simulation Run

Some simulations were executed based on the model
described before. At this stage we could successfully
encode the previously described probes. A number of
default probes can also automatically generated from
specific templates (including energy related). Figure
5 shows the results for an energy probe over 100 sim-
ulations, gathered using Monte Carlo with some vari-
ability in the delays between incoming requests. The

TEEC 2016 - Special Session on Tools for an Energy Efficient Cloud

402

Figure 5: Monte Carlo simulation run with energy probe.

simulation takes a few seconds with about 10 percent
overhead for the set of about 20 measured probes.

At this point, we are able to simulate and compare
different design alternatives, either based on distinct
models or using parameters available as variability
point (for example, a load balancing component can
have some threshold to trigger new client or to per-
form request aggregation). However at this point, the
exploration of the design space is not yet automated:
each alternative needs to be simulated manually. For
example, Table 1 shows the impact of a buffer size to
optimize energy in a context similar to Figure 4.

Table 1: Exploration of buffer size parameter to minimize
energy consumption.

Buffer
size

CPU
Load

Network
Traffic

Energy
Cost

0 30% 1000 67
10 64% 100 19
20 95% 50 11.6
30 99% 33 11.1
40 100% 25 11

CPU load should be maximized as it is more ef-
ficient at high load and network traffic should be
minimized. The simulation results confimrs this and
shows the buffer size can safely be set around 30 re-
quests to minimize energy consumption. However,
beyond that limit, there is no gain because the bottle-
neck becomes the process itself.

5 RELATED WORK

There are a number of Cloud simulators available on
the market and some of them are more specifically
dedicated to energy efficiency. CloudSim (Calheiros
et al., 2011) is one of the most popular cloud simula-
tors. It operated at IaaS level and supports the simu-
lation of virtualised data centres mostly focusing on

computational intensive tasks, data interchanges be-
tween data centres. GreenCloud (Kliazovich et al.,
2010) and iCanCloud (Núñez et al., 2012) are two
other popular IaaS simulators based on network sim-
ulators, allowing greater precision at this level but are
also more heavyweight. GreenCloud supports precise
energy estimation of computation and network opera-
tions. Overall, all those simulator are hard to employ
and often suffer from performance issues. DISSECT-
CF (Kecskemeti, 2015) is a more recent simulator
build to support easy extensibility, energy evaluation
of IaaS and fast evaluation of many simulation scenar-
ios. However, compared with our approach, all those
simulators are limited to the IaaS layers and do not
allow to reason on higher level abstractions defined at
PaaS or SaaS layers, e.g. the use of Cloud Computing
patterns (Fehling et al., 2014) and to experiment with
self-adaptation strategies at that level. Our approach
sacrifices the precision in order to gain such capabili-
ties.

There are some SaaS level simulators closer to our
work. AppSim (app, 2012) is an application simu-
lator that models multi-tenant SaaS applications fea-
tures. However it does only cope with that scenario
and only focus on performance and not yet on energy
efficiency. EffSim (Prabhakar et al., 2011) features
a DES approach to tackle energy efficiency aspects
but considers the more specific problem of large scale
storage systems. On a more practical side, NICTA
has developed a technology for modeling the perfor-
mance and scalability of Cloud applications (?). In-
depth empirical evaluations were conducted on a va-
riety of real cloud infrastructures, including Google
App Engine, Amazon EC2, and Microsoft Azure to
predict the resource requirements in terms of cost, ap-
plication performance, and limitations of a realistic
application for alternative deployment scenarios.

6 CONCLUSIONS AND FUTURE
WORK

In this short paper, we proposed an extension to
our framework to better support Cloud developers in
producing energy-aware applications. Our extension
aims at providing more design time support based on
the already present modelling artefacts and enabling
early simulation of possible design alternatives di-
rectly at the SaaS level of abstraction. The drawback
is to accept sacrifice in precision. Thus the proposed
approach does not aim at replacing more precise sim-
ulations or run-time experiments, but we feel it could
complement such approaches nicely by helping the
Cloud architect to focus on the right design choices.

Towards Design-time Simulation Support for Energy-aware Cloud Application Development

403

Our preliminary experiments carried out so far are
encouraging as they can capture interesting interact-
ing requirement and model adaptation policies and
thus support the exploration of design trade-offs. The
simulations are also very reactive but were not yet ap-
plied to very large models. Our next step is to vali-
date how precise are the results and how key parame-
ters required for the simulation can be estimated, es-
pecially in cooperating with our run-time approach.
The DES model also needs to be elaborated: it is
still partial and not fully aligned with the Cloud do-
main: more specific attributes needs to be identified
and captured, e.g. for also reasoning on some secu-
rity impacts. The model mapping also needs to be
automated either through a domain specific graphical
editor or the transformation of the existing UML de-
ployment model, enriched with specific annotations.

ACKNOWLEDGEMENTS

This work was partly funded by the European Com-
mission under the FP7 ASCETiC (nr 610874) and the
CORNET SimQRi (nr 1318172) projects.

REFERENCES

(2012). AppSIM: An Application Simulator for Software
as a Service (SaaS). In Int. Conf. on Computational
Techniques and Mobile Computing.

ASCETIC (2013). Adapting Service lifeCycle towards Ef-
ficienT Clouds. http://www.ascetic.eu.

Basili, V. R., Caldiera, G., and Rombach, D. H. (1994). The
Goal Question Metric Approach, volume I. John Wi-
ley & Sons.

Bozzelli, P., Gu, Q., and Lago, P. (2013). A systematic
literature review on green software metrics. Technical
report, Technical Report: VU University Amsterdam.

Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C.
A. F., and Buyya, R. (2011). Cloudsim: A toolkit for
modeling and simulation of cloud computing environ-
ments and evaluation of resource provisioning algo-
rithms. Softw. Pract. Exper., 41(1):23–50.

Deprez, J.-C. and Ponsard, C. (2014). Energy related
Goals and Questions for Cloud Services. In Measure-
ment and Metrics for Green and Sustainable Software
(MeGSuS).

Deprez, J.-C., Ramdoyal, R., and Ponsard, C. (2012). In-
tegrating Energy and Eco-Aware Requirements Engi-
neering in the Development of Services-Based Appli-
cations on Virtual Clouds. In First Int. Workshop on
Requirements Engineering for Sustainable Systems.

Dougherty, B., White, J., and Schmidt, D. C. (2012).
Model-driven auto-scaling of green cloud comput-
ing infrastructure. Future Generation Comp. Syst.,
28(2):371–378.

Fehling, C., Leymann, F., Retter, R., Schupeck, W., and
Arbitter, P. (2014). Cloud Computing Patterns - Fun-
damentals to Design, Build, and Manage Cloud Ap-
plications. Springer.

Internet Science NoE (2013). D8.1. Overview of ICT en-
ergy consumption. http://www. internet-science.eu

Kecskemeti, G. (2015). Dissect-cf: A simulator to fos-
ter energy-aware scheduling in infrastructure clouds.
Simulation Modelling Practice and Theory, 58, Part
2:188 – 218. Special issue on Cloud Simulation.

Kliazovich, D., Bouvry, P., and Khan, S. (2010). Green-
cloud: a packet-level simulator of energy-aware cloud
computing data centers. The Journal of Supercomput-
ing, pages 1–21.

De Landtsheer, R., Ospina, G., Massonet, P., Ponsard, C.,
Printz, S., Hartel, L., and von Cube, J. P. (2016). A
Discrete Event Simulation Approach for Quantifying
Risks in Manufacturing Processes. In International
Conference on Operations Research and Enterprise
Systems (ICORES16).

Mastelic, T. et al. (2014). Cloud computing: Survey on
energy efficiency. ACM Comput. Surv., 47(2):33:1–
33:36.

Núñez, A. et al. (2012). iCanCloud: A Flexible and Scal-
able Cloud Infrastructure Simulator. J. Grid Comput.,
10(1):185–209.

OscaR (2012). OscaR: Scala in OR. https://bitbucket
.org/oscarlib/oscar.

Penzenstadler, B. et al. (2014). Systematic mapping study
on software engineering for sustainability (SE4S). In
18th Int. Conf. on Evaluation and Assessment in Soft-
ware Engineering, EASE ’14, London, UK, May 2014,
pages 14:1–14:14.

Ponsard, C., Deprez, J.-C., and Flamand, J. (2015). A UML
KPI Profile for Energy Aware Design and Monitoring
of Cloud Services. In 10th Int. Conf. on Software En-
gineering and Applications (ICSOFT-EA).

Prabhakar, R., Kruus, E., Lu, G., and Ungureanu, C. (2011).
Eeffsim: A discrete event simulator for energy ef-
ficiency in large-scale storage systems. In Energy
Aware Computing (ICEAC), 2011 International Con-
ference on, pages 1–6.

Tsebro, A., Mukhina, S., Galkin, G., and Sorokin,
M. (2009). Rich faces photo album application.
http://docs.jboss.org/richfaces/latest 3 3 X/en/realwo
rld/html single.

TEEC 2016 - Special Session on Tools for an Energy Efficient Cloud

404

