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Abstract: The use of Formal Methods (FMs) offers rigour and precision, while reducing ambiguity and inconsistency.
The major barriers hindering the adoption of FMs in industry are the problems of understandability, com-
prehensibility, and scalability. To solve the understandability problem, from one side, the readability of the
method have to be increased, but from another side, an appropriate teaching and learning approach have to
be introduced. This paper presents an overview of existing approaches on teaching of FMs and Logic, also
discusses the common issues in teaching of this subjects.

1 INTRODUCTION

For the development of embedded real-time systems
in most cases experts of different disciplines have to
cooperate, and for such a cooperation a specification
of the developing system, i.e., precise and detailed de-
scription of its behaviour and/or structure, is impor-
tant. Embedded systems are real, but their behaviours
are modelled by mathematical objects, about which
one can argue formally. One aim of Formal Meth-
ods (FMs) is to prove or to automatically evaluate be-
haviour properties of a system in a systematic way,
based on a clear mathematical theory.

When dealing with formal methods, we are
mainly concerned with the methods’s soundness and
correctness, and sometimes also its mathematical el-
egance, but usually do not take into account such as-
pects as readability, usability, or tool support. This
leads to the fact that FMs are perceived by most en-
gineers as “something that is theoretically important
but practically too hard to understand and to use”.
(Crocker, 2006) even suggests to replace the some-
what “unattractive” name ‘formal methods’ with ‘ver-
ified software development’. We might have here a
phenomena similar to the research field of Artificial
Intelligence: deeply appreciated at the beginning of
Artificial Intelligence discipline, it was seen as almost
useless in 70s, cf. (Crevier, 1993), but was “reborn”
with the paradigms of ‘expert systems’ and ‘intelli-
gent agents’, and ‘data mining’.

Even small changes of a formal method can make
it more understandable and usable for an average en-

gineer. Moreover, human factors engineering need to
be incorporated into the software development pro-
cess, cf. (Spichkova et al., 2015a), but the starting
point for an adaptation of FMs in practice is the ed-
ucation in these methods. In the last decade, a num-
ber of teaching programs has been initiated to solve
this problem. For example, the Top SE program in
Japan was introduced with the aim to produce “su-
perarchitects” who can promote practical use of ad-
vanced, scientific methods and tools, including formal
methods, for tackling problems in software engineer-
ing, cf. (Ishikawa et al., 2009)

In this paper, we discuss the common issues in
teaching of FMs and logic, as well as review the
various approaches for teaching Formal Methods for
Software Engineering that have been proposed, and
discuss how they address the above mentioned chal-
lenges. The focus of our analysis here is on collabo-
rative and communication aspects of software devel-
opment using formal methods and logical modelling.

2 TEACHING FORMAL
METHODS: CHALLENGES

The discourse on what to teach in Formal Methods
and how to teach it has been going on for decades. It
seems to be widely agreed that Formal Methods edu-
cators face the following challenges:

• There is a great diversity in the students’ back-
ground and cognitive skills due to the globalisa-
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tion of higher education, which requires constant
adaptation, cf. (Hoare, 2013; Feast and Bretag,
2005).

• Students have decreasing mathematical back-
ground as the curricula become more practice-
oriented, leaving less room for theoretical
courses, cf. (Bjørner and Havelund, 2014;
Crocker, 2006; Zamansky and Farchi, 2015a).

• Students have less motivation as they are strongly
focused on the direct relevance of what they study
to their daily practice, often failing to see the link
of Formal Methods to the real world, cf. (Tavolato
and Vogt, 2012; Wing, 2000).

2.1 Cultural Background

As per UNESCO statistics1, the number of students
who have crossed a national border to study, or are
enrolled in a distance learning programme abroad,
grows around the world. To denote this group of stu-
dents, UNESCO introduced a new term – internation-
ally mobile students (IMSs). In 2012, at least 4 mil-
lion students went abroad to study, up from 2 million
in 2000, representing 1.8% of all tertiary enrolments
or 2 in 100 students globally. According to this statis-
tics, 5 destination countries hosted nearly one-half of
total IMSs: the United States (hosting 18%), United
Kingdom (11%), France (7%), Australia (6%), and
Germany (5%).

Internationalization of the higher education has
created the so-called borderless university, which
provides better opportunities for learning and in-
creases the human and social sustainability, cf.
(Woodcraft, 2012; Vallance et al., 2011; Penzen-
stadler et al., 2012). An obstacle to successful
transnational teaching and learning could be the diver-
sity in cultural and technical/educational backgrounds
of teachers and students (as well as among the stu-
dents). For example, the learning style and percep-
tion of the plagiarism problems is different by stu-
dents coming from Asian and European countries, cf.
(Zobel and Hamilton, 2002). This diversity has to be
taken into account while teaching and assessing the
students.

A partial solution to this problem might be intro-
duction of active and inductive learning in Software
Engineering education process (Sedelmaier and Lan-
des, 2015). In the traditional deductive teaching, the
lecturer introduces general theoretical principles and
mathematical models, proceeds with examples on the

1http://www.uis.unesco.org/Education/Pages/
international-student-flow-viz.aspx

applications of these principles and models, and con-
cludes with practical exercises. An alternative to the
deductive teaching is an inductive teaching approach
that includes a range of instructional methods, such
as inquiry learning, problem-based learning, project-
based learning, case-based teaching, discovery learn-
ing, and just-in-time teaching, cf. (Prince and Felder,
2006) for more details.

A recent work (Alharthi et al., 2015; Spichkova
and Schmidt, 2015) presents an approach on require-
ments specification and analysis for eLearning sys-
tems and for the geographically distributed software
and systems. The eLearning systems are usually de-
veloped to use within different organisations or even
different countries. The organisation/country-specific
requirements can differ in each particular case be-
cause of technical, cultural, or legal diversity. The
challenge is to deal with this diversity in a systematic
way, avoiding contradictions and non-compliance.

2.2 Mathematical Background

The fundamental role of Logic and FMs is recognised
in the ACM CS (Sahami et al., 2011) and SE (LeBlanc
et al., 2006) undergraduate curriculum guidelines.

The pioneer of SE, David Parnas, believes that a
solid understanding of logic is essential for a software
engineer: “Professional engineers can often be distin-
guished from other designers by the engineers abil-
ity to use mathematical models to describe and an-
alyze their products.”, cf. (Parnas, 1993). Neverthe-
less, he also suggested that software engineers have to
have engineers as role model, not philosophers or lo-
gicians, to have more practical view on mathematics,
FMs and their application within software develop-
ment, cf. (Parnas, 2010).

In his works, Parnas has noted the problem of
understandability of formal specifications more than
20 years ago. To make the formal specifications
more attractive for practitioners, Parnas suggested
to make the formal expressions and system speci-
fications shorter, changing their size and perceived
complexity. In his recent works (Parnas, 2011; Jin
and Parnas, 2010) on precise documentation and us-
ing formal methods for these purposes, Parnas high-
lighted that using tabular expression (tables) can in-
crease the readability of formal methods. As per
(Parnas, 2010), “One of the most important roles
that mathematics could play in software development
would be to provide precise, provably complete, easy-
to-use, testable documents. The popular formal meth-
ods have not been designed with use in documentation
as the main goal.”
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In (Parnas, 2010), Parnas mentioned three alarming
gaps, developed within last 50 years:

• the gap between formal methods research and
practical software development is much larger to-
day;

• the gap between software development and older
engineering disciplines: where engineering pro-
grams teach how to apply mathematics to the en-
gineering fields, most computer science depart-
ments teach abstract mathematics without learn-
ing them how to to apply;

• gap between computer science and classical math-
ematics.

From our point of view, closing these gaps should
start on the level of university and higher school
teaching.

There is also increasing concern that computer
science and information technology curricula are
drifting away from fundamental commitment to the-
oretical and mathematical ideas (Tucker et al., 2001).
As (Bjørner and Havelund, 2014) points out, “Todays
masters in computing science and software engineer-
ing are not as well educated as were those of 30 years
ago”. Mandrioli (2015) further comments on a “gen-
eral tendency towards soften the teaching of engineer-
ing principles; this requires a certain amount of hero-
ism to convince students that not everything can be
obtained without effort”, cf. (Mandrioli, 2015).

The problems are even more acute in universi-
ties of applied sciences (Tavolato and Vogt, 2012)
and in the Information Systems discipline (Zamansky
and Farchi, 2015a). The lack of empirical evidence
that mathematical background is directly relevant for
practitioners makes it even more difficult to convince
decision makers that this situation must be handled.
A notable example of such evidence is the Beseme
project (Page, 2003): in a three-year study, empiri-
cal data on the achievements of two student popula-
tions was collected: those who studied discrete math-
ematics (including logic) through examples focused
on reasoning about software, and those who studied
the same subject illustrated with more traditional ex-
amples. An analysis of the data revealed significant
differences in the programming effectiveness of these
two populations in favour of the former.

In 2004, Symposium on Teaching Formal Meth-
ods was to explore the failures and successes of for-
mal methods education, cf. (Dean and (editors),
2004). Now another decade is gone, but we are facing
very similar problems: understandability and read-
ability of FMs.

2.3 Lack of Motivation

Currently, FMs have very limited use in industrial
software development process, which is a significant
hurdle in making the based on FM courses attractive
to the students. Woodcock at al. present survey of
industrial use, comparing the situation in 2009 with
the most significant previous surveys, and discuss the
issues surrounding the industrial adoption of formal
methods, cf. (Woodcock et al., 2009). Thus, we have
a vicious cycle: To embed FMs into the software de-
velopment lifecycle on industrial level, the FMs and
the corresponding mathematical background have to
be a part of the university curriculum. But the stu-
dents are not motivated to learn FMs until they are
not largely adopted by industry.

As FMs require a mathematical background and
abstract thinking skills, many students have negative
perceptions and even fear of courses that require deal-
ing with complex mathematical notations. This is
strongly related to the phenomenon of mathematical
anxiety, cf. (Wang et al., 2014; Sherman and Wither,
2003). The term mathematical anxiety was intro-
duced in 1972 by Richardson and Suinn as “feelings
of tension and anxiety that interfere with the manip-
ulation of numbers and the solving of mathematical
problems in a wide variety of ordinary life and aca-
demic situations,” cf. (Richardson and Suinn, 1972).
As stressed by Wang et al., mathematical anxiety
has attracted recent attention because of its damaging
psychological effects and potential associations with
mathematical problem solving and achievement. Stu-
dents of the Software engineering, Computer Science,
and IT disciplines often prefer to attend the courses
that do not require such a background.

3 APPROACHES FOR TEACHING
OF FORMAL METHODS

Teaching Software Engineering courses is a difficult
task, as it requires imparting abstract reasoning skills
necessary for problem solving (Sprankle and Hub-
bard, 2011). One of the solutions to this problem
would be embedding in the Software Engineering cur-
riculum such subjects as logic and formal specifica-
tion, because these subjects can provide a good start-
ing point for exploring concrete ways in which we ab-
stract thinking can be taught (Zamansky and Farchi,
2015a).

The approaches we discuss in Section 3.2 mostly
focus on overcoming issues that comes from the di-
versity in mathematical background (or even lack of
a solid mathematical background) as well as from the
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lack of motivation to study formal concepts. We do
not attempt to cover the issues that comes from the di-
versity in the learning style and perception of the pla-
giarism problems, because these issues are not FMs
specific.

3.1 Teaching Strategies

As pointed out by Ferreira et al., the success of teach-
ing process depends on the amount of self-learning
and self-discovery that is left for the students: “If the
teacher discloses all the information needed to solve a
problem, students act only as spectators and become
discouraged; if the teacher leaves all the work to the
students, they may find the problem too difficult and
become discouraged too. It is thus important to find
a balance between these two extremes.”, cf. (Ferreira
et al., 2009). MathIs project, presented by Ferreira
et al., aimed to reinvigorate secondary-school mathe-
matics by exploiting insights of the dynamics of algo-
rithmic problem solving.

As suggested in (Wang and Yilmaz, 2006), the ap-
proaches in integrating FMs into software engineering
curriculum can be divided into three main categories:

(1) to avoid FMs,

(2) to devote a specific course with emphasis on for-
mal verification of source code;

(3) to redesign the entire program so that formal
methods are integrated throughout the curriculum.

However, the work of Wang and Yilmaz does not
mention another category, which can be very promis-
ing for integrating FMs into software engineering cur-
riculum: to introduce a specific course that

• covers basics of logic and FMs,

• does not require a deep knowledge in mathemat-
ics, as only the core aspects of the FMs will be
introduced,

• uses visualisation and ramification strategies to
make the material more understandable and less
“boring”.

One examples of courses from the above cate-
gory is the course Applied Logic in Engineering, or
a “logic for everybody” course (Spichkova, 2016).
Other examples include the Logic and FM course de-
signed for Information Systems students (Zamansky
and Farchi, 2015b), and a series of courses specif-
ically adapted to the needs of university of applied
sciences are described in (Tavolato and Vogt, 2012).
Recently courses in the spirit of “computational think-
ing for everybody” envisioned by Wing (Wing, 2006)
have begun to be offered at various departments, e.g.,

IS103 Computational Thinking course at the Sin-
gapore Management University and the COMP101
Computational Thinking and Design course at the
University of Maryland.

Another way to attract students while teaching
FMs was presented by Curzon and McOwan: Within
the engagement project cs4fn, Computer Science for
Fun2, they taught logic and computing concepts using
magic tricks, cf. (Curzon and McOwan, 2013).

There are also recent approaches on embedding
the e-learning and blended learning strategies in
teaching of mathematics and logic, cf. (Pokorny,
2012).

3.2 Visualisation and Tool Support

Visualisation tools using a notional machine have
been used since the early 1970s to promote under-
standing of programming constructs (Mayer, 1975;
Mayer, 1981).

The cognitive load can be reduced through visual-
isation of the learning tasks (Pane and Myers, 1996;
Powers et al., 2007). Visualisation can help correct
misconceptions as they commonly occur when out-
comes are not readily visible, cf. (Sirkiä and Sorva,
2012). Advanced tasks could be designed to facil-
itate critical thinking by rewarding optimal or near
optimal solutions as they cause students to reflect on
their strategies. Moreover, publishing optimal bench-
mark figures for different configuration may promote
greater interaction about possible strategies thus lead-
ing to a form of social constructivism that promotes
higher levels of learning (Kozulin et al., 2003).

Vosinakis et al. introduced the MeLoISE platform
(Meaningful Logical Interpretations of Simulated En-
vironments) for teaching Logic Programming, cf.
(Vosinakis et al., 2014). The platform developers fo-
cused on visualisation aspects, to allow the students
experience a collaborative visual interface to the Pro-
log programming language.

AutoFocus3 tool, cf. (Hölzl and Feilkas, 2010;
Spichkova et al., 2012), was developed as a scientific
prototype for formal modelling of distributed, timed,
reactive systems. The implemented modelling lan-
guage was based on a graphical notation that can be
used to teach basic modelling constraints and the us-
ability aspects (Spichkova et al., 2013).

Korecko et al. developed a toolset for support
of teaching formal aspects of software development,
cf. (Korecko et al., 2014). The toolset focuses on
Petri nets and B-Method and visual representation of
a train schedule example. This approach can stimu-
late abstract reasoning skills, but besides abstract rea-

2http://www.cs4fn.org/magic/
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soning skills, students require a so-called computa-
tional thinking (Wing, 2006), a mental activity in for-
mulating a problem to select a computational solu-
tion. The key attributes of computational thinking,
as introduced by Wing, are (i) reformulating a com-
plicated problem into a problem (or set of problems)
which is already known and which we are able to
solve; (ii) using abstraction and decomposition when
analysing and decomposing a large complicated task
or designing a complex system; and (iii) choosing
an appropriate representation for the problem and/or
modelling the relevant aspects of a problem to make
it analysable.

A tool for human-centred model-based testing,
which takes into account the human tester’s possible
mistakes and supports revision and refinement, was
preposed in (Spichkova et al., 2015b). We believe that
this tool may contribute to teaching of formal aspects
of modelling and testing.

The KeY-Hoare tool, cf. (Bubel and Hähnle,
2008), was also developed to teach Hoare Logic.
KeY-Hoare is based on a variant of Hoare logic with
explicit state updates which allows one to reason
about correctness of a program by means of symbolic
forward execution.

Sznuk and Schubert developed a tool for teaching
Hoare Logic, HAHA (Hoare Advanced Homework
Assistant), cf. (Sznuk and Schubert, 2014). To es-
timate the impact that introduction of a tool has on
the educational process, they used statistical methods
of quantitative psychology (Trierweiler and Stricker,
1998). In contrast to KeY-Hoare, HAHA is based on
classical Hoare logic. Classical Hoare logic requires
backwards reasoning, which can be argued to be less
natural and harder to learn.

Another tools used in educations were Why3
(Filliâtre and Paskevich, 2013), Dafny (Leino, 2010),
as well as proof assistants Isabelle(Nipkow et al.,
2002), and Coq proof (Henz and Hobor, 2011). Why3
is a tool for deductive program verification based on
the WhyML language, which is an intermediate lan-
guage in verifiers for Java, C, and Ada programming
languages. Dafny can be used to verify functional
correctness and termination of sequential, imperative
programs.

4 CONCLUSIONS

Despite the impressive volume of work on teaching
FM , this field still lacks systematisation; it is easy for
educators to get lost in the “jungle” of the proposed
methods and tools. This position paper presents our
ongoing work in providing a “jungle map” to teach-

ing FM, i.e., systematically reviewing the variety of
approaches to teaching FM, taking into account the
aims of the course, its target audience, its respective
mathematical background and motivation.
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