
AutoCRUD
Automating IFML Specification of CRUD Operations

Roberto Rodriguez-Echeverria, José M. Conejero, Juan C. Preciado and Fernando Sanchez-Figueroa
School of Technology, University of Extremadura, Av. Universidad, Caceres, Spain

Keywords: Model Driven Web Engineering, Cost Reduction, CRUD, Model Driven Software Development.

Abstract: Development and deployment technologies for data-intensive web applications have considerably evolved
in the last years. Domain specific frameworks or Model-Driven Web Engineering approaches are examples
of these technologies. They have made possible to face implicit problems of these systems such as quick
evolving business rules or severe time-to-market requirements. Both approaches propose the automation of
redundant development tasks as the key factor for their success. The implementation of CRUD operations is
a clear example of repetitive and recurrent task that may be automated. However, although web application
frameworks have provided mechanisms to automate the implementation of CRUD operations, Model-
Driven Web Engineering approaches have generally ignored them and its automation has not been properly
faced yet. This paper presents AutoCRUD, a WebRatio plug-in that automates the generation of CRUD
operations in OMG IFML (Interaction Flow Modelling Language) standard. The suitability of this tool has
been evaluated by its application into several real projects developed by a software company specialized in
model-driven web application development. The results obtained present evidences of the significant
productivity improvement obtained by the tool, which almost completely removes the developer time
dedicated to CRUD operation implementation.

1 INTRODUCTION

Model-Driven Web Engineering (MDWE) (Koch et
al., 2008) approaches provide methodologies and
tools for the design and development of most kinds
of web applications. They address different concerns
by using separate models (navigation, presentation,
data, etc.), and are supported by model compilers
that automatically produce most of the application’s
Web pages and logic code. The benefits of using
MDWE are clear from different points of view such
as team productivity, software quality or adaptation
to evolving technologies (Rossi et al., 2007)
(Vuorimaa et al., 2015).

Among the different MDWE approaches, it is
worth mentioning IFML (Interacting Flow
Modelling Language) (Brambilla and Fraternali,
2015), an OMG standard for the development of
data-intensive applications that has become a
reference in industrial developments (Casteleyn et
al., 2014); (Toffetti et al., 2011). Its successful
development tool, WebRatio, allows the edition and
validation of IFML models but also, and even more
important, allows the generation of the final

application code for a specific technological
deployment platform, reducing the time-to-market
and the development effort for these applications.

Focusing on the development effort, one of the
most redundant tasks in data-intensive web
application development is the implementation of
CRUD operations. As Martin Fowler argued,
“disappointing as it is, many of the use cases in an
enterprise application are fairly boring ‘CRUD’
(create, read, up-date, delete) use cases on domain
objects” (Fowler, 2002).

However, and surprisingly, while several
frameworks such as Ruby on Rails
(http://rubyonrails.org/), Django (https://www.
djangoproject.com/), MonoRail (http://www.castle
project.org/projects/monorail/), or Catalyst (http://
www.catalystframework.org/), just to cite a few,
have adopted solutions to optimize CRUD
operations, MDWE approaches (i.e.,
IFML/WebRatio) have not provided yet an
automatic tool to perform these tasks; even though
there are works claiming a significant productivity
gain (more than 90%) when these tasks are
automated by model-driven techniques (Mbarki and

Rodriguez-Echeverria, R., Conejero, J., Preciado, J. and Sanchez-Figueroa, F.
AutoCRUD - Automating IFML Specification of CRUD Operations.
In Proceedings of the 12th International Conference on Web Information Systems and Technologies (WEBIST 2016) - Volume 1, pages 307-314
ISBN: 978-989-758-186-1
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

307

Erramdani, 2008); (Papotti et al., 2013).
This paper presents AutoCRUD, a WebRatio

plug-in developed for the automatic IFML
specification of CRUD operations. The objective of
this paper is twofold. On one hand, presenting the
development of the plug-in and its main features,
and, on the other hand, showing how it impacts on
the effort optimization in the development of real
projects. For the latter purpose, we have relied on
the collaboration of an external company specialized
in the development of data-intensive web
applications by means of WebRatio, obtaining
improvements of 95% and more in the time
dedicated to CRUD specification. The AutoCRUD
plug-in can be freely downloaded at
http://www.homeria.com/autocrud. WebRatio can be
freely downloaded at http://www.webratio.com.

The rest of the paper is organized as follows.
Section 2 presents motivation and related work,
highlighting both, studies about optimization in
MDWE and proposals for automatic generation of
CRUD operations. Section 3 introduces AutoCRUD
development, its main features and its main use
cases. Section 4 shows the main results obtained
when applying the plug-in to real projects. Finally,
Section 5 summarizes the main contributions of this
work.

2 MOTIVATION AND RELATED
WORK

Optimization of development effort in the Web
Engineering domain has been addressed by several
works. In (Fatolahi and Somé, 2014) the authors
focused on the assessment of the impact of using a
Model Driven Web methodology with respect to
traditional web developments. They observed an
important productivity gain by using their Model
Driven approach. In (Martinez et al., 2014) the
authors also compared the use of a Model-Driven
Web Engineering approach - OOH4RIA (Melia et
al., 2008) - in web information systems development
with a code-centric one (implementation in .NET).
In particular, they focused on maintainability
characteristics of these systems. This work was an
extension of the work presented in (Martinez et al.,
2011), where authors performed a similar study but
focusing on WebML (Ceri et al., 2000); (Ceri et al.,
2002) as MDWE approach and PHP as code-centric
alternative. In both works, authors observed that the
utilization of the MDWE approach provided
important maintainability improvements with

respect to the code-centric implementation, e.g.,
OOH4RIA improved the actual efficiency of the
changeability tasks in 317 times and also improved
the effectiveness of the changeability by up to 27%.
Nevertheless, although all these works reveal a clear
optimization of development effort, they do not
address CRUD operations specifically, which is the
main objective of other works such as (Mbarki and
Erramdani, 2008) and (Papotti et al., 2013).

In (Mbarki and Erramdani, 2008) the authors
presented an approach based on model
transformations that automatically generates the
CRUD operations for a web system taking as input
class diagrams based on UML profiles. In (Papotti et
al., 2013) the authors also evaluated the productivity
improvements obtained by a model-driven approach
that automatically generates the CRUD operations
source code for a Web information system. This
approach also takes as input the UML class
diagrams for the system. By using the model-driven
approach, the authors observed an important
development time reduction (up to 90,98%). They
also surveyed the developers about the difficulties
found compared to the manual coding approach and
obtained better results for the model-driven
approach. However, neither (Papotti et al., 2013) nor
(Mbarki and Erramdani, 2008) do integrate with an
MDWE approach.

Finally, the automatic generation of CRUD
operations has been the focus of different works at
different levels of abstraction: code (e.g., grocery
CRUD for PHP, http://www.grocerycrud.com) or
frameworks (Ruby on Rails, Django, MonoRail, or
Catalyst). These frameworks provide specific tools
to optimize CRUD operations, like software
scaffolding toolkits that allow generating the
structural parts of the applications expressed in some
simplistic specification language (normally XML or
YAML). Once the code is generated, it has to be
manually refined by developers, discarding the
initial specifications. Such approaches force a
specific platform and architecture with the
advantages of automatic code generation to speed-up
the initial stages of the development. However, these
proposals are at a lower level of abstraction than
Model-Driven approaches, losing the benefits
obtained by these ones, such as the independence of
specific platforms and, in general, the optimization
of development efforts outlined at the beginning of
this section.

To our knowledge, and although the advantages
are clear, there is not a MDWE approach
incorporating the automatic generation of CRUD
operations and this is the rationale for this work.

APMDWE 2016 - International Workshop on Avanced practices in Model-Driven Web Engineering

308

3 AutoCRUD

In this section, we first briefly provide an overview
of the OMG IFML standard and, then, AutoCRUD
is introduced by means of illustrative examples
resembling its behaviour.

3.1 IFML Overview

IFML is a modelling language standardized by the
OMG (Object Management Group) to represent an
application front-end independently of the
implementation technology or target device.
Basically, IFML defines a set of visual elements to
represent the user interaction and the front-end
behaviour. WebRatio has led the language definition
and WebML has been used as the conceptual base,
which benefited its definition thanks to the
experience of WebRatio using WebML. The
language was adopted as a standard by the OMG in
March 2013 (changing its name to IFML). And in
March 2014, OMG Architecture Board formally
adopted the specification of IFML 1.0 (Brambilla
and Fraternali, 2015). Among other improvements, it
is worth to note that the binding with the business
and content models has been generalized to allow
the usage of non-UML models. The IFML language
defines the following core elements: View
Container, View Component, Binding, Parameter,
Event, Action, Navigation Flow, and Data Flow.

3.2 AutoCRUD Overview

Herein, based on the main functionality of
scaffolding tools in web application frameworks, a
new tool has been developed, as a plug-in for
WebRatio, to considerably reduce the specification
effort of CRUD operations from data entities in
IFML. This plug-in provides the engineer with the
proper functionality to automatically generate any
CRUD operation in IFML from concrete data
entities. Actually AutoCRUD has been defined to
behave as an orchestrator of the different
functionalities of WebRatio by calling the right
components in the right moment for such generation.
The benefits of that approach are two-fold: (1) it
allows a more durable integration with
WebRatio/IFML functionalities; and (2) the engineer
can use AutoCRUD in any moment of the
development lifecycle seamlessly.

As depicted in Figure 1, basically, the engineer
must simply follow the next 3 steps: (1) selecting a
concrete entity from the data model; (2) choosing
the desired CRUD operations (create, read, update,

delete or all-in-one); and (3) providing the proper
binding for the parameters of the CRUD operation
(e.g., what is the element to be deleted).

Figure 1: AutoCRUD functionality.

3.2.1 AutoCRUD Architecture

As Figure 2 presents, AutoCRUD is a tool built on
top of WebRatio. According to traditional 3-layer
software architecture, the tool has been defined
inside domain and presentation layers. Concerning
the presentation, the user interface is basically
organized in a few dialogs allowing data entity and
site view selection, on one hand, and CRUD
operation management, on the other hand.
Regarding the domain layer, a facade layer has been
defined on top of WebRatio API to orchestrate its
functionality in order to generate the IFML
specification of the CRUD operations. This facade is
formed by two main components: the manager and
the engine. The manager is responsible for storing
the configuration of the CRUD operation to be
generated. The engine, invoked by the manager, is in
charge of translating such configuration to a
concrete sequence of WebRatio functionality calls
that eventually generates the IFML specification.

Figure 2: AutoCRUD architecture.

3.2.2 Categorization of Use Cases

In order to simplify the presentation of all the
different use cases supported by the tool, a previous
categorization has been defined based on two

AutoCRUD - Automating IFML Specification of CRUD Operations

309

orthogonal dimensions:
 Type of CRUD operation whose IFML

specification must be generated. This dimension
has the following possible values: create, read,
update, delete or all-in-one. The last one is a
special compact case whose specification does
not match exactly to the join of the specification
of every CRUD operation individually.

 Cardinality of the relationship between the data
entities involved in the CRUD operation.
Although just one data entity is required to start
the generation process, it may be interesting to
consider other data entities related to the first
one. This dimension represents then such
possibility. The possible values of this dimension
are the following: no relationship (the data entity
is considered in isolation or it has not been
defined any relationship), onetomany
relationship (1-N), and manytomany relationship
(N-M). Obviously, inside a single case, this
dimension may get different values, e.g., a data
entity A holds an onetomany relationship with a
data entity B and, at the same time, it holds an
onetomany relationship with a data entity C. In
such cases, the tool allows selecting any of those
relationships or both of them. In the rest of the
paper, the tool behavior is illustrated just
considering the single cases because the complex
ones are just composition of those ones.

Table 1 shows the collection of use cases supported
by the tool and organized according to the
dimensions explained before. For the sake of
brevity, just one of them is next detailed in order to
illustrate the actual extension of the approach, which
appears in Table 1 in bold font (in the first row C
stands for Create, R for Read, U for Update and D
for Delete). The interested reader may find the
details of every specific case in
http://www.homeria.com/autocrud.

Table 1: AutoCRUD use cases.

 C R U D All
No C-no R-no U-no D-no All-no
1-N C-1N R-1N U-1N D-1N All-1N
N-M C-nM R-nM U-nM D-nM All-nM

Following the selected use cases are explained
with detail. And, at the end of the section, a
summary table collecting the total number of
elements needed to specify all the use cases is
presented.

3.2.3 Illustrative Example

Before describing the selected use cases, it is
mandatory to explain the sample data model used,
shown in Figure 3. As it can be noted, an excerpt of
the data model of a real application has been used to
illustrate the explanation of the different use cases.
This sample data model contains common entities of
an e-commerce application: The document margins
must be the following:
 Product. It holds one relationship with each of

the other two entities.
 Provider. It holds an onetomany relationship

with Product, hence each product has only one
provider while a provider may provide several
products.

 Order. It holds a manytomany relationship with
Product, hence an order may contain several
products and a product may appear in different
orders.

Figure 3: Sample data model.

3.2.4 C-nM Case

This case allows illustrating the elements involved in
a Create operation, defined over a data entity
(Order), which keeps a manytomany relationship
with another data entity (Product) and this relation
must be considered in the specification of such
operation.

Figure 4 shows the tool configuration for this
particular case. Once the Order data entity has been
selected, the user just needs to navigate to the Create
tab to generate the corresponding operation. This tab
allows the user to select the SiteView or Area in
which the create operation specification for the
Order entity will be generated. Moreover, the
OrderToProduct relationship may be selected by the
user to be considered by the tool in the specification
generation. Note that the involved OrderToProduct
relationship is derived from the data model (see
Figure 3).

Figure 4: AutoCRUD set-up for C-nM case.

APMDWE 2016 - International Workshop on Avanced practices in Model-Driven Web Engineering

310

The IFML specification generated by the tool for
this case is shown in Figure 5. As main container, a
new Page (CreateOrder) has been generated. This
page contains 3 different IFML units: a selector unit
(EntityOrder), an entry unit (FormOrder) and a
message unit (MessageOrder). The form (entry unit)
collects the data of every product involved in a
specific order, as well as other general attributes as
the date and the total price. Note that the form is
connected to a selector unit that provides the form
with the data of the available products. Once all the
data is collected the form submission may trigger the
execution of a create operation unit (CreateOrder)
and a connect operation unit (OrderToProductOrder)
that stores the new order in the database.
Additionally, the message unit is used to show the
user any message steaming from the process.

Figure 5: IFML specification of the C-nM case.

Table 2 shows the number of every type of IFML
elements generated for the specification of this
operation in this specific case. For the sake of this
work, IFML elements have been classified into three
main groups: links, units and couplings. The tool
uses 15 different IFML elements for this case. As it
may be observed, most of the considered IFML
elements have been used for the specification of the
Create operation.

Table 2: Aggregated numbers of IFML elements for the C-
nM case.

 Links Units Couplings
C-nM 7 5 3

3.2.5 Summary of IFML Generation

Concerning the rest of the previously identified
cases, the generation of the IFML elements follows a
similar process. Although concrete details of their
generation are not discussed in this work, Table 3
presents a summary of the total number of IFML
elements generated for the specification of each
CRUD operation in every use case considered. A
developer has to use more than 18 elements in
average to specify a CRUD operation with IFML. In

other words, AutoCRUD is saving him the average
cost of 18 elements per CRUD operation in the
specification of a web application with IFML.
Additionally, as shown, leaving apart AllinOne
cases, create and update operations present a more
complex specification than remove and display
operations. In fact, AutoCRUD always produce the
same specification for remove and display
operations independently of the cardinality
dimension, basically, because relationships are not
relevant for those kind of operations at this level.

Table 3: Number of IFML elements for all the cases.

 Links Units Couplings Total
C-no 3 4 1 8
R-no 1 3 1 5
U-no 5 6 3 14
D-no 3 4 1 8

All-no 16 19 6 37
C-1N 4 5 2 11
R-1N 1 3 1 5
U-1N 6 7 4 18
D-1N 3 4 1 8

All-1N 19 16 9 44
C-nM 7 5 3 17
R-nM 1 3 1 5
U-nM 13 10 7 30
D-nM 3 4 1 8

All-nM 27 18 13 58

4 INDUSTRIAL VALIDATION

In order to validate the utility and applicability of the
plug-in presented, this section shows an evaluation
of its application to different projects developed by a
Spanish software company, Homeria SL. This
company is an official partner of WebRatio
(http://www.webratio.com/site/content/es/partners)
and has developers certified in the development of
web applications by using the technologies and
methodologies provided by IFML and, in particular,
WebRatio. It has developed more than 100 projects
in the last 9 years and it relies on an important set of
clients.

The main goal of this evaluation is to analyse the
cost saving obtained by incorporating the tool
presented here into the development process of real
projects implemented by the company. In this
analysis, the developer time has been considered as
the cost measurement unit so that the minor the
development time is, the lower cost the Web system
has. In order to obtain some base time
measurements, the next procedure has been
followed:

AutoCRUD - Automating IFML Specification of CRUD Operations

311

 A group of developers of the company was
selected for the analysis. All these developers
had a similar experience in developing data
intensive web applications with WebRatio.

 The developers were responsible for developing
the CRUD operations over different data entities
(and in different situations) in the projects that
the company was involved at the moment of
performing this study.

 The time spent in the specification of the needed
IFML entities for each CRUD operation was
measured.

 Considering similar development times, as
aforementioned, the IFML elements were
classified into three main groups: links, units and
couplings.

The average of the development time for the
different groups was obtained. These values are
shown in Table 4 and are used as a reference in the
measurements performed during the study. Note
that, although these values could vary in terms of
developers’ expertise, it has been estimated that the
proportions among them would keep constant. Thus,
this study could be replicated in other companies
just by adapting the base time values for the
development time to the expertise of the particular
development team.

Table 4: Developer time average per group of IFML
elements.

Group Link Unit Coupling
Dev. Time (secs.) 24 112 66

According to these times and the values shown in
Table 3, Table 5 presents, on one hand, the costs
related to the manual specification of each case
considered for the CRUD operations, and on the
other hand, shows the time (in average) spent by a
developer in specifying each case for the CRUD
operations by means of the plug-in. Note that the
times spent by the plug-in in automatically
generating the final code are not shown since they
are insignificant (once the operations have been
specified).

Once the base time measurements were obtained,
the study was focused on the analysis of projects
previously developed by the company and with the
source models available. To this purpose, a
quantitative analysis was carried out where the
needed IFML elements for the specification of the
CRUD operations in the different projects were
identified.

As an example of the obtained data, Table 6

shows an excerpt for a reduced set of 6 real projects
recently developed in the company. This table shows
for each project: 1) the size; 2) the number of CRUD
operation cases; 3) the total number of CRUD
operations; 4) the total number of data entities in the
data model; 5) the total number of IFML elements
used to specify all the CRUD operations (classified
as links, units and couplings); 6) the total time (in
hours) dedicated to the project. Based on row 5)
(number of elements needed for representing the
CRUD operations) and the time spent in specifying
each operation (shown in table 7), the total time
spent in manually implementing these operations has
been calculated for each project (7). Based on row 6)
and 7) the percentage of time dedicated to the
CRUD operations for each project is shown in row
8). Likewise, considering the time spent in
specifying each CRUD operation by using the plug-
in, the time employed in automatically generating all
the CRUD operations for each project has been
calculated (9). Finally, the table shows the difference
(10) between both costs -manually developed vs.
automatically generated- showing the benefits in
both hours and percentage.

As it may be observed in Table 6, the benefit
(and, thus, the saved time) by using the plug-in is
higher than 95% of the time dedicated to CRUD
operations in all the projects. These data show a
clear evidence of the great productivity
improvement provided by the tool presented here,
which almost completely removes the time
dedicated to the specification of CRUD operations
from the projects. Moreover, Table 6 shows how this
improvement seems to be correlated with project
size. In other words, the bigger the project is, the
higher the improvement obtained. As an example,
the improvement obtained in the biggest project is
99,88% that suggests that the time dedicated to
CRUD specification is insignificant with respect to
the total time of the project.

However, obviously, these data must be
considered also taking into account the percentage of
time dedicated to CRUD operations in each project.

Observe that, in the projects analysed, these
percentages range from 6,14% to 9,69% of the total
time (row 8 in Table 6). That means that, for
instance, the plugin is able to provide a reduction of
the total time of the project of almost 10% in the
biggest project. In addition, this conclusion becomes
even more important if we consider that the total
time of the project involves many tasks that are not
directly related with the IFML specification, such as
user interface design or scripting implementation. To
put in another way, the total time of CRUD

APMDWE 2016 - International Workshop on Avanced practices in Model-Driven Web Engineering

312

specification saved in the project may be compared
with the total time dedicated to IFML specification
and, then, the results obtained are even more
promising. In particular, the percentage of time
dedicated to the IFML specification in each project
has been presented in Table 7. This table also shows
the percentage of the IFML specification dedicated
to CRUD operations so that the reduction of the time
dedicated to IFML in each project has been
calculated. This reduction varies from 14,99% to
28,15%. That implies that, considering that the time
dedicated to CRUD specification is practically
removed from the projects, an average reduction of
the 19,75% of the time dedicated to IFML
specification is achieved in these projects.

5 CONCLUSIONS

This paper has presented AutoCRUD, a tool that
automates the specification of CRUD operations in
IFML. The tool has been developed as a WebRatio
plug-in so that it may be easily integrated into
industrial developments, bridging a gap that MDWE
approaches had not deal with yet, i.e., the
optimization of the specification of repetitive and
recurrent CRUD operations. The benefits obtained
by the tool have been evaluated by applying it to real
projects developed by an external software
company. By this analysis, we observed important
evidences of the optimization gain obtained by the
tool but also of its scalability since the results are
even better when biggest projects are considered.
Moreover, the number of errors usually introduced
during the specification of these operations has been
dramatically reduced.

As further work, we plan to follow several
research lines. Firstly, we want to apply a similar
approach to other repetitive development tasks that
are being identified in WebRatio. Secondly, we are
working on the development of some heuristics to
guide an algorithm on the automatic generation of
the most likely useful CRUD operations for every
data entity.

ACKNOWLEDGEMENTS

This work has been funded by Junta de Extremadura
(Consejería de Economía e Infraestructuras -
GR15098) and European Regional Development
Fund (ERDF).

REFERENCES

Brambilla, M, Fraternali, P., 2015. Interaction Flow
Modeling Language – Model Driven UI Engineering
of Web and Mobile Apps with IFML, Morgan
Kaufmann / OMG Press.

Casteleyn, S., Garrigós, I., Mazón, J., 2014. Ten Years of
Rich Internet Applications: A Systematic Mapping
Study, and Beyond. In ACM Transactions on the Web
8, 3, 1-46.

Ceri, S, Fraternali, P, Bongio, A, Brambilla, M, Comai, S,
Matera, M, 2002. Designing Data-Intensive Web
Applications. Morgan Kaufmann Publishers Inc.

Ceri, S., Fraternali, P., Bongio, A., 2000. Web modeling
language (WebML): a modeling language for
designing Web sites. In the International Journal of
Computer and Telecommunications Networking, 33, 1,
137–157.

Fatolahi, A, Somé, A., 2014. Assessing a Model-Driven
Web Application Engineering Approach. In Journal of
Software Engineering and Applications 7, 360-370.

Fowler, M., 2002. Patterns of Enterprise Application
Architecture. Addison Wesley Signature Series.

Koch, N, Meliá-Beigbeder, S, Moreno-Vergara, N,
Pelechano-Ferragud, V, Sánchez-Figueroa, F, Vara-
Mesa, JM, 2008. Model Driven Web Engineering. In
the European Journal of the Informatics Professional,
9, 2, 40-45.

Martinez, Y, Cachero, C, Matera, M, Abrahao, S, Luján,
S. 2011. Impact of MDE approaches on the
maintainability of web applications: an experimental
evaluation. In Lecture Notes in Computer Science.

Martínez, Y, Cachero, C, Meliá, S. 2014. Empirical study
on the maintainability of Web applications: Model-
driven Engineering vs Code-centric. In Empirical
Software Engineering.

Mbarki, S, Erramdani, M., 2008. Toward automatic
generation of mvc2 web applications. In Infocomp
Journal of Computer Science, 7, 4: 84-91.

Melia, S, Gómez, J, Pérez, S, Díaz, O., 2008. A Model-
Driven Development for GWT-Based Rich Internet
Applications with OOH4RIA. In ICWE’08, 8th
International Conference on Web Engineering (2008).

Papotti, P. E., do Prado, A. F., Lopes, W., Cirilo, C. E.,
Ferreira, L., 2013. A Quantitative Analysis of Model-
Driven Code Generation through Software
Experimentation. In Lecture Notes in Computer
Science, 7908, 321-337.

Rossi, G, Pastor, O, Schwabe, D, Olsina, L., 2007. Web
Engineering: Modelling and Implementing Web
Applications. Human-Computer Interaction Series,
Springer-Verlag, London.

Toffetti, G., Comai, S., Preciado, J. C., Linaje, M., 2011.
State-of-the Art and trends in the Systematic
Development of Rich Internet Applications. In Journal
of Web Engineering, 10, 1, 70-86.

Vuorimaa, P., Laine, M., Litvinova, E., Shestakov, D.,
2015. Leveraging Declarative Languages in Web
Application Development. In World Wide Web
Journal.

AutoCRUD - Automating IFML Specification of CRUD Operations

313

Table 5: Developer time (secs.) for the specification of every considered case in AutoCRUD.

Time
(secs.)

C-
no

R-
no

U-
no

D-
no

All-
no

C-
1N

R-
1N

U-
1N

D-
1N

All-
1N

C-
nM

R-
nM

U-
nM

D-
nM

All-
nM

Manual 586 426 990 586 2908 5496 788 426 426 1192 2842 5674 926 426 1894
AutoCRUD 1 1 1 1 2 2 1 2 1 3 3 1 3 1 5

Table 6: Results of the 6 projects under evaluation.

Projects P1 P2 P3 P4 P5 P6

1) Size Big
Mediu

m
Medium Medium Small Small

2) Different CRUD cases C-no 115 8 5 3 2 2
 R-no 107 9 4 3 1 1
 U-no 116 7 5 4 2 1
 D-no 112 7 5 5 1 1
 All-no 116 9 5 3 2 2
 C-1N 97 5 4 4 2 1
 R-1N 94 7 4 3 2 1
 U-1N 92 4 4 3 2 1
 D-1N 95 6 3 3 1 1
 All-1N 97 10 4 4 2 2
 C-nM 26 6 3 4 3 3
 R-nM 42 8 2 2 2 2
 U-nM 42 9 6 4 3 2
 D-nM 24 6 3 3 1 1
 All-nM 83 7 6 5 4 2

3) Total CRUD operations 1.258 108 63 63 38 33
4) Entities in the data model 193 84 36 27 14 10

5) Total IFML units Total Links 11.259 874 512 404 224 177
 Total Units 11.285 848 533 391 222 168

Total

Couplings
5.387 414 250 194 108 109

6) Project total time Hours 5.380 650 350 230 125 80
7) CRUD operations cost

(manually developed)
Secs 1.876.777 143.848 77.388 65.812 34.258

28.38
2

 Hours 521,33 39,96 21,5 18,28 9,52 7,88
8) Time dedicated to CRUD % 9,69 6,15 6,14 7,95 7,61 9,85

9) CRUD operations cost
(automated with plug-in)

Secs 2.225 1.370 1.339 1.330 1.317 1.307

 Hours 0,62 0,38 0,37 0,37 0,37 0,36
10) Benefit obtained in the time
dedicated to CRUD (Manual -

Automatic)
Hours 520,71 39,58 21,12 17,91 9,15 7,52

 % 99,88 99,05 98,27 97,98 96,16 95,39

Table 7: Time dedicated to IFML and CRUD specification in each project.

Projects P1 P2 P3 P4 P5 P6
1) Size Big Medium Medium Medium Small Small

2) Project total time Hours 5.380 650 350 230 125 80
3) Time for IFML Specification % 51 41 40 40 36 35
4) Time for CRUD operations % 9,69 6,15 6,14 7,95 7,61 9,85

5) Time for CRUD operations of the
IFML specification

% 19 14,99 15,35 19,87 21,14 28,15

APMDWE 2016 - International Workshop on Avanced practices in Model-Driven Web Engineering

314

