
JCL: A High Performance Computing Java Middleware

André Luı́s Barroso Almeida1,2, Saul Emanuel Delabrida Silva1, Antonio C. Nazare Jr.3

and Joubert de Castro Lima1

1DECOM, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
2CODAAUT, Instituto Federal de Minas Gerais, Ouro Preto, Minas Gerais, Brazil

3DCC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil

Keywords: Big Data, Internet of Things, Middleware, Reflective Computing, High Performance Computing, Distributed
Shared Memory, Remote Method Invocation.

Abstract: Java Cá&Lá or just JCL is a distributed shared memory reflective lightweight middleware for Java developers
whose main goals are: i) provide a simple deployment strategy, where automatic code registration occurs,
ii) support a collaborative multi-developer cluster environment where applications can interact without ex-
plicit dependencies, iii) execute existing sequential Java code over both multi-core machines and cluster of
multi-core machines without refactorings, enabling the separation of business logic from distribution issues in
the development process, iv) provide a multi-core/multi-computer portable code. This paper describes JCL’s
features and architecture; compares and contrasts JCL to other Java based middleware systems, and reports
performance measurements of JCL applications.

1 INTRODUCTION

We live in a world where large amounts of data
are stored and processed every day (Han et al.,
2011). Despite the significant increase in the per-
formance of today’s computers, there are still big
problems that are intractable by sequential comput-
ing approaches (Kaminsky, 2015). Big data (Bryn-
jolfsson, 2012), Internet of Things (IoT) (Perera et al.,
2014) and elastic cloud services (Zhang et al., 2010)
are results of this new decentralized, dynamic and
communication-intensive society. Many fundamen-
tal services and sectors such as electric power supply,
scientific/technological research, security, entertain-
ment, financial, telecommunications, weather fore-
cast and many others, use solutions that require high
processing power. For instance, “Walmart handles
more than a million customer transactions each hour
and it estimated that the transaction database contains
more than 2.5 petabytes of data” (Troester, 2012).
Thus, these solutions are executed over parallel and
distributed computer architectures. In this context, a
new demand for both computer architectures and ap-
plications to handle such big problems has emerged.

High Performance Computing (HPC) is based
on the concurrence principle, so high speedups are
achievable, but the development process becomes

complex when concurrence is introduced. Therefore,
middleware systems and frameworks are designed to
help reducing the complexity of such development.

The use of middleware as a software layer on top
of an operating system became usual in last years in
order to organize a computer cluster or grid (Tanen-
baum and Van Steen, 2007). The challenging issue
is how to provide sufficient support and general high-
level mechanisms using middleware for rapid devel-
opment of distributed and parallel applications. Fur-
thermore, the middleware systems found in the liter-
ature have no information of their use on different
computational platforms. For instance, there is no
evidence that a set of embedded devices are able to
work with a cloud platform using the same middle-
ware. To developers, the system integration is not
transparent and depends of different skills. In Perera
et al. (2014), the authors mention the existence of six
machine classes in IoT and they advocate that mid-
dleware systems should run over all of them (Perera
et al., 2014).

Middleware systems can be adopted for gen-
eral purposes, such as Message Passing Interface
(MPI) (Forum, 1994), Java Remote Method Invoca-
tion (RMI) (Pitt and McNiff, 2001), Hazelcast (Veen-
tjer, 2013), JBoss (Watson et al., 2005) and many
others, but they can also be designed for a specific

Almeida, A., Silva, S., Jr., A. and Lima, J.
JCL: A High Performance Computing Java Middleware.
In Proceedings of the 18th International Conference on Enterprise Information Systems (ICEIS 2016) - Volume 1, pages 379-390
ISBN: 978-989-758-187-8
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

379

purpose, like gaming, mobile computing and real-
time computing, for instance (Murphy et al., 2006;
Gokhale et al., 2008; Tariq et al., 2014). They support
a programming model based on shared memory, mes-
sage passing or event based (Ghosh, 2014). Among
various programing languages for middleware sys-
tems, the interest in Java for HPC is rising (Taboada
et al., 2013). This interest is based on many fea-
tures, such built-in networking, multithreading sup-
port, platform independence, portability, type safety,
security, extensive API and wide community of de-
velopers (Taboada et al., 2009).

Besides the computational performance, the is-
sues presented below must be considered in the design
and development of a modern middleware.

Refactorings: Usually, middleware systems intro-
duce some dependencies to HPC applications, thus,
end-users need to follow some standards specified
by them, since methods and global variables must
be distributed over a data network. Consequently,
an ordinary Java or C++ object 1 must implement
several middleware classes or statements to become
distributed. There are many middleware examples
with such dependencies, including standards and mar-
ket leaders like Java RMI (Pitt and McNiff, 2001),
JBoss (Watson et al., 2005) and Mapreduce based so-
lutions (Hindman et al., 2011; Zaharia et al., 2010).
As a consequence of these dependencies, two prob-
lems emerge: i) the end-user cannot separate business
logic from distribution issues during the development
process and; ii) existing and well tested sequential ap-
plications cannot be executed over HPC architectures
without refactorings. A zero-dependency middleware
is unrealistic, but a middleware with few adaptations
is fundamental to achieve low coupling with the ex-
isting code.

Deployment: Deployment can be a time consum-
ing task in large clusters, i.e. any live update of an
application module or class often interrupts the execu-
tion of all services running in the cluster. Some mid-
dleware systems adopt third-party solutions to dis-
tribute and update modules in a cluster (Henning and
Spruiell, 2006; Nester et al., 1999; Veentjer, 2013;
Pitt and McNiff, 2001), but sometimes updating dur-
ing application runtime and without stoppings is a re-
quirement. This way, middleware systems capable of
deploying a distributed application transparently, as
well as updating its modules during runtime and pro-
grammatically, are very useful to reduce maintenance
costs caused by several unnecessary interruptions.

Collaboration: Cloud computing introduces op-
portunities, since it allows collaborative development

1“An object is a self-contained entity consisting of data
and procedures to manipulate data” (Egan, 2005)

or development as a service in cloud stack. A middle-
ware providing a multi-developer environment where
applications can access methods and user typed ob-
jects from each other without explicit references is
fundamental to introduce development as a service or
just to transform a cluster into a collaborative devel-
opment environment.

Portable Code: Portable multi-core/multi-
computer code is an important aspect to consider
during development process, since in many insti-
tutions, such as research ones, there can be huge
multi-core machines and several clusters of ordinary
PCs to solve a couple of problems. This way, code
portability is very useful to test algorithms and data
structures in different computer architectures without
refactorings. A second justification for offering at
least two releases in a middleware is that clusters are
nowadays multi-core, so middleware systems must
implement shared memory architectural designs in
conjunction with distributed ones.

The main goal of this work is to introduce a new
middleware that fill the issues previously shown, pre-
cisely:i) a simple deployment strategy and capacity to
update internal modules during runtime; ii) a collab-
orative multi-developer environment; iii) a service to
execute existing sequential Java code over both multi-
core machines and cluster of multi-core machines
without refactorings; iv) multi-core/multi-computer
portable code. This middleware, called Java Cá&Lá2

or just JCL, is a tool for develop HPC applications.
In this paper, the three main components of our archi-
tecture are presented and evaluated. Is not the focus
of this work to be a “how to” guide, although some
source codes are shown in order to clarify the reader’s
understanding. The main contributions of JCL are:
i) A middleware that gathers several features pre-

sented separately in the last decades of middle-
ware literature, enabling building distributed ap-
plications with few portable instructions to clus-
ters made from different platforms;

ii) A comparative study of market leaders and well
established middleware standards for Java com-
munity. This paper emphasizes the importance of
several features and how JCL and its counterparts
fulfill them;

iii) A scalable middleware over multi-core and multi-
computer architectures;

iv) A feasible middleware alternative to fast proto-
type portable Java HPC applications.
This work is organized as follows. Section 2 dis-

cusses works that are similar to the proposed middle-
2Java Cá&Lá is available for download at http://

www.joubertlima.com.br

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

380

ware, pointing out their benefits and limitations. Sec-
tion 3 details the JCL middleware, presenting its ar-
chitecture and features. Section 4 describes a user
case application. Section 5 presents our experimen-
tal evaluation and discusses the results. Finally, in
Section 6, we conclude our work and point out future
improvements of JCL.

2 RELATED WORK

In this section, we describe the most promising mid-
dleware systems in various stages of development.
We evaluated each work in terms of: i) requirement
for low/medium/high refactorings, ii) automatic or
manual deployment, iii) support for collaborative de-
velopment, iv) implementation of both multi-core and
multi-computer portable code. Other analyses were
made to verify if the middleware is discontinued, and
if it is fault tolerant in terms of storage and processing.
Academic and commercial solutions are put together
and their limitations/improvements are highlighted in
Table 1. Middleware systems that present high simi-
larities with JCL are described in detail in this section.
The remaining related work is described just in Table
1.

Infinispan by JBoss/RedHat (Team, 2015) is a
popular open source distributed in-memory key/value
data store (Di Sanzo et al., 2014) which enables two
ways to access the cluster: i) the first way enables an
API avaliable in a Java library ; ii) the second way en-
ables several protocols, such as HotRod, REST, Mem-
cached and WebSockets, making Infinispan a lan-
guage independent solution. Besides storage services,
the middleware can execute tasks remotely and asyn-
chronously, but end-users must implement Runnable
or Callable interfaces. Furthermore, it is necessary
to register these tasks at Java virtual machine (JVM)
classpath of each cluster node, so Infinispan does not
have the dynamic class loading feature.

Java Parallel Processing Framework JPPF is an
open source grid computing framework based on pure
Java language (Xiong et al., 2010) which simplifies
the process of parallelizing applications that demand
high processing, allowing end-users to focus on their
core software development (Cohen, 2015). It imple-
ments the dynamic class loading feature in cluster
nodes, but it does not support collaborative develop-
ment, i.e. methods cannot be shared among different
JPPF applications, producing many services over a
cloud infrastructure, for instance. JPPF does not im-
plement shared memory services just execute meth-
ods.

Hazelcast (Veentjer, 2013) is a promising middle-

ware in the industry. It offers the concept of func-
tions, locks and semaphores. Hazelcast provides a
distributed lock implementation and makes it possible
to create a critical section within a cluster of JVM;
so only a single thread from one of the JVM’s in
the cluster is allowed to acquire that lock. (Veentjer,
2013). Besides an Application Programming Inter-
face (API) for asynchronous remote method invoca-
tions, Hazelcast has a simple API to store objects in a
computer grid. JCL separates business logic from dis-
tribution issues and, in Hazelcast, both requirements
are put together, so flexibility and dynamism are re-
duced during execution time. Hazelcast cannot in-
stantiate a global variable remotely like JCL, i.e., it al-
ways maintains double copies of each variable at each
remote instantiation. Hazelcast has manual schedul-
ing for global variables and executions, so the end-
user can control the cluster machine to store or run an
algorithm. Hazelcast does not implement automatic
deployment, so it is necessary to manually add each
end-user class to the JVM classpath before starting
each Hazelcast node.

Oracle Coherence is an in-memory data grid
commercial middleware that offers database caching,
HTTP session management, grid agent invocation and
distributed queries (Seovic et al., 2010). Coherence
provides an API for all services, including cache ser-
vices and others. It enables an agent deployment
mechanism, so there is the dynamic class loading fea-
ture in cluster nodes, but such agents must implement
the EntryProcessor interface, thus refactorings are
necessary.

RAFDA (Walker et al., 2003) is a reflective mid-
dleware. It permits arbitrary objects in an applica-
tion to be dynamically exposed for remote access, al-
lowing applications to be written without concern for
distribution (Walker et al., 2003). RAFDA objects
are exposed as Web services without requiring reengi-
neering to provide distributed access to ordinary Java
classes. Applications access RAFDA functionalities
by calling methods on infrastructure objects named
RAFDA runtime (RRT). Each RRT provides two in-
terfaces to application programmers: one for local
RRT accesses and the other for remote RRT accesses.
RRT has peer-to-peer communication, so it is possible
to execute a task in a specific cluster node, but if the
end-user needs to submit several tasks to more than
one remote RRT, a scheduler must be implemented
from the scratch. RAFDA has no portable multi-core
and multi-computer versions.

In the beginning of 2000’s, an interesting middle-
ware, named FlexRMI, was proposed by Taveira et
al. (2003) to enable asynchronous remote method
invocation using the standard Java Remote Method

JCL: A High Performance Computing Java Middleware

381

Table 1: JCL and its counterparts’ features.

Tool
Feature Fault

Tolerant
Refactoring

required
Simple
Deploy Collaborative Portable

Code
Support

Available

JCL No No Yes Yes Yes Yes
Infinispan Yes Low No Yes No Yes

JPPF Yes No Yes No No Yes
Hazelcast Yes Low No Yes No Yes

Oracle
Coherence Yes Medium NF1 Yes No Yes

RAFDA No No Yes Yes No Yes
PJ No NF1 NF1 No Yes Yes

FlexRMI No Medium No No No No
RMI No Medium No No No Yes

Gridgain Yes Low No Yes No Yes
ICE Yes High No No No Yes
MPJ

Express No Medium No No Yes Yes

Jessica NF1 No Yes No Yes Yes

1 - NF: Not found

Invocation (RMI) API. FlexRMI is a hybrid model
allowing both asynchronous or synchronous remote
methods invocations. There are no restrictions in
the ways a method is invoked in a program. The
same method can be called asynchronously at one
point and synchronously at another point in the
same application. It is the programmer’s respon-
sibility the decision on how the method call is to
be made. (Taveira et al., 2003) FlexRMI changes
Java RMI stub and skeleton compilers to achieve
high transparency. FlexRMI is the RMI asyn-
chronous, so there is no multi-core version. Fur-
thermore, it requires at least “java.rmi.Remote”
and “java.rmi.server.UnicastRemoteObject” ex-
tensions to produce a RMI application. Since it does
not implement the dynamic class loading feature, all
classes and interfaces must be stored in nodes before
a RMI (and also FlexRMI) application starts, making
deployment a time-consuming effort.

Gelibert et al. (2011) proposed a new middleware
using Distributed Shared Memory (DSM) principles
to efficiently simplify the clustering of dynamic ser-
vices. The proposed approach consists in transpar-
ently integrating DSM into Open Services Gateway
Initiative (OSGi) (OSGi, 2010) service model using
containers and annotations. The authors use Terra-
cotta framework (Terracotta Inc., 2008) as a kernel of
the entire solution. Gelibert et al. (2011) point out
limitations of using static types in the code, since in-
strumentation is done at runtime, thus the compiler

cannot perform static verification on the application
code. This creates complicated debugging scenarios
when problems, especially transient ones, occur.

Programming Graphical Processing Unit (GPU)
clusters with a distributed shared memory abstraction
offered by a middleware layer is a promising solu-
tion for some specific problems, i.e. Single Instruc-
tion Multiple Data (SIMD) solutions. In (Karantasis
and Polychronopoulos, 2011), an extension of Pleiad
middleware (Karantasis and Polychronopoulos, 2009)
is implemented enabling Java developers to work with
a local GPU abstraction over several machines with
one-four GPU devices each.

3 JCL ARCHITECTURE

This section details the architecture of the proposed
middleware. The reflective capability of several pro-
gramming languages, including Java, is an elegant
way for middleware systems to introduce low cou-
pling between distribution and business logic, as well
as simplify the deployment process and introduce
cloud multi-developer environments. Thus, reflection
is the basis for many JCL features.

JCL has two versions: multi-computer and multi-
core. The multi-computer version, named “Pacu”,
stores objects and executes tasks over a cluster where
all communications are done via TCP/UDP proto-
col. On the other hand, the multi-core version, named

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

382

“Lambari”, turns the User component into a local host
component without the overhead of TCP/UDP com-
munications. All objects and tasks are respectively
stored and executed locally on the end-user machine.
The architecture of JCL is composed of three main
components: User, Server, and Host. While User
is designed to expose the middleware services in a
unique API to be adopted by developer, Server is re-
sponsible to manage the JCL cluster. Finally, the Host
component is where the objects are stored and the reg-
istered methods are invoked. The next sections de-
scribe the design choices of JCL to provide the previ-
ously cited features.

3.1 User Component

To achieve portability, a single access point to JCL
cluster is mandatory and the User component is re-
sponsible for that. It represents a unified API for both
versions (multi-computer and multi-core) and it is
where asynchronous remote method invocations and
object storage take place. The user selects which ver-
sion to start with according to a property file config-
ured by the end-user. In the multi-core version, User
avoids network protocols, performing shared memory
communications with Host. In the multi-computer
version, UDP and TCP/IP protocols are adopted, thus
marshalling/unmarshalling, location, naming and sev-
eral other components are introduced. These compo-
nents are fundamental to distributed systems and are
explained in details in Coulouris et al. (2007).

During the application execution, User component
follows a pipeline composed of six steps: 1) receive
end-user application calls; 2) generate unique identi-
fiers for these calls; 3) return the identifiers to the end-
user application; 4) schedule them; 5) submit them to
Hosts; 6) and finally, store results of submitted calls
locally. Since JCL is by default asynchronous, end-
user application calls receive a ticket for each submit-
ted task. After a complete execution of the pipeline
above, the result is ready to be obtained using the
identifier provided by User. Step 5 can be optimized
in the multi-computer version if successive submis-
sions occur, i.e. successive calls are buffered and sub-
mitted in batch to a Host.

This component adopts different strategies to
schedule processing and storage calls in the multi-
computer version. It allocates Hosts to handle pro-
cesses according to the number of cores in the en-
tire cluster. For instance, in a cluster with ten quad-
core machines, we have forty cores, so User submits
chunks of processing calls to the first machine, where
each chunk size must be multiple of four, since it is
a quadcore processor. Internally, a Host allocates a

pool of threads, also with size multiple of four, to
consume such processing calls. After the first chunk,
User sends the second, the third and so on. After ten
submissions, User starts submitting to the first ma-
chine again. The circular list behavior continues as
long as there are processing calls to be executed. Het-
erogeneous clusters are possible, since JCL automati-
cally allocates a number of chunks proportional to the
number of cores of each machine.

There is a scheduling strategy for storage calls, so
the User component calculates a function F to deter-
mine in which host the global variable will be stored
(Equation 1), where hash(vn) is the global variable
name hashcode, nh is the number of JCL hosts and
F is the node position. Experiments with incremen-
tal global variable names like “p i j” or “p i”, where i
and j are incremented for each variable and p is any
prefix, showed that F achieves an almost uniform dis-
tribution for object storage over a cluster in several
scenarios with different variable name combinations,
however there is no guarantee of a uniform distribu-
tion for all scenarios. For this reason, User intro-
duces a delta (d) property that normally ranges from
0−10% of nh. The delta property relaxes function F
result enabling two or more Hosts as alternatives to
store a global variable.

F =
|hash(vn)|

nh
(1)

In general, d relaxes a fixed JCL Host selection
without introducing overhead in F . A drawback in-
troduced by d is that JCL must check (2∗d) + 1 ma-
chines to search for an object, i.e., if d is equal to 2,
JCL must check five machines (two machines before
and two after the machine identified by function F in
the logical ring). JCL checks all five alternatives in
parallel, so the drawback is very small, as our experi-
ments demonstrate. JCL with delta equals 2, 1 and 0
has similar execution time in clusters with 5, 10 and
15 machines.

3.2 Server Component

This component was designed to manage the cluster
and is responsible for receiving the information from
each Host and distributing it to all registered User
components, enabling them to directly communicate
with each Host. The Server also implements the pos-
sibility for the end-user to assign the placement of
objects stored in the cluster, thereby disrespecting the
Host selection obtained from the function F presented
in Equation 1.

The Server fulfills the function of centralizing

JCL: A High Performance Computing Java Middleware

383

component, receiving the features of the computer
where each Host is installed. Before adding a new
Host, the Server notifies its presence to all regis-
tered Hosts that, after receiving the new member
registration notification, recalculate the function F
and change the Host objects, if necessary. After all
changes have taken place, the Server is notified, ful-
filling the registration of the new Host.

When there is an end-user application running, at
least one Host registration needs to be completed suc-
cessfully, so that such application can receive the clus-
ter map, enabling direct communication with the reg-
istered Hosts and eliminating the necessity to search
for a Host in the Server at every new demand.

One of JCL’s advantages is the possibility of stor-
ing Java objects in a specific Host. In this case, the
end-user can specify Hosts that are different from
those calculated by function F . To guarantee that
all running applications in a specific cluster have ac-
cess to all the instantiated objects, the locations as-
signed manually by the end-user are centralized in the
Server, this way they do not depend on the function
F . It is possible to note that the increase of manually
assigned variables concentrates the workload on the
Server, thus variables with high amount of accesses
can cause bottlenecks in the Server component. The
end-user can also choose the Host to execute their
methods, therefore JCL scales or allows its developers
to scale their demands.

3.3 Host Component

JCL Host has two basic functions: to store the ob-
jects sent by User or by another Host and invoke pre-
viously registered class methods. Its architecture al-
lows the Host component to dynamically determine
the number of threads (workers) running the end-user
class methods. By default, the application is con-
figured to use the total number of cores available on
the Host, that is, if the computer has four cores, four
workers are created. Nevertheless, the user can create
as many workers as necessary by simply setting the
property that assigns the number of threads to be cre-
ated. The justification for such feature is the possibil-
ity to combine CPU-bound methods with I/O bound
method executions, requiring the operating system to
schedule them, what increases the number of context
switches, however such extra workload usually pays
off, since there is a possibility of prefetching CPU
bound method executions while waiting for I/O re-
sults.

Before the Host component publishes its services
to User components, it starts a JCL pipeline composed
of three steps: 1) the Host notifies the Server its in-

tention to join the cluster; 2) the Server propagates
the existence of a new Host; 3) the Server allows the
Host to join JCL cluster.

A property that differentiates JCL from most of
its counterparts is the class registration process that
simplifies deployment. This process, invoked by User
and performed by Host, adds the necessary classes
to JVM classpath at runtime, which enables the end-
user to store objects and remotely execute methods
without manually registering the class in each JVM
of each cluster Host.

To perform object storage, two different alterna-
tives are adopted. In the first one, the end-user creates
the object and sends it to be stored in a Host, which
may or may not be chosen by him. In the second one,
the end-user defines which object should be created,
passing its arguments for the constructor and, there-
fore, enabling the object instantiation directly at the
Host. It is possible to note that the second storage
option allows the creation of massive objects at Host
without transferring them through the data network.

As described previously in this section, the mid-
dleware is based on Java reflection. This way, there is
no need to adapt any classes so that they can be ex-
ecuted at Hosts. Once registered, the target classes,
as well as their dependencies, are sent to Host where
methods are mapped and available for execution. This
feature enables JCL applications to separate business
logic code from distribution code, as well as simpli-
fies deployment and enables distributed objects stor-
age.

4 USE CASE

This section aims to evaluate JCL in terms of fun-
damental computer science algorithms development,
such as sorting. The JCL BIG sorting application was
implemented, since it represents a solution with inten-
sive communication, processing and I/O.

The distributed BIG sorting application is a sort-
ing solution where data are partitioned and also
sorted, i.e. there is no centralized sorting mecha-
nism. Data are generated and stored in a binary file
by each Host thread, performing parallel I/O on each
Host component. Data are integers between −109 to
+109. The final sorting contains one million different
numbers and their frequencies distributed over a clus-
ter, but the original input data were generated from
two billion possibilities.

The sorting application is a simple and elegant
sorting solution based on items frequencies. The fre-
quency of each number of each input data partition
is obtained locally by each Host thread and a chunk

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

384

24 JCL facade j c l = JCL FacadeImpl . g e t I n s t a n c e () ;
25
26 i n t numJCLc lus t e rCore s = j c l . g e t C l u s t e r C o r e s () ;
27 / / r e g i s t e r i n g
28 j c l . r e g i s t e r (Random Number . c l a s s , ” Random Number ”) ;
29
30 / / b u i l d s t h e i n p u t da t a , p a r t i t i o n e d ove r JCL c l u s t e r
31 O b j e c t [] [] a r g s = new O b j e c t [numJCLc lus t e rCore s] [] ;
32 f o r (i n t i =0 ; i<numJCLc lus t e rCore s ; i ++) {
33 O b j e c t [] oneArg = { sementes , ” o u t p u t ”+ i } ;
34 a r g s [i]= oneArg ;
35 }
36 Lis t<Str ing> t i c k e t s = j c l . e x e c u t e A l l C o r e s (” Random Number ” , ” Create1GB ” , ←↩

a r g s) ;
37 j c l . g e t A l l R e s u l t B l o c k i n g (t i c k e t s) ;
38 f o r (S t r i n g a T i c k e t : t i c k e t s) j c l . r e m o v e R e s u l t (a T i c k e t) ;
39 t i c k e t s . c l e a r () ;
40 t i c k e t s = n u l l ;
41 System . e r r . p r i n t l n (” Time t o c r e a t e i n p u t (s e c) : ” + ←↩

(System . nanoTime ()−t ime) /1000000000) ;

Figure 1: Main class - how to generate pseudo-random numbers in the JCL cluster.

strategy builds a local data partition for the entire
JCL cluster, i.e. each thread knows how many JCL
threads are alive, so all number frequencies (n f) di-
vided by number of cluster threads (nct) create a con-
stant C, i.e. C = n f/nct. Each different number in
an input data partition is retrieved and its frequency
is aggregated in a global frequency GF . When GF
reaches C value, a new chunk is created, so C is fun-
damental to produce chunks with similar number fre-
quencies without storing the same number multiple
times. When JCL avoids equal number values it also
reduces communication costs, since numbers of one
Host thread must be sent to other threads in the JCL
cluster to perform a fair distributed sorting solution.

The sorting is composed of three phases, besides
the data generation and a validation phase to guar-
antee that all numbers from all input data partitions
are retrieved and checked against JCL sorting dis-
tributed structure. The sorting has approximately 350
lines of code, three classes and only the main class
must be a JCL class, i.e. inherit JCL behavior. The
pseudo-aleatory number generation phase illustrates
how JCL executes existing sequential Java classes on
each Host thread with few instructions (Figure 1).
Lines 24, 26 and 28 of the main class illustrate how to
instantiate JCL, obtain JCL cluster number of cores
and register a class named “Random Number” in
JCL, respectively. Lines 31-35 represent all argu-
ments of all “Create1GB” method calls, so in our
example we have “numJCLClusterCores” method
arguments and each of them is a string labeled
“output suffix”, where the suffix varies from 0 to
“numJCLClusterCores” variable value.

Line 36 represents a list of tickets, adopted
to store all JCL identifiers for all method calls,
since JCL is by default asynchronous. The
JCL method “executeAllCores” executes the same
method “Create1GB” in all Host threads with unique
arguments on each method call. Line 37 is a synchro-
nization barrier, where big sorting main class waits
until some tasks, identified by “tickets” variable, have
finished. From lines 38-40 objects are destroyed lo-
cally and remotely (line 38), and finally in line 41
there is the time elapsed to generate pseudo-random
numbers over a cluster of multi-core machines and in
parallel. The “Random Number” class is a sequen-
tial Java class and method “Create1GB” adopts Java
Random math class to generate 1GB numbers on each
input data partition binary file.

Phases one, two and three are similar to Figure 1,
i.e. they are inside the main class and they behave ba-
sically splitting method calls over the cluster threads
and then waiting all computations to end. Precisely,
at phase one JCL reads the input and produces the
set of chunks, as well as each chunk frequency or the
frequencies of its numbers. C is calculated locally in
phase one, i.e. for a single input data partition, so in
C equation n f represents how many numbers an input
data partition contains and nct represents the number
of JCL Host threads. Phase one finishes its execution
after storing all number frequencies locally in a JCL
Host to avoid a second file scan. It is possible to note
that phase one does not split the numbers across the
local chunks, since the algorithm must ensure a global
chunk decision for that.

After phase one, the main class constructs a global

JCL: A High Performance Computing Java Middleware

385

169 long l o a d =0; i n t b ; S t r i n g r e s u l t = ” ” ;
170 f o r (I n t e g e r ac : s o r t e d) {
171 l o a d +=map . g e t (ac) ;
172 i f (load >(t o t a l F / (numOfJCLThreads))) {
173 b=ac ;
174 r e s u l t +=b+ ” : ” ;
175 l o a d =0;
176 }
177 }

Figure 2: Main class - how to mount the global chunk schema to partition the cluster workload.

97 f o r (i n t r =0 ; r<numJCLThreads ; r ++) {
98 JCLMap<In teger , Map<In teger , Long>> h = new JCLHashMap<In teger , ←↩

Map<In teger , Long>>(S t r i n g . v a lueOf (r)) ;
99 h . p u t (id , f i n a l [r]) ;

Figure 3: Sorting class - how to deliver chunks to other Host threads.

sorting schema with fair workload. Figure 2 illus-
trates how the main class produces chunks with simi-
lar number frequencies. Each result of phase one con-
tains a schema to partition the cluster workload, so a
global schema decision must consider all numbers in-
side all chunks of phase one.

The main class calculates the total frequency of
the entire cluster, since each thread in phase one also
returns the chunk frequency. Variable “totalF” rep-
resents such a value. Lines 169 to 177 represent how
JCL sorting produces similar chunks with a constant
C as a threshold. The global schema is submitted to
JCL Host threads and phase two starts.

Phase two starts JCL Host threads and each thread
can obtain the map of numbers and their frequencies,
generated and stored at phase one. The algorithm
just scans all numbers and inserts them into specific
chunks according to the global schema received pre-
viously. Phase two ends after inserting all numbers
and their frequencies into JCL cluster to enable any
JCL Host thread to access them transparently. Fig-
ure 3 illustrates JCL global variable concept, where
Java objects lifecycles are transparently managed by
JCL over a cluster. The sorting class obtains a global
JCL map labelled “h” (Figure 3). Each JCL map
ranges from 0 to number of JCL threads in the clus-
ter (line 97), so each thread manages a map with its
numbers and frequencies, where each map entry is a
chunk of other JCL Host thread, i.e. each JCL Host
thread has several chunks created from the remain-
ing threads. Line 99 of Figure 3 represents a sin-
gle entry in a global map “h”, where “id” represents
the current JCL Host thread identification and “final”
variable represents the numbers/frequencies of such a
chunk. Phase three of sorting application just merges

all chunks into a unique chunk per JCL Host thread.
This way, JCL guarantees that all numbers are sorted,
but not centralized in a Server or Host component, for
instance.

Our sorting experiments were conducted with JCL
multi-computer version. The first set of experiments
evaluated JCL in a desktop cluster composed of 15
machines, where 5 machines were equipped with In-
tel I7-3770 3.4GHz processors (4 physical cores and 8
cores with hyper-threading technology) and 16GB of
of RAM DDR 1333Mhz, and the other 10 machines
were equipped with Intel I3-2120 3.3GHz processors
(2 physical cores and 4 cores with hyper-threading
technology) and 8GB of RAM DDR 1333Mhz. The
Operating System was a Ubuntu 14.04.1 LTS 64 bits
kernel 3.13.0-39-generic and all experiments could
fit in RAM memory. Each experiment was repeated
five times and both higher and lower runtimes were
removed. An average time was calculated from the
three remaining runtime values. JCL distributed BIG
Sorting Application version sorted 1 TB in 2015 sec-
onds and the OpenMPI version took 2121 seconds,
being JCL 106 seconds faster. Both distributed BIG
sorting applications (JCL and MPI) implement the ex-
plained idea and are available at JCL website.

The second experiments evaluated JCL in an em-
bedded cluster composed of two raspberry pi devices,
each one with an Arm ARM1176JZF-S processor,
512MB of RAM and 8GB of external memory, and
one raspberry pi 2 with a quadcore processor oper-
ating at 900MHz, 1GB of RAM and 8GB of exter-
nal memory. The Operating System was Raspbian
Wheezy and all experiments could fit in RAM mem-
ory. Each experiment was repeated five times and
both higher and lower runtimes were removed. An

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

386

average time was calculated from the three remaining
runtime values.

The JCL distributed BIG sorting was modified to
enable devices with low disk capacity to also sort a
big amount of data. Basically, the new sorting version
does not store the pseudo-random numbers in external
memory. It gathers the number generation phase with
the phase where number frequencies are calculated.
Differently from other IoT middleware systems (Per-
era et al., 2014), where small devices such as rasp-
berry pi are adopted only for sensing, JCL introduces
the possibility to implement general purpose applica-
tions and not only sensing ones. Furthermore, JCL
sorting can run on large or small clusters, as well as
massive muti-core machines with a unique portable
code. The small raspberry pi cluster sorted 60GB of
data in 2,7 hours.

5 EXPERIMENTAL EVALUATION

Experiments were conducted with JCL multi-
computer and multi-core versions. Initially, the JCL
middleware was evaluated in a desktop cluster com-
posed of 15 machines, the same cluster used to test
JCL distributed BIG sorting application. The middle-
ware was evaluated in terms of throughput, i.e., the
number of processed JCL operations per second. The
goal of these experiments is to stress JCL measuring
how many executions it supports per second and also
how uniform function F , presented in Equation 1, can
be when both incremented global variable names and
random names are adopted.

In the first set of experiments, we tested JCL asyn-
chronous remote method invocation (Figure 4). For
each test we fixed the number of remote method in-
vocations to 100 thousand executions. JCL Protocol
Buffer Algorithm (PBA) algorithm was adopted, so
JCL differentiates the sizes of both machines of the
cluster to configure the workload. The experiments
were composed of two different methods: the first one
is a void method with a book as argument, where a
book is a user type class composed of authors, editors,
edition, pages and year attributes (Figure 4 A); and the
second method is composed of an array of string and
two integer values as arguments which are adopted by
algorithms for calculating Levenshtein distance, Fi-
bonacci series and prime numbers (Figure 4 B). We
measured the throughput of each cluster configuration
(5, 10 and 15 machines).

The results demonstrated that JCL’s throughput
rises when cluster size increases as the task becomes
more CPU bound. There is a throughput decrease
when the cluster increases from 5 to 10 machines and

7500

8000

8500

125

150

175

200

M
ethod_B

ook
M

ethod_C
pu

5 10 15

Cluster size

T
hr

ou
gh

pu
t(

s)

A

B

Figure 4: Method invocation.

1070

1080

1090

1100

1100

1105

1110

1115

1120

B
ook

S
tring

5 10 15

Cluster size

T
hr

ou
gh

pu
t(

s)
A

B

Figure 5: Global variable experiments.

the justification is that the new five Hosts are smaller
than the first five ones, so the throughput does not in-
crease at the same rate (Figure 4 B). The second test
represents non CPU bound scenarios, so it is clear that
network overhead is greater than task processing (Fig-
ure 4 A).

In the second set of experiments (Figure 5), we
fixed the number of instantiated global variables to 40
thousand instantiations. We tested the book class in-
stantiation explained previously (Figure 5 A) and also
a smaller object like a string with 10 characters (Fig-
ure 5 B). We tested the five best machines first and
then added the ten worst machines, thus this strategy
may influence the throughput results negatively. As
the cluster enlarges, the number of connections and
other issues also become time-consuming, thus a re-

JCL: A High Performance Computing Java Middleware

387

HostID

F
re
qu
en
cy

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Δ = 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

HostID

F
re
qu
en
cy

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Δ = 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

HostID

F
re
qu
en
cy

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Δ = 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

HostID

F
re
qu
en
cy

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Δ = 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 6: Variable names with autoincrement.

HostID

F
re
qu
en
cy

0.
00

0.
04

0.
08

0.
12

Δ = 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

HostID

F
re
qu
en
cy

0.
00

0.
04

0.
08

0.
12

Δ = 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

HostID

F
re
qu
en
cy

0.
00

0.
04

0.
08

0.
12

Δ = 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

HostID

F
re
qu
en
cy

0.
00

0.
04

0.
08

0.
12

Δ = 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 7: Bag of words.

duction in throughput should be expected. Another
important observation is the synchronous behavior of
JCL shared memory services, which is another bot-
tleneck when the cluster becomes bigger. The results
demonstrate that as the global variable becomes more
complex, the data network overhead increases. Pre-
cisely, the throughput of String variable reduces 2,3%
when JCL cluster increases from 5 to 15 Hosts, but
when book variable is adopted, the throughput re-

duces 3,3% in the same cluster configurations. The
positive aspect of such a scenario is that JCL over big-
ger clusters stores more data.

In the third set of experiments, we evaluated the
uniformity of function F presented in Equation 1 plus
a delta d and instantiated 40 thousand variable names.
JCL cluster size was set to 15 machines, and then we
tested different prefix variable names, and also autoin-
crement suffixes, i.e., variable names like “p i” and

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

388

“p i j”, where p is a prefix and i and j are autoin-
crement values. We also tested F + d distribution for
an arbitrary bag of words and chose the Holy Bible’s
words to verify how JCL data partition performs. The
results are illustrated in Figure 6 and 7, where ∆ is
delta size. Usually, JCL achieves an almost uniform
distribution using delta between zero and two.

The result of the bag of arbitrary words becomes
more uniform as delta increases, so even when the
end-user decides to adopt arbitrary variable names in
the code, JCL can achieve an almost fair data parti-
tion. We also tested the JCL overhead when a variable
content is retrieved using delta zero, one and two, and
there are almost no overhead varying deltas, but data
partition uniformity is reduced as delta tends to zero,
what can be seen in Figure 7. The justification is that
network communication times for data checkings are
irrelevant when compared with remote instantiation
runtimes.

Finally, we also evaluated JCL multi-core ver-
sion against a Java thread implementation provided
by Oracle. An Intel I7-3770 3.4GHz processor with
8 cores, including hyper-threading technology, and
16GB of RAM was used in the experiment. We
implemented a sequential version for a CPU bound
task composed of existing Java sequential algorithms
for calculating Levenshtein distance, Fibonacci series
and prime numbers. We calculated JCL and Java
threads speedups, and the results demonstrated sim-
ilar speedups, i.e. in a machine with four physical
cores and four virtual cores, JCL achieved speedup of
5.61 and Oracle Java threads the speedup of 5.77.

6 CONCLUSION

In this paper, we present a novel reflective middleware
that is able to invoke remote methods asynchronously
and also manage Java objects lifecycle over a clus-
ter of JVMs. JCL is designed for multi-core, multi-
computer and hybrid computer architectures. End-
users write portable JCL applications, where global
variables are also multi-developer, so different appli-
cations can transparently share resources without ex-
plicit references over a computer cluster. JCL can ex-
ecute existing Java code or JCL code, this way JCL
can build complex applications. Reflection capabili-
ties enable JCL to separate distribution from business
logic, enabling both existing sequential code execu-
tions over many high performance computer archi-
tectures with zero changes and multiple distribution
strategies for a single sequential algorithm according
to a hardware specification. Deployment in JCL is not
time consuming, i.e. a JCL cluster without end-user

code is sufficient to run any Java application in JCL.
No other middleware solution puts all these features
together in a unique solution.

Experiments demonstrate that JCL is a promis-
ing solution, although many improvements must be
done. JCL must implement security methods. End-
users should be able to lock/unlock global variables
and execute tasks from private groups over a single
JCL cluster, enabling different collaboration levels or
profiles. JCL must be fault tolerant in storage and
processing. Future systems should be able to recover
on their own. Self-stabilization, self-healing, self-
reconfiguration and recovery-oriented computing im-
plement several algorithms/protocols that can be in-
corporated into JCL. JCL must implement the con-
cept of multi-server, therefore a JCL server can man-
age, for instance, a cluster of JCL hosts with invalid
IPs and communicate with other JCL servers, pro-
viding a multi-cluster JCL solution. GPU execution
abstractions, where location and copies are transpar-
ent to end-users, are fundamental to JCL. A heuristic
based scheduler, where cloud requirements are con-
sidered, is also an important improvement to JCL. An
API for sensing is fundamental to JCL for IoT. Cross-
platform Host component, including platforms with-
out JVM, with JVMs that are not compatible with JSR
901 (Java Language Specification) or platforms with-
out operating system, are mandatory to IoT. Built-in
modules for monitoring and administration should be
added to JCL.

ACKNOWLEDGEMENTS

We thank José Estevão Eugênio de Resende and Gus-
tavo Silva Paiva for helping with experiments, Univer-
sidade Federal de Ouro Preto (UFOP) and Instituto
Federal de Minas Gerais (IFMG) for the infrastruc-
ture, and Fundação de Amparo à Pesquisa do Estado
de Minas Gerais (FAPEMIG) for financial support.

REFERENCES

Brynjolfsson, E. M. (2012). Big data: The management
revolution. Harvard Business Review, 90(10):6066.

Cohen, L. (2015). Java Parallel Processing Frame-
work. Available from: 〈http://www.jppf.org/〉.[15
Dezember 2015].

Coulouris, G., Dollimore, J., and Kindberg, T. (2007). Sis-
temas Distribuı́dos - 4ed: Conceitos e Projeto. Book-
man Companhia.

Di Sanzo, P., Quaglia, F., Ciciani, B., Pellegrini, A., Di-
dona, D., Romano, P., Palmieri, R., and Peluso, S.

JCL: A High Performance Computing Java Middleware

389

(2014). A flexible framework for accurate simula-
tion of cloud in-memory data stores. arXiv preprint
arXiv:1411.7910.

Egan, S. (2005). Open Source Messaging Application De-
velopment: Building and Extending Gaim. Apress.

Forum, M. P. (1994). Mpi: A message-passing interface
standard. Technical report, Knoxville, TN, USA.

Gelibert, A., Rudametkin, W., Donsez, D., and Jean, S.
(2011). Clustering osgi applications using distributed
shared memory. In Proceedings of International Con-
ference on New Technologies of Distributed Systems
(NOTERE 2011), pages 1–8.

Ghosh, S. (2014). Distributed systems: an algorithmic ap-
proach. CRC press.

Gokhale, A., Balasubramanian, K., Krishna, A. S., Bal-
asubramanian, J., Edwards, G., Deng, G., Turkay,
E., Parsons, J., and Schmidt, D. C. (2008). Model
driven middleware: A new paradigm for developing
distributed real-time and embedded systems. Science
of Computer programming, 73(1):39–58.

Han, J., Kamber, M., and Pei, J. (2011). Data Mining: Con-
cepts and Techniques. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 3rd edition.

Henning, M. and Spruiell, M. (2006). Distributed program-
ming with ice reading.

Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A.,
Joseph, A. D., Katz, R., Shenker, S., and Stoica, I.
(2011). Mesos: A platform for fine-grained resource
sharing in the data center. In Proceedings of the
USENIX Conference on Networked Systems Design
and Implementation (NSDI 2011), pages 295–308.

Kaminsky, A. (2015). Big CPU, Big Data: Solving the
World’s Toughest Computational Problems with Par-
allel Computing. Unpublished manuscript. Retrieved
from http://www.cs.rit.edu/˜ark/bcbd.

Karantasis, K. and Polychronopoulos, E. (2011). Pro-
gramming gpu clusters with shared memory abstrac-
tion in software. In Proceedings of Euromicro In-
ternational Conference on Parallel, Distributed and
Network-Based Processing (PDP 2011), pages 223–
230.

Karantasis, K. I. and Polychronopoulos, E. D. (2009).
Pleiad: A cross-environment middleware providing
efficient multithreading on clusters. In Proceedings of
ACM Conference on Computing Frontiers (CF 2009),
pages 109–116.

Murphy, A. L., Picco, G. P., and Roman, G.-C. (2006).
Lime: A coordination model and middleware support-
ing mobility of hosts and agents. ACM Trans. Softw.
Eng. Methodol., 15(3):279–328.

Nester, C., Philippsen, M., and Haumacher, B. (1999). A
more efficient rmi for java. In Proceedings of the
ACM 1999 conference on Java Grande, pages 152–
159. ACM.

OSGi (2010). Osgi specification release 4.2.
Perera, C., Liu, C. H., Jayawardena, S., and Chen, M.

(2014). A survey on internet of things from industrial
market perspective. Access, IEEE, 2:1660–1679.

Pitt, E. and McNiff, K. (2001). Java.Rmi: The Remote
Method Invocation Guide. Addison-Wesley Longman
Publishing Co., Inc.

Seovic, A., Falco, M., and Peralta, P. (2010). Oracle Co-
herence 3.5. Packt Publishing Ltd.

Taboada, G. L., Ramos, S., Expósito, R. R., Touriño, J.,
and Doallo, R. (2013). Java in the high performance
computing arena: Research, practice and experience.
Science of Computer Programming, 78(5):425–444.

Taboada, G. L., Touriño, J., and Doallo, R. (2009). Java
for high performance computing: assessment of cur-
rent research and practice. In Proceedings of the 7th
International Conference on Principles and Practice
of Programming in Java, pages 30–39. ACM.

Tanenbaum, A. S. and Van Steen, M. (2007). Distributed
systems. Prentice-Hall.

Tariq, M. A., Koldehofe, B., Bhowmik, S., and Rother-
mel, K. (2014). Pleroma: a sdn-based high perfor-
mance publish/subscribe middleware. In Proceed-
ings of the 15th International Middleware Conference,
pages 217–228. ACM.

Taveira, W. F., de Oliveira Valente, M. T., da Silva Bigonha,
M. A., and da Silva Bigonha, R. (2003). Asyn-
chronous remote method invocation in java. Journal
of Universal Computer Science, 9(8):761–775.

Team, I. (2015). Infinispan 8.1 Documentation. Available
from: 〈http://infinispan.org/docs/8.1.x/index.
html〉.[15 Dezember 2015].

Terracotta Inc. (2008). The Definitive Guide to Terracotta:
Cluster the JVM for Spring, Hibernate and POJO
Scalability. Springer Science & Business.

Troester, M. (2012). Big data meets big data analytics.
Cary, NC: SAS Institute Inc.

Veentjer, P. (2013). Mastering Hazelcast. Hazelcast.
Walker, S. M., Dearle, A., Norcross, S. J., Kirby, G. N. C.,

and McCarthy, A. (2003). Rafda: A policy-aware
middleware supporting the flexible separation of ap-
plication logic from distribution. Technical report,
University of St Andrews. Technical Report CS/06/2.

Watson, R. T., Wynn, D., and Boudreau, M.-C. (2005).
Jboss: The evolution of professional open source soft-
ware. MIS Quarterly Executive, 4(3):329–341.

Xiong, J., Wang, J., and Xu, J. (2010). Research of dis-
tributed parallel information retrieval based on jppf.
In 2010 International Conference of Information Sci-
ence and Management Engineering, pages 109–111.
IEEE.

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S.,
and Stoica, I. (2010). Spark: cluster computing with
working sets. In Proceedings of the 2nd USENIX con-
ference on Hot topics in cloud computing, pages 10–
10.

Zhang, Q., Cheng, L., and Boutaba, R. (2010). Cloud com-
puting: state-of-the-art and research challenges. Jour-
nal of internet services and applications, 1(1):7–18.

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

390

