
An Enhanced Equivalence Checking Method to Handle Bugs in
Programs with Recurrences

Sudakshina Dutta and Dipankar Sarkar
Indian Institute of Technology Kharagpur, Kolkata, India

Keywords: Equivalence Checking, Recurrence, Dependence, Narrowing.

Abstract: Software designers often apply automatic or manual transformations on the array-handling source programs
to improve performance of the target programs. Verdoolaege et al. (Verdoolaege et al., 2012) have proposed
a method to automatically prove equivalence of the output arrays of the source and the generated transformed
programs. Unlike the other approaches, the method of (Verdoolaege et al., 2012) provides the most sophis-
ticated techniques to validate programs with non-uniform recurrences besides programs with uniform recur-
rences. However, if the recurrence expressions of the source and the transformed programs refer to more than
one base cases of which some are non-equivalent and also if the domain of the output arrays partition based on
dependences on different base cases, then some imprecision in the equivalence checking results is observed.
The equivalence checker reports that the entire index spaces of the output arrays of the source program to be
non-equivalent with that of the transformed program instead of the portion of the output arrays which depend
on the non-equivalent base cases of the programs. In the current work, we have enhanced the method of equiv-
alence checking of (Verdoolaege et al., 2012) so that it can precisely indicate the equivalent and non-equivalent
portions of the output arrays.

1 INTRODUCTION

Due to resource constraints of embedded processors,
developers apply aggressive loop and data transfor-
mations on the source program and generate the tar-
get program. With the increase of usages of embed-
ded processors in high performance computing sys-
tem, there is a growing need to verify the correct-
ness of such transformations which are primarily ap-
plied by compilers. For validation of such transforma-
tions, dependence graph (DG) oriented mechanisms
are more suitable than the control graph oriented ones
because the domain of applications of such transfor-
mations involve arrays and the dependence compu-
tations of some array elements on other elements.
Unlike the previously reported methods (Shashidhar
et al., 2005), (Karfa et al., 2011), the DG oriented
mechanism reported in (Verdoolaege et al., 2012) has
been found to be sophisticated enough to handle many
loop transformations with recurrences and it is ap-
plied for the case of programs with static control flow
and piecewise affine expressions for all loop bounds,
conditions and array index expressions.

However, if the recurrence expressions of the
source and the transformed programs refer to more

than one base cases some of which are non-equivalent
and also if the domain of the output arrays parti-
tion based on dependences on different base cases,
then equivalence checking mechanism fails to report
non-equivalent portion of the output arrays precisely.
The equivalence checker instead reports that the en-
tire index spaces of the output arrays of the source
program to be non-equivalent with that of the trans-
formed program. Although the problem of formally
verifying programs is undecidable, we have enhanced
the method of equivalence checking of (Verdoolaege
et al., 2012) so that it can precisely indicate the equiv-
alent and non-equivalent portions of the output ar-
rays for the programs with linear recurrences. From
the program, the recurrence expression is extracted
and it is solved for both the equivalent and non-
equivalent base cases to form generalized conjectures
of “proved” (equivalent) and “not proved” (not equiv-
alent) cases. Later the conjectures are proved follow-
ing the equivalence checking mechanism reported in
(Verdoolaege et al., 2012).

254
Dutta, S. and Sarkar, D.
An Enhanced Equivalence Checking Method to Handle Bugs in Programs with Recurrences.
In Proceedings of the 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering (ENASE 2016), pages 254-259
ISBN: 978-989-758-189-2
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

2 MOTIVATION

Consider the example in Fig. 1. In this example,
two non-equivalent programs with recurrences are
shown where the output arrays in the programs are
D. The only difference in the two programs are in the
assignment statements s2 and s′2. The elements of the
output array D are non-equivalent if the iterator value
is even, else they are equivalent. However, the tool
(isa-0.12) available with (Verdoolaege et al., 2012)
reports the following:

Equivalence proved: {D[3]}
Equivalence NOT proved: {D[i] : 4≤ i≤ N}

Although the tool reports above equivalence results,
the algorithm of (Verdoolaege et al., 2012) theroti-
cally returns the following results:

Equivalence NOT proved: {D[i] : 3≤ i≤ N}
The above line indicates that equivalence cannot
be proved for the entire range of iterator values
3 ≤ i ≤ N. To remove this imprecision in the output
of the equivalence checker, we have enhanced the
method of (Verdoolaege et al., 2012) in the present
work. The output of the enhanced equivalence
checker is the following:

Equivalence proved: {D[i] : 3≤ i≤ N and ∃α s.t.
i = 2α+1}

Equivalence NOT proved: {D[i] : 3 ≤ i ≤ N and
∃α s.t. i = 2α}

s1 : A[1] = 2
s2 : A[2] = 3
do i = 3,N

s3 : A[i] = 2∗A[i−2]

s′1 : A[1] = 2
s′2 : A[2] = 9
do i = 3,N

s′3 : A[i] = 2∗A[i−2]

(a) (b)

s4 : D[i] = A[i]
end do

s′4 : D[i] = A[i]
end do

Figure 1: Two non-equivalent code snippets.

3 MODEL OF EQUIVALENCE
CHECKING

A dependence graph is a connected labeled directed
graph G = 〈V,E, I,Vo〉 with vertices V , each of which
involves a single arithmetic operation f of a statement
s of the program, and edges E, called dependences
among the vertices (or more precisely, their opera-
tions). There is a set of vertices Vo ∈V with in-degree
0 corresponding to an output array and a set I ⊂ V
of vertices corresponding to input arrays, each with
out-degree 0. A vertex v is associated with the iter-
ation domain Dv of the surrounding loop (if any) of
the corresponding statement of the program. An edge

e = 〈v1,v2〉 starts from a vertex v1 and ends in a ver-
tex v2 of the DG and is associated with a mapping Me
from some subset of domain Dv1 to the subset of the
domain Dv2 capturing the dependence of the operation
f of v1 on the value of the operation f of v2.

In Fig. 2, the DGs of the the code snippets of Fig. 1
are shown. In Fig. 2(a), v1, v2, v3, · · · , v8 depict the
vertices of the DG and 〈v1,v′1〉, 〈v2,v3〉, etc. represent
some of the edges of the DG. The output vertex v1
indicates the output array D of the program. The ver-
tices v4, v7 and v8 represent the input vertices and they
represent the reference to the constant values of the
array Z in statements s3, s1 and s2, respectively. The
id operations in vertices v2, v5, v6 represent copy op-
erations in statements s4, s1 and s2, respectively. The
domains of the vertices are indicated beside the ver-
tices. As the assignment s4 is executed inside the loop
with iteration domain 3 ≤ i ≤ N, the domain of the
vertex v2 is indicated as [3,N]. The edges represent
the read after write dependence among the domain el-
ements of the vertices of the DG and it is represented
by the mapping of the edges. The edge 〈v2,v3〉 repre-
sents that the ith iteration of the assignment statement
s4 reads the value assigned to the ith iteration of the
statement s3 if 3≤ i≤N. The self-loop 〈v3,v3〉 repre-
sents the recurrence present in the statement s3; con-
sequently, the mapping {v3(i)→ v3(i−2)|5≤ i≤ N}
depicts the dependence of the ith iteration of the sec-
ond argument of the multiplication operation on the
value generated by the (i− 2)th iteration of the left
hand side of the same operation. The edges 〈v3,v5〉
and 〈v3,v6〉 depict the dependence on the 3rd and 4th

iterations of the multiplication operation of s3 on the
assignment operations of the statements s1 and s2.
The edge 〈v3,v4〉 depicts the dependence of the first
argument of the multiplication operation on the con-
stant C2 for the domain [3,N].

4 OVERVIEW OF THE EXISTING
VALIDATION METHOD

The method of checking equivalence of two programs
(Verdoolaege et al., 2012) takes two DGs as inputs. It
starts by pairing up the output array vertices of the two
DGs and associating with the pair a goal which as-
serts that the elements of the output arrays have to be
pairwise computed identically in both the programs.
These correspondences are maintained in an equiva-
lence tree (ET) which is dynamically constructed as
the equivalence proof proceeds. The goal propagates
as a predicate Rwant in a lockstep fashion along the
pair of edges of DGs until the input vertices of the
DGs are encountered or the pair of vertices recur in

An Enhanced Equivalence Checking Method to Handle Bugs in Programs with Recurrences

255

{v3(i)→ v4(2)|3≤ i≤ N} {v′3(i)→ v′4(2)|3≤ i≤ N}

Out : D

s3,C2 s1, id s2, id

s1,C2 s2,C3

v4 : v5 : v6 :

v7 : v8 :

{v5()→ v7(2)}

() ()

()()

{v3(3)→ v5()}

s4, id

s3,∗

[3,N]

v2 :

v1 :

v3 :

{v3(4)→ v6()}

{v3(i)→ v3(i−2)|5≤ i≤ N}

{v1(i)→ v2(i)|3≤ i≤ N}

[3,N]

Out : D

s′3,C2 s′1, id s′2, id

s′1,C2 s′2,C9

v′4 : v′5 : v′6 :

v′7 : v′8 :

{v′5()→ v′7(2)} {v′6()→ v′8(9)}

() ()

()()

{v′3(3)→ v′5()}

s′4, id

s′3,∗

[3,N]

[3,N]

v′2 :

v′1 :

v′3 :

{v′3(4)→ v′6()}

{v′3(i)→ v′3(i−2)|5≤ i≤ N}

[3,N]

{v6()→ v8(3)}

(a) (b)

[3,N]

{v′1(i)→ v′2(i)|3≤ i≤ N}

[3,N]
[3,N]

{v2(i)→ v3(i)|3≤ i≤ N} {v′2(i)→ v′3(i)|3≤ i≤ N}

Figure 2: (a)DG of the program in Fig. 1(a), (b)DG of the program in Fig. 1(b).

n3 〈v3↔ v′3〉 Rwant
n′3

= {v3(i)↔ v′3(i)|3≤ i≤ N}

Rwant
n9

= {v4(2)↔ v′4(2)|3≤ i≤ N}
〈v4↔ v′4〉n4 n6

n8

Rlost
n′3

= {v3(4)↔ v′3(4)}

〈v8↔ v′8〉
〈v7↔ v′7〉n5

Rwant
n6

= {v3(i−2)↔ v′3(i−2)|5≤ i≤ N}
Rlost

n6
= /0

Rwant
n8

= {v7(2)↔ v′7(2)}
Rlost

n8
= /0

Rlost
n9

= /0

〈v5↔ v′5〉 n9〈v6↔ v′6〉 n7〈v3↔ v′3〉

Rwant
n7

= {v5()↔ v′5()}Rwant
n4

= {v6()↔ v′6()}= Rlost
n4

Rwant
n5

= {v8(3)↔ v′8(9)}= Rlost
n5

〈v2↔ v′2〉n2 Rwant
n2

= {v2(i)↔ v′2(i)|3≤ i≤ N}

〈v1↔ v′1〉n1 Rwant
n1

= {v1(i)↔ v′1(i)|3≤ i≤ N}

i = 4 i = 3

Figure 3: ET of the DGs shown in Fig. 2.

the ET. A subgoal is discharged as proved when re-
duced to an equivalence between the same elements
of the input arrays. As forward propagation of goals
stops, what cannot be proved as a predicate Rlost is
propagated backwards and finally the subpart of what
cannot be proved is shown with respect to the domains
of the output arrays.

The ET construction process takes the DGs cor-
responding to Fig. 2 as inputs and starts with a root
node n1 = 〈v1,v′1〉 in Fig. 3. The node is associated
with the predicate Rwant

n1
= {v1(i)↔ v′1(i)|3≤ i≤ N}

which represents the goal that the entire index spaces
of the output arrays are pairwise identical. This goal
propagates from vertices along the edges of the DGs.
In this example, v1 has the only outgoing edge 〈v1,v2〉

and the entire domain v1(i) maps to v2(i), 3 ≤ i ≤ N.
Also, v′1 has the only outgoing edge 〈v′1,v′2〉 the en-
tire domain v′1(i) maps to v′2(i), 3 ≤ i ≤ N. Hence,
the goal propagates to the newly constructed node
n2 = 〈v2,v′2〉 with the goal Rwant

n2
= {v2(i)↔ v′2(i)|3≤

i≤ N}.
The goal, Rwant

n1
, forward propagates following the

mapping of the DG-edges as stated above. For prov-
ing equivalence of the output arrays D[i], 3 ≤ i ≤ N,
the equivalence of A[i], 3≤ i≤N has to be established
due to the presence of the assignment statements s4
and s′4. The values of A[i], 3≤ i≤ N, are determined
by the multiplication operations of the statements s3
and s′3. Hence, the goal of proving equivalence of
D[i], 3 ≤ i ≤ N boils down to the goal of proving the

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

256

(a)

(b)

n′3 〈v3↔ v′3〉

〈v3↔ v′3〉

〈v7↔ v′7〉

Rwant
n7

= {v5()↔ v′5()}

Rwant
n8

= {v7(2)↔ v′7(2)}
Rlost

n8
= /0

〈v4↔ v′4〉

Rwant
n9

= {v4(2)↔ v′4(2)}Rwant
n9

= {v4(2)↔ v′4(2)}
Rlost

n9
= /0

n6 n7 n9〈v5↔ v′5〉

n8

Rwant
n6

= {v3(i−2)↔ v′3(i−2)|5≤ i≤ N}
= {v3(i)↔ v′3(i)|3≤ i≤ (N−2)}
Rlost

n6
= {v3(4)↔ v′3(4)}

〈v3↔ v′3〉

〈v3↔ v′3〉n3 Rwant
n3

= {v3(i)↔ v′3(i)|3≤ i≤ N}
Rlost

n3
= {v3(4)↔ v′3(4)}

〈v2↔ v′2〉n2 Rwant
n2

= {v2(i)↔ v′2(i)|3≤ i≤ N}

〈v1↔ v′1〉n1 Rwant
n1

= {v1(i)↔ v′1(i)|3≤ i≤ N}

Rwant
n′3

= {v3(i)↔ v′3(i)|i = 3∧5≤ i≤ N}

Rlost
n3

= {v3(i)↔ v′3(i)|3≤ i≤ N}
Rwant

n3
= {v3(i)↔ v′3(i)|3≤ i≤ N}

〈v3↔ v′3〉

Rlost
n2

= {v2(i)↔ v′2(i)|3≤ i≤ N}
Rwant

n2
= {v2(i)↔ v′2(i)|3≤ i≤ N}

〈v2↔ v′2〉n2

n1 〈v1↔ v′1〉

Rlost
n1

= {v1(i)↔ v′1(i)|3≤ i≤ N}
Rwant

n1
= {v1(i)↔ v′1(i)|3≤ i≤ N}

Rwant
n′3

= {v3(i)↔ v′3(i)|i = 3∧5≤ i≤ N}
= Rlost

n′3

n′3Rlost
n′3

= {v3(6)↔ v′3(6)}

n3

Figure 4: (a) ET of the DGs shown in Fig. 2 after the first narrowing, (b) ET of the DGs shown in Fig. 2 after the second
narrowing (narrowed nodes in both the figures are shown in blue color).

result of the these multiplication operations for the
range 3 ≤ i ≤ N and it is depicted by the ET-node
n3 = 〈v3,v′3〉 with Rwant

n3
= {v3(i)↔ v′3(i)|3≤ i≤ N}.

The equivalence of A[i], 3 ≤ i ≤ N in statements s3
and s′3 can only be established if the equivalence of
A[i− 2], 3 ≤ i ≤ N can be proved. For i = 3, the
computation of A[i] in the source and the target pro-
grams depend on the base cases denoted by the as-
signment operations of s1 in the source program and
s′1 in the target program; this is depicted by the equiv-
alence of the constant expressions C2 in the ET-node
n8 with Rwant

n8
= {v7(2)↔ v′7(2)}. Similarly, for i = 4,

the computation of A[i] depends on the base case de-
noted by the assignment operation depicted by s2 in
the source program and s′2 in the target program. This
is depicted by the inequivalence of the assignment of
constant expressions C3 and C9 in the statements s2
and s′2, respectively in the ET-node n5 with Rwant

n5
=

{v8(3)↔ v′8(9)} and Rlost
n5

= Rwant
n5

. For 5≤ i≤N, the
equivalence of A[i] is dependent on the computation
A[i−2] evaluated in the same statements by multipli-
cation operations due to the presence of recurrences in
statements s3 and s′3; this is depicted by the node n6.
However, the equivalence of the entire range A[i−2],
5 ≤ i ≤ N cannot be established as the inequivalent
assignments A[2] = 3 in s2 and A[2] = 9 in s′2 are re-
ferred for computation of array elements A[4] in the
source and target programs, respectively.

As the array element A[4] is not equivalent in the

source and the transformed program, from the entire
range of A[i], 3 ≤ i ≤ N, the element i = 4 is sepa-
rated (referred to as first narrowing operation (Cousot
and Cousot, 1992) in Fig. 4(a)) and the inequivalence
of the elements A[4] is depicted as Rlost

n3
= {v3(4)↔

v′3(4)}. The process of establishing equivalence starts
for the revised range i = 3∧ 5 ≤ i ≤ N. However,
the equivalence of the entire range of the revised goal
cannot also be established as for the range 5 ≤ i ≤ N
the computation of A[6] depends on the computation
of inequivalent array elements A[4] in the source and
target programs. Hence, the entire range of A[i], 3 ≤
i ≤ N is reported to be inequivalently computed and
it results in the inequivalence of D[i], 3 ≤ i ≤ N (re-
ferred to as second narrowing operation in Fig. 4(b)).
Note that the first narrowing node n′3 with revised goal
Rwant

n′3
= {v3(i)↔ v′3(i)|i = 3∧5≤ i≤ N} is installed

in Fig. 4(a) from which the forward propagation starts
once again. After the second narrowing operation, the
entire range of Rwant

n′3
is set to Rlost

n′3
. In the next step,

Rlost
n3
∪Rlost

n′3
= {v3(i)↔ v′3(i)|3 ≤ i ≤ N} propagates

back to n1 and Rlost
n1

is set to {v1(i)↔ v′1(i)|3≤ i≤N}.

5 SUGGESTED ENHANCEMENT

For proving equivalence of the output arrays D[i], 3≤
i≤ N, the equivalence of A[i], 3≤ i≤ N, has to be es-

An Enhanced Equivalence Checking Method to Handle Bugs in Programs with Recurrences

257

tablished. For i= 3, the array elements A[i] depend on
the base case denoted by the equivalent assgiments of
constant expressions C2 on array elements A[1] in the
satements s1 and s′1. Hence, the array elements A[3]
are equivalently computed. For the i = 4, the array el-
ements A[i] depend on the base case denoted by the in-
equivalent assgiments of constant expressions C3 and
C9 on array elements A[2] in the statements s2 and
s′2, respectively. Hence, the array elements A[4] are
inequivalently computed. For the rest of the domain
5 ≤ i ≤ N, the computation of A[i] depends on the
computation of A[i−2] due to recurrence. Instead of
declaring the entire range of A[i], 3≤ i≤ N, to be not
proved to be equivalent in the source and transformed
programs as (Verdoolaege et al., 2012), the recurrence
relation depicted by the index expressions A[i] and
A[i− 2] (i.e., im = im−1 + 2) are solved for the base
cases i = 3 and i = 4 in our proposed method. The so-
lution of the recurrence relation for i = 3 mapped to
the range 3≤ i≤N (3≤ i≤N∧∃m≥ 0 s.t. i= 3+2m
i.e., the odd iterator values) is declared as the index
range for which the array elements A[i] are equiva-
lently computed and the solution for i = 4 mapped to
the range (3≤ i≤N∧∃m≥ 0 s.t. i = 4+2m i.e., pre-
cisely the even iterator values) is declared as the index
range for which the array elements A[i] are inequiva-
lently computed.

The ET-node n3 represents the goal of proving
equivalence of A[i], 3 ≤ i ≤ N, for proving equiva-
lence of D[i], 3 ≤ i ≤ N in Fig. 3. The ET-node n6
represents the fact that for proving equivalence of A[i],
5≤ i≤ N, the equivalence of A[i−2] has to be estab-
lished. The recurrence relations are formed using the
method given below. In Fig. 3, we refer to the suffix
expression i associated with the ancestor node n3 as
im and the suffix expression i− 2 associated with its
recurring descendant node n6 as im−1 thereby produc-
ing the recurrence im = im−1 + 2; the inequivalence
of the array element A[4] contributes to the base case
i0 = 4 of the above recurrence. Thus, the recurrence
equation {i0 = 4, im = im−1 + 2} depicts the non-
equivalent elements that would occur if we permit
the ET-node n6 to reduce further. The solution of the
above-mentioned non-homogeneous recurrence equa-
tion is im = 4+2m; hence, the “not proved” elements
of the ET-node n3 is {v3(i)↔ v′3(i)|3≤ i≤ N∧∃m≥
0 s.t. i = 4+2m}. To represent such elements of n3, a
child n3,2 is created with Rwant

n3,2
= {v3(i)↔ v′3(i)|3 ≤

i ≤ N ∧∃m ≥ 0 s.t. i = 4+ 2m} thereby setting the
goal of proving equality of all the elements of Rwant

n3,2
.

The ET-node n3,2 is then explored further to disprove
the proof goal Rwant

n3,2
following the existing method.

The proposed method tries to generalize the
proved cases next from Fig. 3 in a similar way as has

been described above. The recurrence equation {i0 =
3, im = im−1 +2} is found using the same steps as de-
scribed in the previous paragraph for the generaliza-
tion of the proof goal for the equivalent base case for
array elements A[3]. It depicts the “proved” elements
that would occur if the ET-node n6 is permitted to re-
duce further. The solution of the above-mentioned re-
currence equation is im = 3+ 2m. Hence, the gener-
alized “proved” elements at the ET-node n3 is con-
jectured as {v3(i) ↔ v′3(i)|3 ≤ i ≤ N ∧ ∃m s.t. i =
3 + 2m}. A child node n3,1 of n3 is created with
the goal of proving the conjecture, i.e., Rwant

n3,1
is set

as {v3(i)↔ v′3(i)|3 ≤ i ≤ N ∧∃m s.t. i = 3+ 2m} as
shown in Fig. 5. It is explored further to establish
the proof goal Rwant

n3,1
using the existing method and

Rlost
n3,1

= /0. In the next step, Rlost
n3,2

= {v3(i)↔ v′3(i)|3≤
i ≤ N ∧ ∃m ≥ 0 s.t. i = 4 + 2m} propagates back
to root node n1 resulting in {v1(i) ↔ v′1(i)|3 ≤ i ≤
N ∧∃m ≥ 0 s.t. i = 4+ 2m}. This enhancement can
also be used to precisely identify the equivalent and
non-equivalent portions of the output arrays with one
or more than one dimensions for the programs with
linear recurrences and one or multiple base cases.

6 RELATED WORK

We have enhanced a novel, fully automated approach
to the equivalence checking problem of static affine
programs which uses abstract interpetation operator
instead of using transitive closure operators. The two
most closely related approaches are those of (Shashid-
har et al., 2005), and (Karfa et al., 2011). In (Shashid-
har et al., 2005), the authors proposed an ADDG
based equivalence checking method to validate the
loop transformations. The authors of (Karfa et al.,
2011) redefine the equivalence of ADDGs to ver-
ify loop transformations along with a wide range of
arithmetic transformations. The equivalence checking
method relies on a normalization technique proposed
in (Karfa et al., 2011) and some simplification rules
to handle arithmetic transformations over arrays. As
explained before, all of these approaches are based on
transitive closures and therefore require uniform re-
currences, unlike the abstract interpretaion based ap-
proach proposed in (Verdoolaege et al., 2012). We
have enhanced the method for the programs with re-
currences and some non-equivalent base cases.

7 CONCLUSION

We have enhanced the most sophisticated method of

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

258

n3 〈v3↔ v′3〉
Rproved

n3
= {v3(3)↔ v′3(3)}

n3,1 n3,2 〈v3↔ v′3〉〈v3↔ v′3〉

〈v7↔ v′7〉

n14

n15

n16〈v5↔ v′5〉

〈v8↔ v′8〉n18

n19n17

Rwant
n3,2

= {v3(i)↔ v′3(i)|3≤ i≤ n∧ ∃m s.t. i = 4+2m}

Rwant
n17

= {v6()↔ v′6()}Rwant
n14

= {v5()↔ v′5()}

〈v6↔ v′6〉 〈v3↔ v′3〉〈v3↔ v′3〉

= Rlost
n18

Rwant
n18

= {v8(3)↔ v′8(9)}

Rlost
n19

= /0

〈v4↔ v′4〉

Rwant
n20

= {v4(2)↔ v′4(2)}
Rlost

n20
= /0

〈v4↔ v′4〉

Rlost
n21

= /0
Rwant

n21
= {v4(2)↔ v′4(2)}

n21

n20

Rwant
n3,1

= {v3(i)↔ v′3(i)|3≤ i≤ n∧∃ m s.t. i = 3+2m}
= Rlost

n3,2

Rwant
n3

= {v3(i)↔ v′3(i)|3≤ i≤ n}
Rlost

n3
= {v3(i)↔ v′3(i)|4≤ i≤ N∧∃m s.t. i = 4+2m}

〈v2↔ v′2n2

Rwant
n2

= {v2(i)↔ v′2(i)|3≤ i≤ N}
Rlost

n2
= {v2(i)↔ v′2(i)|4≤ i≤ N∧∃m s.t. i = 4+2m}

〈v1↔ v′1〉n1 Rlost
n1

= {v1(i)↔ v′1(i)|4≤ i≤ N∧∃m s.t. i = 4+2m}
Rwant

n1
= {v1(i)↔ v′1(i)|3≤ i≤ N}

Rwant
n15

= {v7(2)↔ v′7(2)}
Rlost

n15
= /0

Rwant
n19

= {v3(i−2)↔ v′3(i−2)|6≤ i≤ n∧∃m s.t. i = 6+2m}
Rwant

n16
= {v3(i−2)↔ v′3(i−2)|5≤ i≤ n∧ ∃m i = 5+2m}

Figure 5: After enahancement, the final ET of the DGs shown in Fig. 2 after the forward and backward propagations are over.

checking equivalence of array-handling programs
with recurrences. We are currently incorporating
the method in the source code available with (Ver-
doolaege et al., 2012). The proposed method works
on homogeneous or non-homogeneous linear recur-
rence equtions. Also, we can precisely partition the
domain of the output array to be “proved” and “not
proved” using the method and are able to prove the
generalized conjectures correctly. Unlike the method
of (Verdoolaege et al., 2012), we can prove the “not
proved to be equivalent” elements of the output ar-
rays to be inequivalently computed. The proposed
method has wide applications in signal processing do-
mains where application programs are implemented
with programs having recurrences.

REFERENCES

Cousot, P. and Cousot, R. (1992). Comparing the ga-
lois connection and widening/narrowing approaches
to abstract interpretation. In Proceedings of the 4th
International Symposium on Programming Language
Implementation and Logic Programming, PLILP ’92,
pages 269–295, London, UK, UK. Springer-Verlag.

Karfa, C., Banerjee, K., Sarkar, D., and Mandal, C. (2011).

Equivalence checking of array-intensive programs. In
VLSI (ISVLSI), 2011 IEEE Computer Society Annual
Symposium on, pages 156–161.

Shashidhar, K. C., Bruynooghe, M., Catthoor, F., and
Janssens, G. (2005). Functional equivalence checking
for verification of algebraic transformations on array-
intensive source code. In Design, Automation and Test
in Europe, 2005. Proceedings, pages 1310–1315 Vol.
2.

Verdoolaege, S., Janssens, G., and Bruynooghe, M. (2012).
Equivalence checking of static affine programs using
widening to handle recurrences. ACM Trans. Pro-
gram. Lang. Syst., 34(3):11:1–11:35.

An Enhanced Equivalence Checking Method to Handle Bugs in Programs with Recurrences

259

