
Aligning Software Design with Development Team Expertise

Jānis Grabis1, Egils Meiers2, Inese Šūpulniece1, Solvita Bērziša1, Edgars Ozoliņš2 and Ansis Svaža2
1Institute of Information Technology, Riga Technical University, Kalku 1, Riga, LV-1658, Latvia

2Visma Enterprise, Kronvalda bulv.3/5, Riga, LV-1010, Latvia

Keywords: Enterprise Application, Refactoring, Development Reorganization, Team Expertise, Clustering.

Abstract: Large enterprise applications are developed by teams of developers specializing in particular functional or
technical areas. An overall application architecture is used to guide allocation of development tasks to the
development teams. However, quality of the architecture degrades over the application life-cycle and
manual refactoring is challenging due to the size and complexity of enterprise applications. This paper
proposes to use automated clustering of large enterprise applications, where clusters are built around
application business centers, as a means for refactoring the software design with an objective to improve
allocation of software modules to development teams. The paper outlines a module allocation process in the
framework of the overall enterprise application development process and reports an illustration of the
allocation process. The illustration is based on the case of refactoring of a large third tier ERP system.

1 INTRODUCTION

Development of large software applications such as
Enterprise Resource Planning (ERP) systems is a
complex task. These systems are constantly evolving
and huge efforts are devoted towards maintenance of
existing applications and developing new
functionality. Expertise of development team is a
crucial factor to ensure efficient maintenance and
software evolution (Bennett and Rajlich, 2000). That
is especially important for large multi-functional
applications because for their wide scope and long
life-cycles. Developers specialize in particular
functional and technical areas to ensure development
efficiency (Liang, 2010). This specialization is
enabled by having a modular system design
(Paulish, 2002). Unfortunately, the system design if
initially present tends to deteriorate during the life-
cycle for large complex applications (Cai et al.,
2009).

This paper investigates a problem of refactoring
the system design of long life-cycle packaged
applications with an objective to support
modularized development by dedicated teams. The
refactoring is achieved by automated clustering of
the system into self-contained modules. The
automated clustering is considered because manual
refactoring is prohibitive in the case of large
systems. It is assumed that development of the
modules requires specific development expertise and

teams are formed and the modules are assigned to
them to attain the best match between the required
competencies and the team’s expertise.

The objective of this paper is to propose a
method for aligning software design and team’s
expertise. The method is geared towards
development of packaged applications including
ERP systems. ERP development is investigated from
the vendor perspective (as opposed to the ERP
implementation perspective). Application of the
method is illustrated using an example of the third
tier ERP system undergoing a system’s redesign
project. The further research is intended to focus on
evaluation of actual benefits of redesigning of the
ERP systems from the vendor’s perspective what is
an insufficiently exposed research and practical
problem. The main expected contribution of the
proposed research is to determine suitability of
automated refactoring to guide development team
assignment and to facilitate inter-team collaboration
in the case of large-scale packaged applications.

The rest of the paper is organized as follows.
Section 2 describes the ERP development process
highlighting its modular nature and discusses the
role of development team’s composition. Section 3
introduces a process for allocating modules to
development teams. Section 4 describes preliminary
evaluation of the alignment process. Section 5
concludes.

560
Grabis, J., Meiers, E., Šūpulniece, I., Bērziša, S., Ozoliņš, E. and Svaža, A.
Aligning Software Design with Development Team Expertise.
In Proceedings of the 18th International Conference on Enterprise Information Systems (ICEIS 2016) - Volume 1, pages 560-565
ISBN: 978-989-758-187-8
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

2 ERP DEVELOPMENT
PROCESS

An ERP development process resembles the
traditional software development process. Two
distinguishing features of this process are specific
aspects of requirements management and wide scope
of the application resulting in functional and
technological complexities. Monnerat et al. (2008)
suggest to use enterprise modeling techniques to
establish a comprehensive set of requirements
covering all areas of application of ERP systems.
The incremental approach (Sommerville, 2010) to
evolving functionality of the ERP systems on the
basis of key requirements and overall architecture is
used to address the functional and technological
complexities. Figure 1 shows an overall ERP
development process.

An ERP system can be developed from scratch
or by evolving existing software. The latter case is
more common in practice since either the previous
version of the ERP system is available or the ERP
system development is a continuation of successful
custom software development. In this research, we
focus on maintenance and evolution of existing ERP
systems. The development process is driven by
feedback from customers, market trends, changes in
regulatory requirements and other factors (Xu and
Brinkkemper, 2007). The enterprise modeling
activity concerns scoping of ERP development and
identification of key requirements towards the ERP
system. ERP systems consist of functional modules,
which cover certain areas of enterprise activities.
Modules can be developed relatively independently
(modules from the development perspective are not
necessarily the same as modules from the functional
perspective). However, to ensure development and
usage efficiency and consistency, the functional
modules are developed following common

principles determined according to the base
requirements and operationalized in the overall
architecture or systems design. The individual
modules are integrated together in order to release a
new version of the ERP systems to customers. The
module development, integration and release are
continuous processes, especially, if agile techniques
are used in development (De Carvalho et al., 2010).

Enterprise modeling requires participation of
process owners and key users (Sandkuhl et al.,
2014). They specialize in different business areas of
the enterprise and possess limited knowledge and
understanding about specific aspects of other
business areas. Moreover, the research suggests that
cross-functional teams have negative impact on
implementation of ERP systems (Lui and Chan
2008). Similarly, agile development practices
suggest using vertical teams rather than horizontal
teams (Ratner and Harvey, 2011). Carmel and Bird
(1997) provide evidence that packaged systems are
usually developed by teams of up to five developers.
Therefore, it is often practical and advisable to
distribute ERP development activities among teams
specializing in particular business areas.

Software architecture plays a major role in
dividing software into manageable modules assigned
to individuals or small teams for development
(Unphon and Dittrich, 2010). However, that might
be hampered by intricacies of the ERP technical
design (Rettig, 2007), i.e. ERP systems consist of a
large number of components linked together in a
complex web of associations, which has evolved
during the life-cycle. The overall architecture can be
improved by refactoring although manual
refactoring of large enterprise applications is
challenging. This paper explores automated
decomposition of ERP systems as a part of software
design refactoring to improve allocation of modules
to development teams.

Figure 1: ERP systems development process.

Aligning Software Design with Development Team Expertise

561

3 ALIGNMENT APPROACH

The alignment approach is elaborated for an ERP
system which requires major architecture
refactoring. The refactored architecture will be used
to guide future software evolution processes
including project management and team assignment
processes.

System redesign and identification of modules
takes place at certain milestones of software
evolution. Development teams change more
frequently. However, it is assumed that once a
module has been assigned to team knowledge is
preserved in it even though team members change
occasionally. Alignment between team expertise and
design also needs to be periodically updated since
newly developed components are assigned to
modules and characteristics of modules might
change.

The system is divided in modules using clusters
built around business centers (Figure 2). The
business centers are system’s design components
identified by a system architect as being central to
providing desired functionality. The clustering is
performed automatically and clusters consist of
closely related components as measured by strength
of associations among the components. There are
components having only internal associations within
a cluster and there are associations spanning
boundaries of the clusters. The latter associations are
particularly important to determine interfaces and to
set contracts among development teams. The
clustering addresses just some of the system’s
redesign concerns. It is used as an input to other
refactoring activities (e.g., Riva 2004), which yield
the final division of the systems into modules.
Competency requirements are identified for every
module. They concern knowledge of specific
functional or technical areas associated with a
particular module. For instance, ab absence
management module requires knowledge of human
resources management.

Development teams work continuously
throughout the system’s life-cycle and has certain
functional and technical competencies. The available
competencies concern knowledge possessed by team
members. Experience in a specific functional or
technical area plays a major importance in
determining team competencies. The modules are
assigned to the development teams by matching the
available competencies and the competency
requirements. Some changes in teams’ composition
can be introduced to achieve a better match.

4 PRELIMINARY RESULTS

Feasibility of the alignment approach is evaluated by
analyzing a third tier ERP system. This system is a
multi-module system developed by its vendor over
20 years using object-oriented development
techniques. The systems has about 4 million source
lines of code, 26,000 classes containing business
logics and about 160K associations. IT is a three-tier
client-server system though architectural principles,
system design and styles of programming as well as
functional requirements have experienced many
changes and maintenance and development of new
functionality have become increasingly complicated.
The company has initiated a system’s redesign
project. In order to simplify the system’s design it is
attempted to improve decomposition of the system
in modules. Given the size of the system, at least
initial decomposition is performed using automated
clustering techniques. The improved decomposition
is envisioned to facilitate assignment of
development teams to individual modules of the
systems.

The company has about 10 teams working on
system’s evolution. A team usually includes a
product owner, business expert, two to five
developers and a couple of tester depending on
workload. The business expert represents customer
needs and specializes in a particular technical or

Figure 2: Alignment approach.

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

562

functional area. The product owner creates
development tasks to implement the requirements.
Successful product owners have intimate
understanding of functional as well as technical
aspects of her modules. Developers and testers have
technical competencies and are more productive if
they have sufficient understanding and experience
about a given module.

45 to 50 tentative business centers are identified.
For example, there is an industry specific solution
for forest management, which has classes
implementing functionality for forest clearances
management, wood transportation and billing. Even
though clusters are built around the business centers,
new clusters also can emerge during the clustering
process.

The ERP system is clustered using a hierarchical
clustering algorithm (e.g., Cui and Chae 2011). The
clustering is performed using a systems
representation as a graph as an input. The graph’s
nodes are source code modules and classes. The
graph’s edges have several types including uses,
extends, implements and other associations. Nodes
are attached to clusters to maximize a similarity
measure calculated as a weighted sum of edges
connecting the node to candidate clusters. The
technical description of the clustering algorithm is
beyond the scope of this paper and additional details
are provided in (Šūpulniece et al., 2015).

The clustering yields around 100 clusters though
the right level of granularity is yet to be determined.
Figure 3 shows a fragment of high level clustering
results. Clusters are shown as bubbles and
associations connect interrelated clusters. It can be
observed that there is a relatively large number of
inter-cluster associations even after the clustering
and the clusters have varying degree of centrality.

Figure 4 zooms in on three clusters. The bubble
size represents the number of intra-cluster
components. Ovals surrounding a bubble and
enclosed within a square indicate components
having inter-cluster associations. These components
are of particular interest because they will serve as
interfaces among development teams. One of the
clusters identified is a cluster for processing
customer payments. This cluster has 229 intra-
cluster components and 86 components interfacing
with other clusters (there is more than a thousand
intra-cluster associations).

The clustering results do not represent a ready-
to-be-used new technical design of the system and
are not directly transferable to development. It is
possible that a single cluster might require different
competences due to inefficiency in the current

systems design. The clusters will be used by system
architects and other stakeholders for discussions on
redesigning the system. That will lead to a set of
software modules, which could be assigned to
individual development teams.

Figure 3: A fragment of clustering results.

Figure 5 illustrates allocation of modules to
development teams. This illustration focuses on five
tentative modules: 1) financial accounting (FA)
billing; 2) sales and distribution (SD) sales order
processing; 3) forest management (FM) billing; 4)
FM clearance; and 5) FM transportation. The former
modules are cross-sectional, while the latter three
modules belong to a horizontal solution developed
specifically for the forestry industry. The identified
competency requirements are given in Table 1 (the
knowledge of the base development technologies
applies to all modules.

Table 1: Competency requirements for tentative modules.

Module Required competencies
FA billing FA

SD sales order processing CRM
FM billing FA

FM clearance FM, GIS integration
FM transportation FA, GIS integration

Among the development teams, there are teams
FA, customer relationships management (CRM) and
forest management, respectively. Team FA has
expertise in functional aspects of financial
accounting what matches to the FA Billing module.
Similarly, Team CRM specializes in customer facing

Aligning Software Design with Development Team Expertise

563

Figure 4: Sample clusters showing intra-cluster and interface components.

Figure 5: An illustrative matching between teams and modules.

processes what matches to the SD Sales order
processing module. Team FM has experience in
working with forest management related functionality.
However, the FM Billing module also requires FA
competencies and there is a decision to be made about
allocating this module to one of the teams.

In many cases development teams can be
rearranged to find the best fit between modules and
teams. Otero et al. (2009) describes a formal
approach for assigning teams according to their
competencies. This method could be adopted for
purposes of this investigation. It also accounts for
varying degrees of competency and experience.

5 CONCLUSIONS

The paper proposes a method for automated

clustering of enterprise applications as a means for
allocating modules to development teams. It is
argued that ERP systems are best developed by
teams specializing in specific functional and
technical areas. The overall architecture is used to
allocate modules to these specialized development
teams. Clustering is used for automated
identification of the modules because manual
refactoring is prohibitive. Business centers are used
as a starting point of clustering to attain better
alignment between software design and expertise of
development teams.

The decomposition based allocation is expected
to bring the following benefits: 1) teams can
specialize in particular functional and technical areas
of application development; 2) clear separation of
responsibilities among the teams; and 3) faster
integration testing (i.e., teams are responsible for

FM BillingFA Billing FM Clearance

FM Transportation

SD Sales Order
Processing

Team FA

Team CRM

Team FM

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

564

intra-module testing and integration testing focuses
only on interface components). From the practical
perspective, research results will be used to find the
best allocation of modules to development teams and
to manage collaboration among the teams. From the
theoretical perspective, further research is expected
to provide insights in ERP development from the
vendor perspective and to evaluate actual benefits of
software design refactoring.

There are several challenges to be addressed.
The first challenge is finding the appropriate level of
granularity or cluster size. The second challenge is
definition of modules on the basis of clustering
results. A special attention should be devoted to
clusters mixing various expertise requirements and
to identification of competency requirements for the
modules. Finally, the module to team allocation
method should be formalized. The granularity level
will be determined in experimental studies and by
receiving feedback from the development team. The
modules will be developed by involving software
architecting experts. The evaluation will be
performed by means of the case study and
comparative analysis of software development
efficiency measures.

One of the main challenges is to convince
development teams that automated refactoring
suggests appropriate solutions for changing the long-
established way of working and collaborating among
the teams.

ACKNOWLEDGEMENTS

The research is funded by the ERDF project
“Information and communication technologies
competence center” Nr. KC/2.1.2.1.1/10/01/001
(Contract No. L-KC-11-0003, www.itkc.lv) activity
1.3. “The Method of Monolithic System
Decomposition According to SOA Principles.”

REFERENCES

Bennett, K.H., Rajlich, V.T., 2000. Software Maintenance
and Evolution: a Roadmap. Proceedings of the
Conference on The Future of Software Engineering,
pp. 75-87.

Cai, Z., Yang, X., Wang, X., Wang, Y., 2009. A
systematic approach for layered component
identification. In 2009 2nd IEEE International
Conference on Computer Science and Information
Technology, pp. 98–103.

Carmel, E., Bird, B., 1997. Small is beautiful: a study of
packaged software development teams, Journal of High
Technology Management Research, 8(1), 129-148.

Cui, J.F., Chae, H.S., 2011. Applying Agglomerative
Hierarchical Clustering Algorithms to Component
Identification for Legacy Systems. Information and
Software Technology, 53(6), 601-614.

De Carvalho, A., Johansson, B., Manhães, R.S., 2010.
Agile software development for customizing ERPs. In
Enterprise Information Systems and Implementing IT
Infrastructures: Challenges and Issues, pp. 20-39.

Liang, T.P., Jiang, J., Klein, G.S., Liu, J.Y.C., 2010.
Software Quality as Influenced by Informational
Diversity, Task Conflict, and Learning in Project
Teams, IEEE Transactions on Engineering
Management, 57(3), 477-487.

Lui, K.M., Chan, K.C.C., 2008. Rescuing Troubled
Software Projects by Team Transformation: A Case
Study with an ERP Project. IEEE Transactions on
Engineering Management, 55(1), 171-184.

Monnerat, R.M., De Carvalho, R.A., De Campos, R.,
2008. Enterprise systems modeling: The ERP5
development process, Proceedings of the ACM
Symposium on Applied Computing, pp. 1062.

Otero, L.D., Centeno, G., Ruiz-Torres, A.J., Otero C.E.,
2009. A systematic approach for resource allocation in
software projects. Computers & Industrial
Engineering 56, 4, 1333–1339.

Paulish, D., 2002. Architecture-Centric Software Project
Management. Addison-Wesley, Boston, MA, USA.

Ratner, I.M., Harvey, J., 2011. Vertical slicing: Smaller is
better. Proceedings - 2011 Agile Conference, Agile
2011, pp. 240-245.

Rettig, C., 2007. The trouble with enterprise software.
MIT Sloan Management Review 49(1), 21-27+90.

Riva, R., 2004. View-based Software Architecture
Reconstruction. PhD thesis, Technical University of
Vienna.

Sandkuhl, K., Stirna, J., Persson, A., Wisotzki, M., 2014.
Enterprise Modeling: Tackling Business Challenges
with the 4EM Method. Springer, Berlin.

Sommerville, I., 2010. Software Engineering. Person, 9th
Edition.

Šūpulniece, I., Polaka, I., Bērziša, S., Ozoliņš, E., Palacis,
E., Meiers, E., Grabis, J., 2015. Source Code Driven
Enterprise Application Decomposition: Preliminary
Evaluation. ICTE in Regional Development 2015
Valmiera, Latvia, Procedia Computer Science 77, pp.
167-175.

Xu, L., Brinkkemper, S., 2007. Concepts of product
software. European Journal of Information Systems.
16(5), pp. 531-541.

Unphon, H., Dittrich, Y., 2010. Software architecture
awareness in long-term software product evolution.
Journal of Systems and Software 83(11), 2211-2226.

Aligning Software Design with Development Team Expertise

565

