
Revisiting Arguments for a Three Layered Data Warehousing
Architecture in the Context of the Hadoop Platform

Qishan Yang and Markus Helfert
Insight Centre for Data Analytics, School of Computing, Dublin City University, Dublin, Ireland

Keywords: Data Warehouse Architecture, Three Layers, Hadoop, Hive, HBase.

Abstract: Data warehousing has been accepted in many enterprises to arrange historical data, regularly provide reports,
assist decision making, analyze data and mine potentially valuable information. Its architecture can be divided
into several layers from operated databases to presentation interfaces. The data all around the world is being
created and growing explosively, if storing data or building a data warehouse via conventional tools or
platforms may be time-consuming and exorbitantly expensive. This paper will discuss a three-layered data
warehousing architecture in a big data platform, in which the HDFS (Hadoop Distributed File System) and
the MapReduce mechanisms have been being leveraged to store and manipulate data respectively.

1 INTRODUCTION

As the organizations’ data repository, the data
warehouse was stated that it is a subject oriented,
integrated, non-volatile and time-variant collection of
data in support of management’s decision (Inmon et
al., 2010). The hub-and-spoke model or the top down
approach is used to build a data warehouse in which
each data mart is built on a central data warehouse.
According to Kimball (2002), “data warehouse is the
conglomerate of all data marts within the company.
Information is always stored in the dimensional
model”. It is a bottom-up approach to develop a data
warehouse. Conformed dimensional tables and data
warehouse bus matrixes play vital roles to provide
consistent dimensions for fact tables and guidelines
for implementation of data marts independently and
asynchronously.

A data warehousing architecture can be assorted
into three classifications: the single-layer data
architecture, the two-layer data architecture and the
three-layer data architecture (Devlin and Cote, 1996).
The primary mechanism of the single-layer (real-time
layer) is all data sets are stockpiled once only (Inmon,
1997). An operational system and a data warehousing
system share the completely identical data resources.
The two-layer data architecture adds a derived data
layer which enables operational and informational
requirements to be fulfilled separately. This approach
addresses the single-layer architecture problems, but

it also has some limitations. It has low performance
in inhomogeneous or large volumes of data resources
(Devlin and Cote, 1996). The three-layer data
architecture is comprised of a real-time data layer, a
reconciled data layer and a derived data layer (IBM,
1993). It takes advantages of a reconciled data layer
to clean data, solve inconsistent issues and prepare
data.

Data warehouses and OLAP (Online Analytical
Processing) systems are decision-making support
technologies to analyze large volumes of data online
(Inmon, 1996). A traditional operational database
may contain a few years’ real-time data. A data
warehouse, however, comprises several decades’
datasets from heterogeneous resources. It is possible
that a company has a petabyte sized data warehouse
which may consist of structured data and unstructured
data. Unstructured data is approximately four to five
times as much as structured data (Inmon et al., 2010).

In the age of big data, there are some challenges
to store and operate the vast volume of information
for data mining and analysis in an acceptable period
of time. This situation forces people to build data
warehouses on big data platforms. When reviewing
the relative literature, there is some research which
only developed few parts of DWH architectures on
big data platforms. The motivation of this paper is to
implement a system including all parts and reconsider
the argumentation of the three-layered warehousing
architecture in the context of big data. The main
contribution of this research is to provide a guideline

Yang, Q. and Helfert, M.
Revisiting Arguments for a Three Layered Data Warehousing Architecture in the Context of the Hadoop Platform.
In Proceedings of the 6th International Conference on Cloud Computing and Services Science (CLOSER 2016) - Volume 2, pages 329-334
ISBN: 978-989-758-182-3
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

329

to build a data warehousing system from data
resources to OLAP in Hadoop and investigate the
three layered DWH architecture still has many
advantages within a big data framework. The
structure of this paper is organized as follows. Section
2 illustrates the related work in this field. Section 3
describes the three-layered data warehousing
architecture. Then the results description is
demonstrated in section 4. The conclusion is provided
in section 5.

2 RELATED WORK

2.1 The Three-layer Data Architecture

The three-layer data architecture comprises real-time
data, reconciled data and derived data (Devlin and
Cote, 1996). The outline of the architectural
framework and its data flow are depicted in figure 1
below .

Figure 1: The outline of a three-layer data warehouse
architecture.

 Real-time data is generated by operated or
production applications and it is stored in
operational systems like DBMS or other data
resources;

 Reconciled data is derived from real-time data
and it is placed in data staging and data
warehousing areas in which the data is cleansed
and for further manipulations;

 Derived data is a repository of cleaned,
integrated or even summarized data for
analysis, decision-making, OLAP system etc.

When data resources have physical distances
mutually or have data inconsistent problems, data
warehouse systems could get benefits from the three-
layered data architecture rather than the single-layer
or the two-layer data architecture.

2.2 Hadoop

Hadoop is a system to store and batch large quantities
of data. It has high performance in ad hoc storage and
analysis on petabyte of data (White, 2012). According
to Apache Hadoop (2016), it is a highly throughput,
parallel and fault-tolerant platform, and it has two
critical frameworks, the HDFS and the MapReduce
which play vital roles in storing and operating data.

 HDFS is the acronym of the Hadoop
Distributed File System, which supplies high-
throughput access to operated data;

 MapReduce is a programming system for
parallel processing of large data sets and it
provides two main functions (Mapper and
Reducer) for users to manipulate this
framework.

These mechanisms are being widely used in
corporations like Apple, eBay, LinkedIn, Yahoo and
Facebook (Holmes, 2012).

2.3 Hive

As a data warehouse tool, Hive promotes the
performance of querying and managing large datasets
in distributed storage. It has some significant
characteristics listed below.

 It provides tools to facilitate ETL;
 It has a mechanism to conform data with

diverse formats ;
 It has the ability to query data from HDFS and

other data resources;
 Its jobs are divided and executed on the

MapReduce framework.

Hive offers a SQL-like language named HiveQL
which enables users to query the data with SQL liked
instructions. Moreover, it provides plug-in
functionalities for programmers to create their own
map and reduce to run more complicated analysis.
This tool is good at batching jobs over large sets of
append-only data (Apache Hive, 2016).

2.4 HBase

Apache HBase is a distributed, scalable, big-data
NoSQL database. The main principle of this database
system is based on Google's Bigtable which takes
advantage of a distributed file system named Google
File System. HBase also leverages Bigtable-like
features on top of Hadoop and HDFS (Apache HBase,
2016).

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

330

2.5 Flume

According to the Apache (2016), Flume provides a
distributed service for efficiently collecting,
aggregating and moving large amounts of data. It
utilises data flow stream and recovery mechanisms. It
can be considered as an extraction tool for online
analytic applications.

2.6 HBaseIntegration

HBaseIntegration has the capability to enable
HiveQL statements to access HBase tables for both
reading and writing. It supports Hive HBase
Integration jars for communications between Hive
and HBase. It also has the ability to join or union
HBase tables and Hive tables (Apache
HBaseIntegration, 2016).

2.7 Sqoop

When transferring data between HDFS and external
relational databases, Sqoop is a good choice to fulfil
this job. It can import data from a RDBMS (relational
database management system) into the HDFS or
export the data back into a RDBMS. For instance,
data can be migrated between HDFS and MySQL. It
relies on the mechanism of the MapReduce to do
these tasks, so it has the capability to process data
flow in parallel (Apache Sqoop, 2016).

2.8 Relative Research

There are some papers to illustrate data warehouse
architectures associated with big data platforms rather
than an entire system. What is more, they have not
described the bottom-up architecture of data
warehouses. For instance, According to Abelló et al.
proposal et al. (2011) research, they concentrated on
building cubes with MapReduce, so it can be
classified into derived data layer implementation.
Thusoo et al. (2010) advocated using Scribe, Hadoop
and Hive to build log collection, storage and analytics
infrastructure at Facebook. Their paper only depicted
the reconciled data layer and part of the real-time data
layer. Arres et al. (2011) proposed building OLAP
cubes on a cloud computing environment with
MapReduce, which only referred to the derived data
layer.

3 THE THREE-LAYERED DWH
ARCHITECTURE ON HADOOP

In this system, the DWH architecture, from data
resources to OLAP, has been mainly established on a
Hadoop framework and its subprojects. Its structure
is divided as follows. The website logs could be
considered as data resources and a collection tool
named Flume sent data to HDFS, both of them
constituted the real-time layer; HDFS, Hive and
MySQL composed the reconciled data layer; the
derived data layer comprised the data in HBase and
RDBMS. This architecture was set up on virtual
machines. To be more specific, two of them simulated
data resource servers which offered real-time data
generated by website log systems. Two of them could
be considered as the corresponding data stage servers
for each of the data resources. After the data stage
servers, six virtual machines were employed in order
to establish the Hadoop clusters, in which Hive,
HBase and Sqoop have been installed, leveraged and
run harmoniously. The detailed architecture is
described in figure 2 below.

Figure 2: The architecture in the context of Hadoop.

3.1 Real-Time Data Layer

Real-time data can be considered as internal
infrastructural information in an organization for
transaction processing or external supplementary
resources from the third-party vendors to strengthen
business intelligent system. It is normally placed in
the relative Relational Data Base Management
System like Oracle, DB2, MySQL and other data
management systems.

In this system, real-time data was website log files.
There were two virtual machines to act as website
servers for generating web logs. The detailed data
flow processing in real-time layer is presented below.
When new logs were created, the data resource
servers would send the data to their relative data
staging servers whose main job was to store log files
temporarily. A Linux command named SCP was used
in this step to copy data from resource servers to

Revisiting Arguments for a Three Layered Data Warehousing Architecture in the Context of the Hadoop Platform

331

staging servers automatically every day. Before this
step, the public keys and private keys for each server
had been created to allow them to communicate
mutually without passwords. These operations were
indispensable, because Flume could not extract data
from the data resource servers directly in order to
avoid security issues. Then, Flume obtained data and
delivered it to HDFS which acted as the real storage
area in Hadoop clusters. The whole data flow
processing and manipulations above were in the real-
time data layer. After these, map and reduce
approaches would be used to clear, format, integrate,
normalize the data as well as solve quality issues.

3.2 Reconciled Data Layer

Nowadays it is common that a company has a variety
of branches located in different places in a country or
all around the world. There are some circumstances
should be taken into account, when acquiring and
integrating data from independent data resources
which are operated and managed by an organization
but with inconsistent data structure definitions, there
may be some data quality issues must be overcome
before using it. Otherwise the performance of
decision-making systems or OLAP systems is not
guaranteed. The Reconciled data layer is the primary
area to integrate and clean data sets. After data has
been integrated and cleaned, the data in this layer is
read-only resources rather than the operational data
sets which could be updated in daily transactions. The
derived data layer is considered as the central
historical information repository to store treated data
sets.

3.2.1 Data Preparation

The predominant data quality issues in this data
resources were data unformatted problems (the
Common Log Format and the Extended Common
Log Format) and errors made by clients’ side or
website servers. Besides, there were some useless
records needed to be deleted, for instance, picture
query, css files or js files loading. In this experiment,
the unprofitable records were ignored in the Mapper
approach when cleaning data. More precisely, it
filtered the status of the records started with 3, 4 and
5, which mean request redirected and some errors
happened in client-side and server-side. It was also
necessary to find out nonsignificant queries by
analyzing the path of requested resources. For
example, if the file path was /resource/pic/head.png
in a record, it could be identified this was a picture
query, so its corresponding record would be ignored

by Mapper. However, if the file directory was
/php/register.php, it could be considered as an
effective page view, so its relative record would be
manipulated by Mapper and then transferred to
Reducer as valid data. After the processing of reading
these records, Mapper was going to clean data like
deleting special characters and reconciling formats.
For example, each record’s columns were separated
by ‘\t’ in order to fetch data easily through Hive.
Finally the valuable records were delivered to the
reduce method which wrote the records into files.

3.2.2 Data Warehouse Schema

After real-time data was manipulated in MapReduce
processing for cleaning and integrating, the preserved
data would be grasped by Hive to build a data
warehouse. While before this process, it was
necessary to set up a data warehouse schema and
corresponding tables in advance. The metadata of this
schema was stored in the MySQL database which
acted as an auxiliary metadata management system
for Hive. In this system, the star schema based data
warehouse was built straightforward and omitted
other components like data marts. This schema is
shown in figure 3 below.

Figure 3: The star schema of a website log data warehouse.

All the information required by the schema could
be extracted from formatted records. For example, a
treated log record likes the format below

XXX.20.38.100 - - 18/11/2015 13:25:11
GET /php/register.php HTTP/1.1 200 1234

http://www.leiviel.com Mozilla/5.0
Windows U Windows NT 5.1 zh-CN rv_1.9b4

Gecko/2008030317 Firefox/3.0b4 -

According to this record, the client IP, the visited
time, the request method, the request resource, the
protocol, the request status, the agent etc. would be

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

332

detached and loaded into this schema. After the data
has been loaded into this central repository, the
following job was how to analyze and exhibit the data
in informational systems.

3.3 Derived Data Layer

The data in the derived data layer has been cleaned,
formatted, aggregated or even summarized for
presentation tools, decision-making applications, ad
hoc query tools etc. The derived data layer in this
system was formed by OLAP cubes in which end-
users’ requirements would be responded
instantaneously. An OLAP system obtains
information from an underlying data warehouse. It is
necessary to calculate results and put them into OLAP
beforehand. Hence, in this experiment, the daily PV
(page views) and UV (unique visitors) have been
counted and stored in HBase and RDBMS in advance
for different purposes.

When evaluating the PV and the UV, join
operations have been taken among the fact table and
dimensional tables by HiveQL commands, in this
process, identical IPs and pages were counted
respectively. For instance, the page views counted in
a certain day is demonstrated in table 1 below.

Table 1: The sample of page views results.

RID PathID Page Count Time
137 1 index.php 1185 18/11/2015
138 2 forum.php 923 18/11/2015
141 5 register.php 13 18/11/2015

The first column was a record ID to identify each
record. PathID was considered as the page
identification number and the attribute of Page was
the name of this page. The column of Count was
calculated by grouping PathID. The last column
stored the time of this operation happened. According
to this table, the data analysis operations could be
taken. For example, it can be seen that index.php has
been visited 1185 times at that day. Majority of
clients preferred to visit the forum.php page. What is
more, not more than 13 people registered at this day.
The results could be stored in the HBase via
HBaseIntegration. Hence, it was convenient to load
data into HBase only by using HiveQL commands.
The results were alternatively transferred to external
RDBMS via Sqoop. These jobs were invoked every
day under shell commands control. Therefore, when
weekly or monthly even annual PV and UV statistical
results were requested by end-users to estimate
performance of a website, it was possible to get the
results in a short period of time. Otherwise, the raw

data which was placed in HDFS would be calculated
by Hive.

4 RESULTS DESCRIPTION

All frameworks and tools were working
harmoniously in the operations of data transferring,
data cleaning, data manipulating etc. The outline of
processing occurred in each layer is described as
follows. The website log files acted as real-time data
which recorded clients’ actions. In real-time layer,
Flume gathered log files from data stage servers and
sent them to HDFS in parallel. The reconciled data
layer was the key manufacturing site to gather data,
clean data, integrate data and deal with data quality
issues via Mapper and Reducer functions in Hadoop.
Hive took a responsibility to establish data warehouse.
The main purpose of the derived data layer was
considered to display data or make preparation for
data analysis. The OLAP cubes were stored in HBase
and RDBMS for data presentation. Most of the
operations and OLAP cubes constructing processing
were invoked by shell commands automatically. Most
of the data flow processing tasks were fulfilled in
parallel, which meant serval nodes were running a
same job but different parts at the same time. In
addition, this system was a low-cost synthesized data
warehouse architecture but with highly throughput
and big data analysis capability. Most of platforms
and tools were open-source, which could be
conducive to reduce the start-up cost of deploying a
data warehouse.

5 CONCLUSIONS

The emerging software and platforms like Hadoop
and its subprojects have been exploited to achieve the
goals in this experiment. Decades passed,
technologies have been evolving all the time, the
three layered architecture is still very beneficial to
build a data warehouse within the big data context.
From the perspective of this experiment, this system
only has a simple warehousing schema and an OLAP
system. The Hadoop platform worked on a computer
in independent virtual machines which shared
hardware. Therefore there are some aspects can be
ameliorated in this system. In the following work, the
Hadoop platform would be established on physically
independent commodities. It is necessary to design a
stable and robust data warehousing schema in order
to fulfill more sophisticated requests from end-users.

Revisiting Arguments for a Three Layered Data Warehousing Architecture in the Context of the Hadoop Platform

333

ACKNOWLEDGEMENTS

This publication was supported by Science
Foundation Ireland grant SFI/12/RC/2289 to Insight-
Centre for Data Analytics (www.insight-centre.org).

REFERENCES

Devlin, B. and Cote, L. D., 1996. Data warehouse: from
architecture to implementation. Addison-Wesley
Longman Publishing Co., Inc..

Inmon, W. H., 1997. What is a data warehouse? Prism
Tech. Topic 1(1).

IBM, 1993. Information Warehouse Architecture I. IBM
Corporation.

Inmon, W. H., Strauss, D. and Neushloss, G., 2010. DW
2.0: The architecture for the next generation of data
warehousing: The architecture for the next generation
of data warehousing. Morgan Kaufmann.

Kimball, R. and Ross, M., 2002. The data warehouse
toolkit: the complete guide to dimensional
modelling. Nachdr.]. New York [ua]: Wiley.

Inmon, W. H., 1996. Building the Data Warehouse. Wiley.
New York, USA.

Apache Hadoop, (2016) Welcome to Apache Hadoop.
Available at: https://hadoop.apache.org/ [Accessed 18
February 2016].

Holmes, A., 2012. Hadoop in practice. Manning
Publications Co..

Apache Hive, (2016) Apache Hive TM. Available at:
https://hive.apache.org/ [Accessed 18 February 2016].

White, T., 2012. Hadoop: The definitive guide. " O'Reilly
Media, Inc.".

Apache Hive, (2016) Welcome to Apache HBase.
Available at: https://hbase.apache.org/ [Accessed 18
February 2016].

Apache Flume, (2016) Welcome to Apache Flume.
Available at: https://flume.apache.org/ [Accessed 18
February 2016].

Apache HBaseIntegration, (2016) Hive HBase Integration.
Available at: https://cwiki.apache.org/confluence/
display/Hive/HBaseIntegration#HBaseIntegration-
HiveHBaseIntegration [Accessed 18 February 2016].

Apache Sqoop, (2016) Sqoop User Guide. Available at:
https://sqoop.apache.org/docs/1.4.6/SqoopUserGuide.
html#_introduction [Accessed 18 February 2016].

Thusoo, A., Shao, Z., Anthony, S., Borthakur, D., Jain, N.,
Sen Sarma, J., Murthy, R. and Liu, H., 2010, June. Data
warehousing and analytics infrastructure at facebook.
In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data (pp.
1013-1020). ACM.

Abelló, A., Ferrarons, J. and Romero, O., 2011, October.
Building cubes with MapReduce. In Proceedings of the
ACM 14th international workshop on Data
Warehousing and OLAP (pp. 17-24). ACM.

Arres, B., Kabbachi, N. and Boussaid, O., 2013, May.
Building OLAP cubes on a Cloud Computing
environment with MapReduce. In Computer Systems
and Applications (AICCSA), 2013 ACS International
Conference on (pp. 1-5). IEEE.

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

334

