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Abstract: Because of their ability to efficiently store, access, and process data, Database Management Systems (DBMSs)
and Rule-based Systems (RBSs) are used in many information systems as information processing units. A ba-
sic function of a RBS and a function of many DBMSs is to match conditions on the available data. To improve
performance intermediate results are stored in Discrimination Networks (DNs). The resulting memory con-
sumption and runtime cost depend on the structure of the DN. A lot of research has been done in the area of
optimising DNs. In this paper, we focus on re-using network parts considering multiple rule conditions and
exploiting the characteristics of equivalences. We present an approach incorporating the potential of both con-
cepts and balance their application in a randomised fashion. To evaluate the algorithms developed, they were
implemented and yielded promising results. Shortcomings of this approach are discussed and their removal
constitutes our current work.

1 INTRODUCTION

Because of their ability to efficiently store, access,
and process data, Database Management Systems
(DBMSs) and Rule-based Systems (RBSs) are used
in many information systems as information process-
ing units (Brownston et al., 1985; Forgy, 1981). A ba-
sic function of a RBS and a function of many DBMSs
is to match conditions on the available data. Check-
ing all data repeatedly every time some data changes
performs badly. It is possible to improve performance
by saving intermediate results in memory introduc-
ing the method of dynamic programming. A com-
mon example for this approach is the Discrimination
Network (DN). Different DN optimization techniques
are discussed in (Forgy, 1982), (Miranker, 1987), and
(Hanson and Hasan, 1993). These approaches only
address optimisations limited to single rules. Further
improvement is possible by optimising the full rule
set of a RBS. By exploiting the characteristics of
equivalences, additional performance improvements
are possible. In this paper, we will introduce an ap-
proach extending (Ohler and Terwelp, 2015) incorpo-
rating the potential of both concepts and balance their
application in a randomised fashion.

This paper is organized as follows: In Section 2,
we introduce DNs and in Section 3, we explain the
concept of re-using network parts for different rules.

Section 4 describes the potential of binding variables
in rule conditions. In Section 5, we discuss the aris-
ing problems in the field of node sharing. Existing
work in the area of DN and query optimisation is pre-
sented in Section 6. The identified problems are then
addressed in Section 7 by introducing the block no-
tation and the construction algorithm using it. This
algorithm is evaluated in Section 8. Section 9 com-
prises the conclusion and gives an outlook on future
work.

2 DISCRIMINATION NETWORKS

Rules in RBSs and DBMSs both comprise conditions
and actions. The actions of a rule must only be exe-
cuted, if the data in the system matches the condition
of the rule. DNs are an efficient method of identi-
fying rules to be executed employing dynamic pro-
gramming trading memory consumption for runtime
improvements. Rule conditions are split into their
atomic (w. r. t. conjunction) sub-conditions. In the fol-
lowing, such sub-conditions are called filters.
DNs apply these filters successively joining only the
required data. Intermediate results are saved to be re-
used in case of data changes. Each filter is represented
by a node in the DN. Additionally, every node has a
memory, at least one input, and one output. The mem-
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ory of a node contains the data received via its inputs
matching its filter. The output is used by successor
nodes to access the memory and receive notifications
about memory changes. Data changes are propagated
through the network along the edges. The atomic data
unit travelling through a DN is called fact. Changed
data reaching a node is joined with the data saved in
nodes connected to all other inputs of the node. So
only the memories of affected nodes have to be ad-
justed. Each rule condition is represented by a ter-
minal node collecting all data matching the complete
rule condition. An example DN is shown in Figure 1.

Data Input Nodes. serve as entry points for specific
types of data into the DN. They are represented as
diamond shaped nodes.

Filter Nodes. join the data from all their inputs and
check if the results match their filters. They are
represented as inverted triangle shaped nodes.

Terminal Nodes. collect all data matching the con-
ditions of the corresponding rules. They are rep-
resented as triangle shaped nodes. The action part
of a rule should be executed for each data set in
its terminal node.

3 NODE SHARING

The construction of a DN that exploits the structure
of the rules and the facts to be expected in the sys-
tem is critical for the resulting runtime and memory
consumption of the RBS. To avoid unnecessary re-
evaluations of partial results, an optimal network con-
struction algorithm has to identify common subsets of
rule conditions. In the corresponding DN, these com-
mon subsets may be able to use the output of the same
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Figure 1: DN example.

network nodes. This is called node sharing and was
already described, e. g., in (Brant et al., 1991).

Despite the fact, that there is a lot of potential
to save runtime and memory costs, current DN con-
struction algorithms mostly work rule by rule (cf. Sec-
tion 6). This way it will not always be possible to ex-
ploit node sharing to its full extent, e. g., if the nodes
were constructed in a way, that the network is (lo-
cally) optimal for the single rule it was constructed
for, but prevents node-sharing w. r. t. further rules and
might therefore thwart finding the (globally) optimal
DN for all rules in case sharing the nodes would have
reduced costs (cf. example 3.1).
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Figure 2: Simple node sharing example network.

Example 3.1. Assume there are two filters: filter f1
uses facts of type a and b, filter f2 uses facts of type b
and c. Furthermore there are two rules: rule r1 using
f1 and rule r2 using f1 and f2. Then filter f1 is used
in both rules and we can construct a DN where both
rules use the same node to apply f1 to the input (see
Figure 2).
If we were to construct rule r2 first and would have
decided to construct the node f2 as an input for f1,
sharing f1 with r1 afterwards would have been im-
possible, since the output of the node for f1 is also
already filtered by f2.

It is therefore advisable to construct the DN taking
into account the set of rules as a whole.

4 EQUIVALENCE CLASSES

The common rule description languages resemble
the Domain Relational Calculus (DRC) such that
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variable symbols that appear multiple times (e. g.,
within different relations or comparable constructs)
implicitly cause that the condition is only true
if the values of all symbol occurrences are the
same. Considering the following condition in DRC,
{a,b,c | X(a,b)∧ Y (a,c)∧ a > 20} one may choose
whether the test a > 20 is applied to the data of X or
Y (or both). The occurrences of a variable symbol in
locations, where the variables can be bound to values,
are collected in what we will from now on call equiv-
alence classes. The resulting freedom in choosing an
element of the equivalence class for filters can be con-
sidered within DN construction algorithms. Addition-
ally, a minimal set of tests to ensure the equality of all
elements of an equivalence class can be chosen freely.

5 CHALLENGES

Since node sharing is beneficial in most situations,
DN construction algorithms should be presented the
necessary data to maximise the potential savings in
runtime cost and memory consumption. This section
will present the challenges associated with generating
these information.

Sadly, identifying common subsets of rule condi-
tions isn’t sufficient to make use of node sharing in
network construction. This can be seen by extending
the previous example.
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Figure 3: f1 shared, twofold materialisation of f2.

Example 5.1. Assume there is an additional third rule
r3 using only the filter f2. Now f1 is part of r1 and r2
while f2 is part of r2 and r3. Despite the fact that
there are two non-trivial rule condition subsets, we
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Figure 4: f2 shared, twofold materialisation of f1.

can’t share both filters between the three rules in an
intuitive way. The rule r2 requires a network that ap-
plies the filters f1 and f2 successively. Yet, the rule
r1 (r3) needs the output of a node applying nothing
but f1 ( f2), meaning the corresponding nodes receive
unfiltered input. Thus, we need two nodes for the two
filters side by side at be beginning of the network and
some additional node to satisfy the chained applica-
tion of the two filters. There are three result networks
still applying node sharing to some extent: We can
either share f1 and duplicate f2 (Figure 3), share f2
and duplicate f1 (Figure 4), or re-use both nodes for
r2 by introducing an additional node that selects only
those pairs of facts that contain identical b-typed facts
in both inputs (Figure 5).
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Figure 5: Sharing conflict solved using a special join.
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Formalising the phenomenon just observed, we say
that two filters are in conflict if they use the same
facts. Since in (Ohler and Terwelp, 2015) it has been
shown that the runtime costs of the network depicted
in Figure 5 are always higher than those of the other
two networks, we will not consider such networks
here. The decision which of the two remaining net-
works performs better depends on the data to be ex-
pected.

Furthermore, there may be situations where node
sharing is not beneficial. For example, two rules shar-
ing a filter that all facts pass should not share that filter
if they have other (more selective) filters that could be
applied to the data first. Sharing the filter would re-
quire to apply that filter first resulting in a high main-
tenance cost for the corresponding node. Applying
the filter last could lead to very low maintenance costs
as very few facts reach the node such that even the
twofold costs are lower than the costs in the sharing
situation. Detecting these situations requires informa-
tion about, e. g., filter selectivities, but can continue to
improve the quality of the resulting network.

Finally, integrating the degree of freedom intro-
duced by the equivalence classes as mentioned in Sec-
tion 4 into the network construction is a further aspect
considered here.

6 STATE OF THE ART

There are several DN construction algorithms creat-
ing different types of networks such as Rete (Forgy,
1982), TREAT (Miranker, 1987), and Gator (Hanson
et al., 2002). Yet, they all consider the rules one after
another so that the degree of sharing network parts is
governed mainly by the order in which the rules are
considered and the order of the filters within the rule
conditions. Furthermore, the optimisation potential
introduced by the equivalence classes is neglected and
all variables are assumed to be bound or are bound in
a preliminary consideration.

An approach for query optimisation for in-
memory DRC database systems is presented in
(Whang and Krishnamurthy, 1990). They exploit the
concept of equivalence classes, but only consider left-
deep join plans and look at each query on its own
without evaluating node-sharing.

In (Aouiche et al., 2006), the authors apply a data-
mining technique to decide which views to materi-
alise during the processing of a set of queries in a rela-
tional database system. Here, several queries are con-
sidered together and grouped by a similarity heuristic.
Columns relevant for materialisation are identified by
a cost function and re-used as much as possible to pre-

vent repeated evaluations. In doing so, the filters to be
applied are reduced to the ones relevant to all queries
involved. Thereby, they do not identify the problem
of conflicts as such and decisions are made based on
columns to be materialised instead of filters as done
here.

7 APPROACH

Previously, we referred to different types of facts,
which we will now call templates. A template resem-
bles a class and its fields are called slots. All facts are
instances of templates. More specifically, we will use
the term fact binding to be able to distinguish between
several facts of the same template. Every fact in the
resulting fact tuple of a rule condition corresponds to
a fact binding and vice versa. Equivalence classes
as introduced in Section 4 contain fact bindings, slot
bindings (bindings to a slot of a fact binding), con-
stants, and functional expressions (i. e. ?x+?y). A fil-
ter comprises a predicate (the test to be executed) and
the parameters to be used. We distinguish between
the following two types of filters:
Explicit Filter. An explicit filter is a filter using

equivalence classes as arguments.

Implicit Filter. An implicit filter tests the equality of
exactly two elements of the corresponding equiv-
alence class.
For two filters f and g we call c(ϑ( f ),ϑ′(g)) the

conflict index set w. r. t. the equivalence class restric-
tions ϑ and ϑ′ (see below). It contains pairs of indices
with the first index corresponding to a parameter posi-
tion of the filter f , the second index meaning the same
for g. Only those index pairs are contained, for which
there is a non-empty intersection of the fact bindings
in the restricted equivalence classes corresponding to
the parameter determined by the indices.

Two filters f and g are in conflict w. r. t. ϑ and
ϑ′ iff c(ϑ( f ),ϑ′(g)) 6= /0. Given the filters a,b, f ,g,
we write (a, f ) ∼ϑ

c (b,g) instead of c(ϑ(a),ϑ( f )) =
c(ϑ(b),ϑ(g)). A block consists of the following four
components:
Equivalence Class Restriction. An equivalence

class restriction (denoted ϑ) of a block is a func-
tion mapping every equivalence class occurring in
the block onto the maximal subset still guaranteed
by the implicit tests of the block.

Filter Partition. A filter partition is a partition of the
explicit filters of a block with the following prop-
erty: Every set of the partition contains filters of
only one predicate and for every pair of sets in the
partition it holds that every pair of elements of the
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same rule has the same conflict index set as every
other pair of elements of a different rule.

Fact Binding Partition. A fact binding partition is a
partition of the fact bindings of the block such that
every set of the partition contains bindings to only
one template.

Element Partition. An element partition consists of
sets of “compatible” elements comprising the ele-
ments of the restricted equivalence classes of the
block. Two elements are “compatible”, if they do
not prevent sharing, e. g., two fact bindings be-
longing to the same set in the fact binding parti-
tion, two equal constants and so on. An element
partition is always defined w. r. t. a fact binding
partition.

Additionally, every set in all of the partitions defined
contains exactly one element per rule of the block.

We now give an inductive definition of the block prop-
erty:

1. A single explicit filter i together with an equiva-
lence class restriction that maps the equivalence
classes in i onto singleton subsets form a block.
Every element of the corresponding partitions
contains only one element making the partitions
unique.

2. Let a,b be two different elements in an equiva-
lence class K. Let Z be the set of equivalence
classes appearing within a and b together with K.
Let ϑ be an equivalence class restriction mapping
K to {a,b} and all other equivalence classes in Z
to singleton subsets.
The two filters (= a b) and (= b a) belonging to K
together with the equivalence class restriction ϑ, a
fact binding partition f of the fact bindings within
the restricted equivalence classes in Z, a compati-
ble element partition and the empty filter partition
form a block. The corresponding filter partition
contains singleton sets for the two filters.

3. Let B be a block and N be a set of explicit fil-
ters belonging to the same filter and to the rules
in B. Let B and N be disjoint and N contain ex-
actly one filter per rule in B. Let ϑ be an equiv-
alence class restriction extending the equivalence
class restriction of B by mapping all equivalence
classes not part of the original domain to single-
ton subsets. Let there be at least one filter in N
and one (explicit or implicit) filter in B that are in
conflict w. r. t. to ϑ. Every pair of elements of the
same rule consisting of one element in B and one
in N has the same conflict index set as every other
such pair of elements of a different rule.

B∪N together with the equivalence class restric-
tion ϑ (restricted to the relevant domain), an ex-
tension of the fact binding partition for the addi-
tional elements (w. r. t. ϑ) and a compatible exten-
sion of the element partition form a block. Addi-
tionally, N is to be added to the filter partition.

4. Let B be a block and P be one of the sets in the
element partition of B. Let V be a set consisting
of exactly one hidden (by the equivalence class
restriction of the block) element per equivalence
class belonging to an element in P. Let ϑ be an
equivalence class restriction extending the equiv-
alence class restriction of B by mapping all equiv-
alence classes not part of the original domain to
singleton subsets and adding the elements in V to
the corresponding restricted subsets. Let T be the
set of all implicit filters testing the equality be-
tween an element in V and the elements of the cor-
responding equivalence class restricted according
to the block. Let the filter partition of B be a filter
partition w. r. t. ϑ.
B∪ T together with ϑ (restricted to the relevant
domain), an extension of the fact binding parti-
tion for the elements in V , a compatible extension
of the element partition and the original filter par-
tition form a block.

5. Let B be a block and R be a set of explicit filters
belonging to the same rule. Let B and R be dis-
joint. Let A be a subset of the explicit filters in B
belonging to the same rule. Let ϑ be a equivalence
class restriction extending the equivalence class
restriction of B by mapping all equivalence classes
in R to subsets. Let there be a bijection between
the fact bindings of the equivalence classes of A
and the fact bindings of the equivalence classes in
R w. r. t. ϑ. Analogous, let there also be bijections
for the elements and explicit filters. Let f be a fact
binding partition of B∪R extending the fact bind-
ing partition of B by adding for every fact binding
in the equivalence classes of A the corresponding
(according to the bijection) fact binding to the par-
tition that the former is contained in. Let e be an
element partition of B∪R extending the element
partition of B in the same way and I be a filter par-
tition of B∪R extending the filter partition of B in
the same way.
B∪R together with the equivalence class restric-
tion ϑ, the fact binding partition f ′, the element
partition e′ and the filter partition I′ form a block.

6. Only sets generated according to the rules given
form blocks and accordingly partitions and equiv-
alence class restrictions.

We elevate the conflict property to describe conflicts
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between blocks: Two blocks X and Y are in conflict
iff one of the following conditions is met:

• The blocks are disjoint and a filter in X is in con-
flict with a filter in Y .

• Let P be the filter partition of X and Q be the filter
partition of Y . Let w. l. o. g. P contain at least as
many sets as Q. There is a set in Q for which
there does not exist a set in P that is a subset of
the former set.
Otherwise let M be the set of equivalence classes
contained in both blocks. There is an equivalence
class in M whose restricted version according in
X is a proper subset of the restricted version in Y .

A block is maximal if it can not be extended in any
way according to the rules given above. Furthermore,
a block is contained in another block if every filter of
the first block is contained within the second one. A
set of blocks is called complete (w. r. t. a set of filters)
if every filter is contained in at least one block and no
block is contained in another block.

Existential parts of a condition have to be pro-
cessed in a special way. If an equivalence class con-
tains bindings originating from two different scopes,
it is split into two classes containing the correspond-
ing elements. Additionally, equivalence classes in
child scopes know of their corresponding equivalence
class in parent scopes. New scopes are created by ex-
istentials, which can also be nested. Filters appearing
within existential parts can then be divided into three
categories:

1. filters using only equivalence classes belonging to
the current scope

2. filters using only equivalence classes belonging to
parent scopes

3. filters using equivalence classes belonging to the
current and parent scopes

The filters of the first two categories can be processed
separately and have to be applied to the data prior to
those of the third category. When applying the filters
of the third category, the corresponding join merges
the regular data with the existential data and imple-
ments the existential semantics. In a pre-processing
step, all filters of the third category are merged into
one filter, which we call the final filter of an existential
condition part. It also contains the tests for equality
of equivalence classes contained in the surrounding
as well as in the existential scope.

As a consequence, existential condition parts can
be integrated into the block notation. All filters of
the existential condition part despite the final filter are
considered as a separate rule. The final filter remains
part of the original rule, but is treated in a different

manner. Two such final filters a,b belong to the same
filter if both apply the same predicate to the same ar-
guments (specified by templates and slots) and the set
of filters A (B) of the existential condition part of a
(b) satisfies the following condition: There is a bijec-
tion ϕ between the filters in A∪{a} and the filters in
B∪{b} that maps a onto b, every filter belongs to the
same filter as its image and every pair of filters has
the same conflict index set as the corresponding pair
of images w. r. t. a non-restricting ϑ.

7.1 Construction of Maximal Blocks

Due to space limitations, a detailed description of the
construction of maximal blocks can not be provided
here. Thus, this section only outlines the necessary
steps.

To get heterogeneous sets of implicit filter, equiv-
alence classes are represented as follows by implicit
tests:

• For every pair of elements a 6= b of fact bindings,
slot bindings and constants in an equivalence class
two implicit filter are created: (= a b) and (= b
a).

• For every pair of elements a 6= b of functional ex-
pressions in an equivalence class e, two filter are
created: (= a b) and (= b a). Additionally, if e
also contains at least one fact binding, slot binding
or constant, for every functional expression a two
filter are created: (= a e) and (= e a). These
filter are similar to explicit filter since their argu-
ments are equivalence classes.

By looking at all rule variations, try to find blocks
consisting of one filter per rule belonging to the same
filter with matching equivalence class restrictions.
Every block found this way is expanded horizontally
in a recursive manner. A block can be expanded hori-
zontally by adding further elements of the rules of the
block, i. e., explicit filters or elements of a contained
equivalence class and the corresponding implicit fil-
ters. To mitigate the fact that the order of block expan-
sions leading to a specific result block is not unique a
stack of filters to be excluded is integrated into the re-
cursion. Additional constraints are exploited to limit
the search scope for block expansions, whose expla-
nation would require a more detailed explanation of
the actual algorithms.

The blocks found this way are maximal in their
horizontal dimension or contained in a maximal block
(the latter caused by the fixed set of rules in the block
or the exclusion stack). All blocks contained within
other blocks can be discarded. Since every variation
of rules is considered, all vertically maximal blocks
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(i. e., no further rules can be added) are contained in
the result set. Additionally, every filter is contained
within some block since the expansion was initiated
starting at it at some time and only blocks contained in
other blocks are discarded. Thus, the resulting block
set is a complete block set.

7.2 Conflict Resolution

The block set acquired this way is not necessarily
conflict-free. There are several ways to solve conflicts
between blocks. The one used here solves a conflict
between two blocks by replacing one of them with
smaller blocks contained within it, but not in con-
flict with the other block. Those blocks either have
stronger equivalence class restrictions than the origi-
nal block or contain fewer explicit filters and only a
subset of the original set of equivalence classes. Re-
ducing the set of rules contained is another option, of
course.

Every new block found this way is either con-
tained within another block or can not be extended
without causing further conflicts. The former are to
be discarded, the latter to be added to the block set
currently considered. To prevent blocks that have al-
ready been replaced to reappear in the block set, those
have to be remembered. Any block on that list or con-
tained in such a block has to be prevented from being
reinserted into the block set.

Thus, all conflicts can be resolved by replacing
one of the two blocks in conflict. Yet, a conflict res-
olution may influence further blocks in the block set.
Other conflicts may be resolved as a side effect, but
the newly added blocks might also introduce addi-
tional conflicts with themselves or the blocks in the
block set. Hence, the order, in which conflicts are
solved, is relevant to the network constructed from
the conflict-free block set.

For this reason, we now try to quantify the pos-
itive and negative effects a conflict resolution. All
filters in the replaced block that are in conflict with
the persisting block (but not contained in it) have to
be presented separately in the resulting network. A
further node is necessary, if the blocks don’t overlap.
The number of additional nodes represents the nega-
tive effect of the conflict resolution. Conversely, the
negative effects within other conflict resolutions pre-
vented by resolving a conflict constitute the positive
effect of a conflict resolution. The difference between
positive and negative effects is called the benignity of
a conflict resolution.

As long as the block set contains conflicts, apply
the best conflict resolution according to their benig-
nity.

7.3 Network Construction

To construct the network for a complete, conflict-free
block set, the blocks have to be ordered. Given a
block B let

n(B) :=
number of filters in B
number of rules in B

denote its characteristic number. Blocks are ordered
according to their characteristic number in ascending
order. Yet, the construction of final filters in existen-
tial condition parts has to be delayed until the corre-
sponding filters of the existential condition part are
constructed. Thus, blocks containing them are moved
behind the final filter preserving the order within the
blocks moved this way.

To construct a block contained in the ordered set
of blocks, only the filters of a single rule of the
block have to be considered. Regarding equivalence
classes, only the equality tests for the restricted ver-
sions are relevant. Additionally, all filters already
constructed can be ignored. As a preparatory mea-
sure, the (restricted variants of) equivalence classes
containing constants can be identified. Occurrences
of those equivalence classes can be fixed to contain
those constants. All filters only using constants can
now be constructed. Identify the groups of fact bind-
ings already joined in the network (using singleton
sets where appropriate). Now repeat the following
steps:

• Construct all filters that can be executed on any
group without further joins. For implicit tests, the
symmetry and transitivity of equality can be ex-
ploited to reduce the amount of tests actually per-
formed.

• If all filters of the block have been constructed,
break the loop.

• Consider a graph having the fact binding groups
as nodes. The edges are marked with the com-
bined join selectivity of the tests that can be ap-
plied using those two groups only. If there are
no edges, increase the number of groups allowed
(leading to hyper-edges) until edges emerge.
Identify the edge of minimal weight and merge
the adjacent groups.

7.4 Randomized Optimisation

This work makes use of the two well-known randomi-
sation algorithms Iterative Improvement (Nahar et al.,
1986) and Simulated Annealing as presented in (Ioan-
nidis and Kang, 1990). As common to all random-
ization heuristics they need a definition of a state, the
possible moves and a cost function.
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Applying randomisation in network construction
can make sense at different points. The block sets
constructed so far maximise sharing of network parts.
This approach does not necessarily result in minimal
runtime and memory costs. Using an application-
dependent cost function for states allows an integra-
tion of the corresponding data into the optimisation.

While constructing a block, randomised decisions
can be made in choosing which implicit filters to
use and which representatives to use for equivalence
classes occurring in explicit filters. Furthermore, fil-
ters may be duplicated in a randomised fashion to see
whether this would be beneficial.

The order in which filters are applied (and the re-
sulting join order) as well as which filters are grouped
together into a node are other possible targets for ran-
domisation. Finally, for a node with more than two
inputs different join plans can be determined based
on which input new data entered the node over.

This paper only covers a randomisation of the
block set. A state comprises of a conflict-free block
set, where no block in contained in another block. The
following transformations of a state are possible:

• Extend the filter partition of a block by a set of
explicit filters.

• Reduce a block by a set of explicit filters in the
filter partition.

• Extend the equivalence class restriction of a block
by adding the corresponding implicit filters to the
block.

• Diminish the equivalence class restriction of a
block. In doing so, remove all implicit filter in-
stances no longer needed.

• Extend a block by a rule.

• Reduce a block by a rule.

• Create a new block.

After every such transformation remove all blocks
contained in other blocks and solve newly arisen con-
flicts. Every transformation together with these sub-
sequent restoring actions represents a move. Using
the rating function for discrimination networks given
in (Ohler et al., 2013), costs for states are determined
by constructing the corresponding discrimination net-
work and applying the rating function.

A state is intentionally not defined as a complete
block set in favour of the randomisation. All filters
not contained within a block are considered to be in
singleton blocks.

8 EVALUATION

To evaluate the presented approach, it was imple-
mented for the rule-based system Jamocha1. A thor-
ough evaluation of the presented concepts has been
performed and the essential parts are presented is this
section. The benefit is shown by means of the rules of
the benchmark Waltz (Winston, 1984).

8.1 Description of the Measurements

The parameters for the randomised algorithms were
chosen in dependence on (Ioannidis and Wong, 1987;
Swami and Gupta, 1988; Hanson et al., 2002) and
are given in Table 1. The rating function described
in (Ohler et al., 2013) was used as the cost function
considering runtime costs only.

This rating function needs statistical informa-
tion concerning the facts to be expected. Currently,
Jamocha lacks a statistics component that could pro-
vide this data. Since the number of values needed is
too high to be determined by hand, select values were
determined explicitly and all other values were set to
defaults, see Tables 2 and 3. It was assumed, that
1000 facts fit on a memory page. As a further simpli-
fication, conditional probabilities were only incorpo-
rated in some trivial cases.

An additional command (defrules) was added
to the CLIPS2 language, which is used as the input
language for Jamocha, allowing for the definition of
several rules within one command. The construction
methods described in this paper were implemented
as the ECBlocks compiler. A simpler version of this
compiler called PathBlocks that does not integrate
equivalence classes and a trivial compiler considering
each rule on its own were additionally implemented
for the following comparison. Since the runtime of
the algorithms presented grows exponentially in the
number of rules, the rule base of Waltz was split into
smaller groups of rules to be considered at the same
time.

The rule set was constructed with each of the three
algorithms and additionally using the ECBlocks com-
piler without the randomisation part. For every result-
ing network the costs according to the rating function
were determined. As the randomisation was expected
to disperse the results, 12 measurements were con-
ducted per algorithm.

1source code available via: git clone -b
pre-partitioning-change git://git.code.sf.net/p/jamocha/
git

2CLIPS Project Page: http://clipsrules.sourceforge.net/
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Table 1: Randomisation parameters.

Iterative Improvement

initial state complete, conflict-free block set
stopping condition for outer loop iteration count equals number of fact bindings in the rule set
definition of local minimum 20 moves without improvement

Simulated Annealing

initial temperature 5% of the costs of the best II state
initial state best II state
stopping condition for inner loop iteration count equals number of fact bindings in the rule set
stopping condition for outer loop best state unchanged for 5 iterations or temperature less than the thou-

sandth part of the initial temperature
temperature reduction x 7→ 0.95 · x

Table 2: Parameters of the rating function: template-data.

template insert/delete frequency number of facts

stage 10 1
line 20 1 000
edge 100 2 000
junction 30 800
all other templates 10 1 000

Table 3: Parameters of the rating function: selectivities.

filter selectivity

(= edge::p1 edge::p1) 0.05
(= junction::base_point edge::p1) 0.05
(= edge::p1 junction::base_point) 0.05
(not (= edge::p1 edge::p1)) 0.95
(not (= edge::p2 edge::p2)) 0.95
(= edge::label nil) 0.85
(= edge::joined false) 0.75
(= edge::joined edge::joined) 0.90
(= junction::type ∗) 0.30
cross product 1.00
all other filters 0.60

8.2 Description of the Results

The costs of the resulting networks are plotted in Fig-
ure 6 showing the three quartiles. The median deter-
mines the height of the bars, the other two quartiles
are shown as error bars.

For the given rule set, the trivial construction al-
gorithm produced networks with the highest costs and
a low spread. Networks constructed by the Path-
Blocks compiler were rated better in both aspects
than the trivial ones. Note that the runtime costs de-
crease about twice as much as the memory consump-
tion. Additionally, the spread decreases to a negligi-
ble value. The small improvement of the ECBlocks

networks without randomisation is hardly noticeable
and the spread is still low. However, activating the
randomisation part leads to a significant improve-
ment. The scatter of the results are comparatively
high.

8.3 Discussion

Not all steps in the transfer of a block set to a net-
work are completely deterministic, since some deci-
sions are to be made between options that seem to
be equally beneficial. Thus, even non-randomised re-
sults are slightly dispersed. The simplifications re-
garding the statistical information influence the re-
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Figure 6: Rating of the networks for Waltz.

sults of the rating function. With respect to the con-
struction without randomisation networks may have
been rated incorrectly. Additionally, through incor-
rect ratings some decisions made during the randomi-
sation may have in fact been adverse.

The way the logic behind the rules in Waltz works
is similar to a state machine. Thus, the rule set can
be partitioned w. r. t. states they belong to. In CLIPS,
this is implemented via a stage-template added to
all rules conditions to check whether the system cur-
rently is in the corresponding state. Thus, it suggests
itself to only keep those parts of the discrimination
network up-to-date that belong to active state. This
could be realised to a large extent by having the stage-
template in the first join (i. e. a cross product) of ev-
ery rule resulting in an empty successor network for
all inactive states. Since every state is active only
once, this would reduce the maintenance costs con-
siderably. Yet, Jamocha uses the connectivity heuris-
tic which delays cross products as much as possible.
Integrating a mechanism allowing for a maintenance
of partial networks only is considered as future work.

9 CONCLUSION & OUTLOOK

We presented a concept for a randomised optimisation
of DNs for RBSs considering node-sharing and inte-
grating the degree of freedom emerging from being
able to choose between elements that are supposed to
be equal. This block concept is able to formalise the
problems of node-sharing, i. e. which network parts

would compete against each other. Possible solutions
of these conflicts were presented and cast into algo-
rithms. Equivalence classes were integrated into the
block concept to allow for a free choice of which el-
ement to use for which filter and of how to check the
equality among the elements efficiently, e. g., using a
minimal spanning tree. Via the randomisation, a bal-
ance between node-sharing and degree of freedom is
to be established and situations are to be identified, in
which reduced sharing increases the performance.

Our evaluations show promising results even
though we could only consider small groups of rules
at a time for runtime reasons.

The most runtime-intensive task is the construc-
tion of a maximal block set. This could be mitigated
by either using a heuristic approach to find a block
set sufficiently close to the maximal one or apply-
ing the randomisation starting with an empty block
set. For the latter to yield acceptable results, the
method of extending blocks within the randomisa-
tion has to be improved and we are currently working
on this problem. Alternatively, there are approaches
in the area of parallel programming to speed up the
task, e. g., Transactional Memory (Herlihy and Moss,
1993; Adl-Tabatabai et al., 2006). They can exploit
the fact that most blocks found are already contained
in another block and can be discarded. Only in case
two newly found blocks have to be inserted into the
result set, a synchronisation has to be performed.

Filters occurring multiple times within a rule were
not exhaustively considered for sharing in this paper.
This calls for decisions to be made especially in those
cases where it occurs more than once per rule since
there are mutual dependencies. Being able to consider
these requires a change in the block definition since
not equally many filters are contained per rule. How
to solve conflicts in this scenario remains open, too.

Restricting an equivalence class in different ways
for different occurrences of the corresponding vari-
able symbol within one block would allow for in-
creased sharing opportunities. Enabling this without a
further blow-up of the construction runtime is subject
to future extensions of the work presented here.
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