
Performance Gains from Web Performance Optimization
Case Including the Optimization of Webpage Resources in a Comprehensive Way

Juha Vihervaara1, Pekka Loula1 and Tommi Tuominen2
1Pori Campus, Tampere University of Technology, Pohjoisranta 11, 28100 Pori, Finland

2Foredata Oy, Kässäläntie 30, 38200 Sastamala, Finland

Keywords: Website, Performance, Optimization.

Abstract: Web performance optimization tries to minimize the time in which web pages are downloaded and
displayed on the web browser. It also means that the sizes of website resources are usually minimized. By
optimizing their websites, organizations can verify the quality of response times on their websites. This
increases visitor loyalty and user satisfaction. A fast website is also important for search engine
optimization. Minimized resources also cut the energy consumption of the Internet. In spite of the
importance of optimization, there has not been so much research work to find out how much the
comprehensive optimization of a website can reduce load times and the sizes of web resources. This study
presents the results related to an optimization work where all the resources of the website were optimized.
The results obtained were very significant. The download size of the front page was reduced by a total of
about 80 percent and the downloading time about 60 percent. The server can now handle more than three
times as much concurrent users as earlier.

1 INTRODUCTION

Web performance optimization (WPO), or website
optimization, tries to minimize the time in which
web pages are downloaded and displayed on the
user's web browser. These are some reasons which
make it extremely important that organizations
verify the quality of response times on their
websites. Galletta (2004) and Fabian (2010) present
that the fast download speed of a website increases
visitor loyalty and user satisfaction. These studies
have also shown that delays have a negative impact
to a website. For example, milliseconds of increase
in load time can significantly reduce page views. A
fast website is also important for search engine
optimization. Google has included site speed as part
of its search ranking algorithm. It means that the fast
site gets a higher ranking in its search.

WPO also means that the sizes of website
resources are usually minimized. This leads to less
data travelling across the Internet. This cuts the
energy consumption of the Internet. So, WPO
promotes the Green Internet (Gupta 2003, Bianzino
2011). Minimized resources are also useful for users
with slow internet connections and those on mobile
devices.

In spite of the importance of WPO, there has not
been so much research work to find out how much
the comprehensive optimization of a website can
reduce load times and the sizes of web resources.
There have been few attempts to understand how
different aspects of website complexity impact the
time to load web pages (Butkiewicz 2011). Instead,
the published optimization results often concern
only the specific web resource (Abdullah 2010,
Ferragina 2010, Qian 2012, Spiesser 2004). This
study presents the results related to an optimization
work where all the resources of the website will be
optimized.

This project represents some kind of an extreme
case. In the past, not enough attention has been paid
to the optimization of this website. Originally, even
inefficient solutions were introduced partly because
of the novice software developers (Begel 2008).
Now four years later, the same developers will carry
out this optimization work. Because these
developers are now more experienced, and because
WPO methods and tools have evolved since the
original work, it is expected that optimization results
will be significant.

188
Vihervaara, J., Loula, P. and Tuominen, T.
Performance Gains from Web Performance Optimization - Case Including the Optimization of Webpage Resources in a Comprehensive Way.
In Proceedings of the 12th International Conference on Web Information Systems and Technologies (WEBIST 2016) - Volume 1, pages 188-193
ISBN: 978-989-758-186-1
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

2 BACKROUND

Over the years, the web has evolved from simple
text content from one server to a complex ecosystem
with different types of content from multiple servers
under different administrative domains (Butkiewicz
2011). Rendering a single web page involves
fetching several objects with varying file types. A
typical web page can include HTML, CSS, and
image files. JavaScript files can be used to provide
client-side functionality, such as functions, plug-ins,
applets, and so forth. These files can be called the
resources of a web page.

These resources can be optimized in many ways
(Hongkiat 2015, Rajeev 2015). This optimization
generally involves editing the resources to optimize
scripts, HTML or CSS codes for faster loading. The
optimization also tries to reduce the number of
resources for reducing the number of required HTTP
request and response messages. Also client side
caching can be used for performance optimization
(Ali 2011).

The performance of the website can be evaluated
in many ways (Soininen 2012). Performance can be
defined as the time within a certain operation is
executed. A common meter regarding to the
performance of a web page is the time it takes to
load a page. Page load speeds have been typically
measured as the time it takes for two events to occur
on the page. These events are DOMContentLoaded
and Load/Onload.

The DOMContentLoaded event fires after the
HTML code has been fully retrieved from the server
and the complete DOM tree has been created. This
event does not necessarily require that any images or
style sheets have been loaded. This means that the
render tree can now be built. Instead, the Load event
fires after the entire page has been fully downloaded,
processed, and rendered including all images,
stylesheets, and scripts. After the Load event, some
resources can still be loaded in an asynchronous
way. So, the unofficial term of Totally Loaded can
be used for a time unit, when all the resources are
totally loaded. Related to the load times, Butkiewicz
(2011) says that rather than the total number of bytes
fetched to render a website, the number of objects
fetched is the most dominant indicator of client-
perceived load times.

Performance can also be defined as the capability
of executing a number of operations within a unit of
time. With websites, this means that how many
concurrent users the website can serve. In general,
the performance of the system has to be good
enough during the peak time to satisfy user needs.

To figure out the moment of the top usage, the log
files of the web server have to be analysed.

3 OPTIMIZATION WORK

The optimized website is ForeAmmatti. It is a web
service which offers information in respect of the
labour market of Finland. Data content of the
ForeAmmatti information system had been
significantly increased during the last few years. The
dynamic production of the content in the HTML
pages had always been done with the fastest and
easiest way because of the very fast development
work. The new features and contents had been added
with speed. Therefore, the performance of the
solutions had not received major consideration.
There was a clear need for optimization because
most of HTML pages and their resources were
enormously big considering both the file sizes and
the amount of characters.

After the optimization, some JavaScript files are
still loaded in a synchronous way. Otherwise, the
optimization work was done almost in a perfect way.
So, the optimized result achieved was better than
only using the optimization tools offered by browser
developers. The next subsections presents the most
essential points related to this optimization work.

3.1 Occupation Selectors

The most beneficial modification was the redesign
of the occupation selectors. The text content of those
is actually static, but the amount of choices is user
dependent and the order is editable by a user. The
original method was not efficient enough. In the
server side, the java code ran a database query for
fetching the appropriate occupation list. After that,
these list items were put inside the HTML table
items. These table items also included JavaScript
code for fetching the occupation related information
from the database after the user click. A few
hundred occupations were typically included to the
front page. So, the solution was very simple, but
unfortunately inefficient.

In the optimization work, it was given up using
HTML tables with the occupation selectors. Using
the Ajax concept (Deitel 2012) there is no longer
any need to load the whole occupation list to the
client side. Ajax is a client-side script that
communicates to and from a server/database without
the need for a complete page refresh. Based on the
needs of a user, it is now possible to update only parts
of a web page without the need of reloading the entire

Performance Gains from Web Performance Optimization - Case Including the Optimization of Webpage Resources in a Comprehensive Way

189

page. Coding of the selectors in a new way reduced
the sizes of the front page resources about 30 percent.

3.2 Images

Images were optimized first by using TinyPNG
compression software (TinyPNG 2015). TinyPNG
uses smart lossy compression techniques to reduce
the file size of PNG and JPEG files. By selectively
decreasing the number of colours in the image,
fewer bytes are required to store the data. The effect
is nearly invisible but it makes a large difference in
file sizes. In this study, we discovered that the sizes
of large PNG-files decreased even 70 percent. The
sizes of small files decreased a few dozen percent.

In the second stage, small images were integrated
into the part of the CSS file. If an image is integrated
into the CSS file, it is retrieved by the same HTTP
message as the CSS file without a need for extra
HTTP headers. In this study, these image based
HTTP request and response messages together
included 825 bytes header information. Also, there
is no longer any need to open a new TCP connection
for image loading. On the other hand, it is needed
some more CSS code when an image is integrated
into CSS file. Also, the size of a CSS integrated
image increases because of the Base64-encoding of
this image. We calculated that if an image is bigger
than about 3000 bytes, it is clever to keep this image
in its own file. For example, the front page of
ForeAmmatti had six images. Five of them were
small enough to be integrated into the part of the
CSS file.

3.3 Crunching of the Text-based Files

An important part of the website build process is the
crunching of text-based resources to remove excess
characters (Spiesser 2004). This ensures that only
the smallest numbers of bytes are transmitted to the
browser for parsing. Crunching tools primarily
reduce white spaces and comments to ensuring that
the resulting code can still be executed without
problems. There are several free tools available for
crunching with varying compression rations. This
optimization project used three of them. Depending
on the formatting of the original, these tools reduced
file sizes 18-40 percent. The JavaScript files were
reduced 38 percent, and the CSS files 18 percent.
The XHTML file was reduced 40 percent.

3.4 GZIP Compression

Before the optimization ForeAmmtti web service

already loaded many files in a GZIP format from the
external servers. As part of the optimization project,
we modified the setup parameters of the own server
so that some file types will be delivered in the GZIP
format. By delivering HTML-, CSS-, and Java
Script files in the GZIP format, we could reduce
these file sizes from 63 to 76 percent. It is clever to
use compression only for text files because binary
files, for example images, have already been
compressed. It is worth to mention that GZIP
compression does not come without drawbacks
because processing power is needed for compression
and decompression on the server and client side.

3.5 Browser’s Cache

The ForeAmmatti web server adds the Expires and
Max-age header fields to HTTP response messages.
The Expires header field gives the date/time after
which the response is considered stale. The Max-age
field indicates that the response is to be considered
stale after its age is greater than the specified
number of seconds. With the help of these header
fields, it is possible to advertise long lifetime for
resources which are seldom updated. So, browsers
can use cached resources immediately without the
need for if-modified requests. To prevent the use of
modified resources, the ForeAmmatti web service
names all modified cacheable resources with the
unique file name. Thera was also a lot of Java Script
codes inside the XHTML-file. To make possible to
cache these Java Script codes, most of them were
moved to their own files.

4 OPTIMIZATION RESULTS

In this section it is presented the most significant
optimization results. The whole website was
optimized but we present here the results related
only to the front page. Load Impact-test loaded all
the pages of ForeAmmatti.

4.1 Front Page

The sizes of the resources and the load time of the
pages were examined by a browser developer tool
(Google 2015). Table 1 presents the resources of the
front page and their sizes before and after the
optimization. The numbers of these resources,
before and after optimization, are presented in the
first column. It can be seen that the resources of the
front page reduced from 947 905 to 190 333 bytes.
Most of this decreasing came from the smaller sizes

WEBIST 2016 - 12th International Conference on Web Information Systems and Technologies

190

of the resource, but there were also some user
services that were moved away from the front page
to the other pages. The number of the front page
resources reduced from 29 to 15. Thera are still six
images on the front page but five of them reside
inside the CSS file. The fonts for CSS are loaded
from Google’s server. The size of these font files
also decreased during the optimization work. So, we
can suppose that Google is also doing optimization
work.

Table 1: Resources of the front page.

Resource (pieces) Bytes
before

Bytes
after

XHTML-file 1 -> 1 420 998 9 047
CSS 2 -> 2 30 162 11 009
Fonts for CSS 2 -> 2 43 400 35 088
JavaScript files 18 -> 9 444 216 134 626
Images 6 -> 1 9 129 563
Total 29 -> 15 947 905 190 333

Table 2 presents different load times of the front
page before and after optimization. In this case, the
browser and web server were located in the same
local area network, but some external resources had
to be downloaded over the Internet. The browser
cache was switched off. The presented averaged
results are based on ten measurements. The standard
deviation of these ten measurements is presented
inside the brackets. As can be seen, the optimization
has downgraded the load times remarkable.

Table 2: Load times of the front page.

 Event Before
ms

After
ms

DOMContentLoaded 745 (75) 294 (11)
Loaded 806 (119) 303 (10)
Totally Loaded 837 (111) 328 (9)

4.2 Load Impact-test

The Load Impact service (Load Impact 2015) helps
determine the capability of handling a certain
amount of users on a website. In this study, we used
the free version of this test tool which makes
possible to test 100 concurrent users. The amount of
concurrent users increased evenly from 1 to 100
during the five-minute test. The test generator was
situated in USA. So, the test used long-distance
connections because the tested website resides in
Finland. This kind of long-distance test is typically
sensitive to Internet traffic, and therefore, two test
cases are never entirely similar.

The ForeAmmatti website was tested before and
after the optimization project. The test results are
presented in Figures 1 and 2. Figure 1 presents the
starting point. Figure 2 presents the situation after
the improvements. In these figures, the numbers of
concurrent users are presented by the blue colour.
The green colour presents delays experienced by the
users. The red colour presents the average load time
of the front page. Before the optimization,
ForeAmmatti was capable of serving only 30
concurrent users without that user delays and page
load times increased remarkable. After the
optimization work, at least 100 concurrent users can

Figure 1: Load Impact-test before the optimization.

Performance Gains from Web Performance Optimization - Case Including the Optimization of Webpage Resources in a Comprehensive Way

191

Figure 2: Load Impact-test after the optimization.

be served without problems.
In the test made before the optimization, 206

megabytes were transferred to the test generator.
The front page was loaded 206 times so that the
minimum loading time was 3.7 seconds. In the test
made after the optimization work, 78 megabytes
were transferred to the test generator. The front page
was loaded 561 times so that the minimum loading
time was 0.7 seconds.

5 CONCLUSIONS

This WPO project shows that WPO can have very
positive and noticeable effects to web services. The
ForeaAmmatti web service is now more efficient
and user friendly than before the optimization
project. It can now serve three times as much users
as before. The load times of resources have been
reduced over 50 percent. Thanks to this WPO
project, the ForeAmmatti web service can now enjoy
the advantages offered by WPO.

However, we have to remember that this project
represents some kind of extreme case. In the past,
not enough attention had been paid to the
optimization of ForeAmmatti. Especially, the
occupation and region selectors were originally
implemented in a very inefficient way. By recoding
these selectors in a clever way, we could reduce the
byte amount of the front page resources about 30
percent. In spite of the fact that the starting point of
this optimization work was extraordinarily bad, we
can present a subjective estimate that WPO can
easily increase the performance of a website about
20-30 percent on condition that there has been only a
little WPO work before. The performance increase
of this magnitude often enhances the overall user

experience of the website. But above all, the energy
consumption of the Internet reduces because of
smaller resource files. We can be environmentally
friendly and energy efficient by doing WPO.

It is good to remember that WPO work is a
continuous process. There will be a need to
reoptimize the ForeAmmatti website when the use of
HTTP/2 becomes common. For example, HTTP/2
can concurrently download several resources by
using the same TCP connection.

REFERENCES

Abdullah M, Fararjeh A, Amany M, Jabal A. 2010.
Recommendations to Improve Performance of an
Enterprise Web-based Application. The Proceeding of
ISWSA 2010 conference. Pages 1-6.

Ali W, Shamsuddin S, Ismail A. 2011. A survey of Web
caching and prefetching. International Journal of
Advances in Soft Computing and Its Applications,
Vol. 3, No. 1, March 2011.

Begel A, Simon B. Struggles of New College Gra-duates
in their First Software Development Job. SIGCSE '08,
Proceedings of the 39th SIGCSE technical symposium
on Computer science education. Pages 226-230.

Bianzino A, Raju A, Rossi D. 2011. “Greening the
Internet: Measuring Web Power Consumption”. IT
Pro, Published by the IEEE Computer Society,
January/February 2011. Pages 48-53.

Butkiewicz M, Madhyastha H, Sekar V. 2011.
Understanding Website Complexity: Measurements,
Metrics, and Implications. IMC’11Proceedings of the
2011 ACM SIGCOMM conference on Internet
measurement conference. Pages 313-328.

Deitel P, Deitel H, Deitel A. 2012. Internet and World
Wide Web: How to Program. Fifth Edition, Pearson.
955 Pages.

WEBIST 2016 - 12th International Conference on Web Information Systems and Technologies

192

Galletta D, Henry R, McCoy S, Polak P. 2004. Web Site
Delays: How Tolerant are Users?. Journal of the
Association for Information Systems. Pages 1-28.

Google. 2015. PageSpeed Tools. Retrieved 10.12.2015
from https://developers.google.com/speed/pagespeed/

Gupta M, Singh S. 2003. Greening of the Internet. ACM
SIGCOMM, Karlsruhe, Germany.

Fabian B, Goertz F, Kunz S, Muller S, Nitzsche M. 2010.
Privately waiting–a usability analysis of the tor
anonymity network. Sustainable e-Business
Management. Pages 63–75.

Ferragina P, Manzini, G. 2010. On compressing the
textual web. In: Proc. of Third ACM Conference on
Web Search and Data Mining (WSDM). Pages 391-
400.

Hongkiat. 2015. Ultimate Guide To Web Optimization
(Tips & Best Practices). Retrieved 9.12.2015 from
http://www.hongkiat.com/blog/ultimate-guide-to-web-
optimization-tips-best-practices/

Load Impact. 2015. On Demand Load Testing for
Developers & Testers. Retrieved 10.11.2015 from
https://loadimpact.com/

Qian F, Quah S, Huang J, Erman J, Gerber A, Mao Z, Sen
S, Spatscheck O. Web caching on smartphones: ideal
vs reality. In Proceedings of the 10th international
conference on Mobile systems, applications, and
services, MobiSys ’12. Pages 127–140.

Rajeev B, Bakula K. 2015. A developer's insights into
performance optimizations for mobile web apps.
Advance Computing Conference 2015 (IACC). Pages
671 - 675.

Soininen J. 2012. Website Performance Evaluation and
Estimation in an E-business Environment. Doctoral
dissertation, Tampere University of Technology. 188
Pages. Retrieved 12.11.2015 from
http://dspace.cc.tut.fi/dpub/handle/123456789/21230.

Spiesser J, Kitchen, L. 2004. Optimization of html
automatically generated by wysiwyg programs.
WWW 2004, Proceedings of the 13th international
conference on World Wide Web. Pages 355–364.

TinyPNG. 2015. Shrink PNG files. Retrieved 12.10.2015
from https://tinypng.com/

Performance Gains from Web Performance Optimization - Case Including the Optimization of Webpage Resources in a Comprehensive Way

193

